[1] | 1 | MODULE calc_radiation_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: calc_radiation.f90 484 2010-02-05 07:36:54Z gryschka $ |
---|
| 11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 12 | ! |
---|
[1] | 13 | ! Revision 1.6 2004/01/30 10:17:03 raasch |
---|
| 14 | ! Scalar lower k index nzb replaced by 2d-array nzb_2d |
---|
| 15 | ! |
---|
| 16 | ! Revision 1.1 2000/04/13 14:42:45 schroeter |
---|
| 17 | ! Initial revision |
---|
| 18 | ! |
---|
| 19 | ! |
---|
| 20 | ! Description: |
---|
| 21 | ! ------------- |
---|
| 22 | ! Calculation of the vertical divergences of the long-wave radiation-fluxes |
---|
| 23 | ! based on the parameterization of the cloud effective emissivity |
---|
| 24 | !------------------------------------------------------------------------------! |
---|
| 25 | |
---|
| 26 | PRIVATE |
---|
| 27 | PUBLIC calc_radiation |
---|
| 28 | |
---|
| 29 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
| 30 | REAL, SAVE :: sigma = 5.67E-08 |
---|
| 31 | |
---|
| 32 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: lwp_ground, lwp_top, & |
---|
| 33 | blackbody_emission |
---|
| 34 | |
---|
| 35 | INTERFACE calc_radiation |
---|
| 36 | MODULE PROCEDURE calc_radiation |
---|
| 37 | MODULE PROCEDURE calc_radiation_ij |
---|
| 38 | END INTERFACE calc_radiation |
---|
| 39 | |
---|
| 40 | CONTAINS |
---|
| 41 | |
---|
| 42 | |
---|
| 43 | !------------------------------------------------------------------------------! |
---|
| 44 | ! Call for all grid points |
---|
| 45 | !------------------------------------------------------------------------------! |
---|
| 46 | SUBROUTINE calc_radiation |
---|
| 47 | |
---|
| 48 | USE arrays_3d |
---|
| 49 | USE cloud_parameters |
---|
| 50 | USE control_parameters |
---|
| 51 | USE indices |
---|
| 52 | USE pegrid |
---|
| 53 | |
---|
| 54 | IMPLICIT NONE |
---|
| 55 | |
---|
| 56 | INTEGER :: i, j, k, k_help |
---|
| 57 | |
---|
| 58 | REAL :: df_p, df_m , effective_emission_up_m, effective_emission_up_p, & |
---|
| 59 | effective_emission_down_m, effective_emission_down_p, & |
---|
| 60 | f_up_m, f_up_p, f_down_m, f_down_p, impinging_flux_at_top, & |
---|
| 61 | temperature |
---|
| 62 | |
---|
| 63 | |
---|
| 64 | ! |
---|
| 65 | !-- On first call, allocate temporary arrays |
---|
| 66 | IF ( first_call ) THEN |
---|
| 67 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
| 68 | lwp_top(nzb:nzt+1) ) |
---|
| 69 | first_call = .FALSE. |
---|
| 70 | ENDIF |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | DO i = nxl, nxr |
---|
| 74 | DO j = nys, nyn |
---|
| 75 | ! |
---|
| 76 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
| 77 | !-- at all vertical levels |
---|
| 78 | lwp_ground(nzb) = 0.0 |
---|
| 79 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 80 | |
---|
| 81 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
| 82 | blackbody_emission(nzb) = sigma * temperature**4.0 |
---|
| 83 | |
---|
| 84 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 85 | |
---|
| 86 | k_help = ( nzt+nzb+1 ) - k |
---|
| 87 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * & |
---|
| 88 | dzw(k) |
---|
| 89 | |
---|
| 90 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
| 91 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
| 92 | |
---|
| 93 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
| 94 | blackbody_emission(k) = sigma * temperature**4.0 |
---|
| 95 | |
---|
| 96 | ENDDO |
---|
| 97 | |
---|
| 98 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
| 99 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 100 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
| 101 | |
---|
| 102 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
| 103 | ql(nzt+1,j,i) |
---|
| 104 | blackbody_emission(nzt+1) = sigma * temperature**4.0 |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- See Chlond '92, this is just a first guess |
---|
| 108 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0 |
---|
| 109 | |
---|
| 110 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 111 | ! |
---|
| 112 | !-- Save some computational time, but this may cause load |
---|
| 113 | !-- imbalances if ql is not distributed uniformly |
---|
| 114 | IF ( ql(k,j,i) /= 0.0 ) THEN |
---|
| 115 | ! |
---|
| 116 | !-- Compute effective emissivities |
---|
| 117 | effective_emission_up_p = 1.0 - & |
---|
| 118 | EXP( -130.0 * lwp_ground(k+1) ) |
---|
| 119 | effective_emission_up_m = 1.0 - & |
---|
| 120 | EXP( -130.0 * lwp_ground(k-1) ) |
---|
| 121 | effective_emission_down_p = 1.0 - & |
---|
| 122 | EXP( -158.0 * lwp_top(k+1) ) |
---|
| 123 | effective_emission_down_m = 1.0 - & |
---|
| 124 | EXP( -158.0 * lwp_top(k-1) ) |
---|
| 125 | |
---|
| 126 | ! |
---|
| 127 | !-- Compute vertical long wave radiation fluxes |
---|
| 128 | f_up_p = blackbody_emission(nzb) + & |
---|
| 129 | effective_emission_up_p * & |
---|
| 130 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
| 131 | |
---|
| 132 | f_up_m = blackbody_emission(nzb) + & |
---|
| 133 | effective_emission_up_m * & |
---|
| 134 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
| 135 | |
---|
| 136 | f_down_p = impinging_flux_at_top + & |
---|
| 137 | effective_emission_down_p * & |
---|
| 138 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
| 139 | |
---|
| 140 | f_down_m = impinging_flux_at_top + & |
---|
| 141 | effective_emission_down_m * & |
---|
| 142 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Divergence of vertical long wave radiation fluxes |
---|
| 146 | df_p = f_up_p - f_down_p |
---|
| 147 | df_m = f_up_m - f_down_m |
---|
| 148 | |
---|
| 149 | ! |
---|
| 150 | !-- Compute tendency term |
---|
| 151 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 152 | ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
| 153 | ( df_p - df_m ) / dzw(k) ) |
---|
| 154 | |
---|
| 155 | ENDIF |
---|
| 156 | |
---|
| 157 | ENDDO |
---|
| 158 | ENDDO |
---|
| 159 | ENDDO |
---|
| 160 | |
---|
| 161 | END SUBROUTINE calc_radiation |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | !------------------------------------------------------------------------------! |
---|
| 165 | ! Call for grid point i,j |
---|
| 166 | !------------------------------------------------------------------------------! |
---|
| 167 | SUBROUTINE calc_radiation_ij( i, j ) |
---|
| 168 | |
---|
| 169 | USE arrays_3d |
---|
| 170 | USE cloud_parameters |
---|
| 171 | USE control_parameters |
---|
| 172 | USE indices |
---|
| 173 | USE pegrid |
---|
| 174 | |
---|
| 175 | IMPLICIT NONE |
---|
| 176 | |
---|
| 177 | INTEGER :: i, j, k, k_help |
---|
| 178 | |
---|
| 179 | REAL :: df_p, df_m , effective_emission_up_m, effective_emission_up_p, & |
---|
| 180 | effective_emission_down_m, effective_emission_down_p, & |
---|
| 181 | f_up_m, f_up_p, f_down_m, f_down_p, impinging_flux_at_top, & |
---|
| 182 | temperature |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- On first call, allocate temporary arrays |
---|
| 186 | IF ( first_call ) THEN |
---|
| 187 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
| 188 | lwp_top(nzb:nzt+1) ) |
---|
| 189 | first_call = .FALSE. |
---|
| 190 | ENDIF |
---|
| 191 | |
---|
| 192 | ! |
---|
| 193 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
| 194 | !-- at all vertical levels |
---|
| 195 | lwp_ground(nzb) = 0.0 |
---|
| 196 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 197 | |
---|
| 198 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
| 199 | blackbody_emission(nzb) = sigma * temperature**4.0 |
---|
| 200 | |
---|
| 201 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 202 | k_help = ( nzt+nzb+1 ) - k |
---|
| 203 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * dzw(k) |
---|
| 204 | |
---|
| 205 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
| 206 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
| 207 | |
---|
| 208 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
| 209 | blackbody_emission(k) = sigma * temperature**4.0 |
---|
| 210 | |
---|
| 211 | ENDDO |
---|
| 212 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
| 213 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 214 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
| 215 | |
---|
| 216 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
| 217 | ql(nzt+1,j,i) |
---|
| 218 | blackbody_emission(nzt+1) = sigma * temperature**4.0 |
---|
| 219 | |
---|
| 220 | ! |
---|
| 221 | !-- See Chlond '92, this is just a first guess |
---|
| 222 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0 |
---|
| 223 | |
---|
| 224 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 225 | ! |
---|
| 226 | !-- Store some computational time, |
---|
| 227 | !-- this may cause load imbalances if ql is not distributed uniformly |
---|
| 228 | IF ( ql(k,j,i) /= 0.0 ) THEN |
---|
| 229 | ! |
---|
| 230 | !-- Compute effective emissivities |
---|
| 231 | effective_emission_up_p = 1.0 - & |
---|
| 232 | EXP( -130.0 * lwp_ground(k+1) ) |
---|
| 233 | effective_emission_up_m = 1.0 - & |
---|
| 234 | EXP( -130.0 * lwp_ground(k-1) ) |
---|
| 235 | effective_emission_down_p = 1.0 - & |
---|
| 236 | EXP( -158.0 * lwp_top(k+1) ) |
---|
| 237 | effective_emission_down_m = 1.0 - & |
---|
| 238 | EXP( -158.0 * lwp_top(k-1) ) |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- Compute vertical long wave radiation fluxes |
---|
| 242 | f_up_p = blackbody_emission(nzb) + effective_emission_up_p * & |
---|
| 243 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
| 244 | |
---|
| 245 | f_up_m = blackbody_emission(nzb) + effective_emission_up_m * & |
---|
| 246 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
| 247 | |
---|
| 248 | f_down_p = impinging_flux_at_top + effective_emission_down_p * & |
---|
| 249 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
| 250 | |
---|
| 251 | f_down_m = impinging_flux_at_top + effective_emission_down_m * & |
---|
| 252 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !- Divergence of vertical long wave radiation fluxes |
---|
| 256 | df_p = f_up_p - f_down_p |
---|
| 257 | df_m = f_up_m - f_down_m |
---|
| 258 | |
---|
| 259 | ! |
---|
| 260 | !-- Compute tendency term |
---|
| 261 | tend(k,j,i) = tend(k,j,i) - ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
| 262 | ( df_p - df_m ) / dzw(k) ) |
---|
| 263 | |
---|
| 264 | ENDIF |
---|
| 265 | |
---|
| 266 | ENDDO |
---|
| 267 | |
---|
| 268 | END SUBROUTINE calc_radiation_ij |
---|
| 269 | |
---|
| 270 | END MODULE calc_radiation_mod |
---|