[1] | 1 | MODULE calc_radiation_mod |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[3] | 26 | ! $Id: calc_radiation.f90 1310 2014-03-14 08:01:56Z suehring $ |
---|
[1037] | 27 | ! |
---|
| 28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 29 | ! code put under GPL (PALM 3.9) |
---|
| 30 | ! |
---|
[3] | 31 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 32 | ! |
---|
[1] | 33 | ! Revision 1.6 2004/01/30 10:17:03 raasch |
---|
| 34 | ! Scalar lower k index nzb replaced by 2d-array nzb_2d |
---|
| 35 | ! |
---|
| 36 | ! Revision 1.1 2000/04/13 14:42:45 schroeter |
---|
| 37 | ! Initial revision |
---|
| 38 | ! |
---|
| 39 | ! |
---|
| 40 | ! Description: |
---|
| 41 | ! ------------- |
---|
| 42 | ! Calculation of the vertical divergences of the long-wave radiation-fluxes |
---|
| 43 | ! based on the parameterization of the cloud effective emissivity |
---|
| 44 | !------------------------------------------------------------------------------! |
---|
| 45 | |
---|
| 46 | PRIVATE |
---|
| 47 | PUBLIC calc_radiation |
---|
| 48 | |
---|
| 49 | LOGICAL, SAVE :: first_call = .TRUE. |
---|
| 50 | REAL, SAVE :: sigma = 5.67E-08 |
---|
| 51 | |
---|
| 52 | REAL, DIMENSION(:), ALLOCATABLE, SAVE :: lwp_ground, lwp_top, & |
---|
| 53 | blackbody_emission |
---|
| 54 | |
---|
| 55 | INTERFACE calc_radiation |
---|
| 56 | MODULE PROCEDURE calc_radiation |
---|
| 57 | MODULE PROCEDURE calc_radiation_ij |
---|
| 58 | END INTERFACE calc_radiation |
---|
| 59 | |
---|
| 60 | CONTAINS |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | !------------------------------------------------------------------------------! |
---|
| 64 | ! Call for all grid points |
---|
| 65 | !------------------------------------------------------------------------------! |
---|
| 66 | SUBROUTINE calc_radiation |
---|
| 67 | |
---|
| 68 | USE arrays_3d |
---|
| 69 | USE cloud_parameters |
---|
| 70 | USE control_parameters |
---|
| 71 | USE indices |
---|
| 72 | USE pegrid |
---|
| 73 | |
---|
| 74 | IMPLICIT NONE |
---|
| 75 | |
---|
| 76 | INTEGER :: i, j, k, k_help |
---|
| 77 | |
---|
| 78 | REAL :: df_p, df_m , effective_emission_up_m, effective_emission_up_p, & |
---|
| 79 | effective_emission_down_m, effective_emission_down_p, & |
---|
| 80 | f_up_m, f_up_p, f_down_m, f_down_p, impinging_flux_at_top, & |
---|
| 81 | temperature |
---|
| 82 | |
---|
| 83 | |
---|
| 84 | ! |
---|
| 85 | !-- On first call, allocate temporary arrays |
---|
| 86 | IF ( first_call ) THEN |
---|
| 87 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
| 88 | lwp_top(nzb:nzt+1) ) |
---|
| 89 | first_call = .FALSE. |
---|
| 90 | ENDIF |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | DO i = nxl, nxr |
---|
| 94 | DO j = nys, nyn |
---|
| 95 | ! |
---|
| 96 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
| 97 | !-- at all vertical levels |
---|
| 98 | lwp_ground(nzb) = 0.0 |
---|
| 99 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 100 | |
---|
| 101 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
| 102 | blackbody_emission(nzb) = sigma * temperature**4.0 |
---|
| 103 | |
---|
| 104 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 105 | |
---|
| 106 | k_help = ( nzt+nzb+1 ) - k |
---|
| 107 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * & |
---|
| 108 | dzw(k) |
---|
| 109 | |
---|
| 110 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
| 111 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
| 112 | |
---|
| 113 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
| 114 | blackbody_emission(k) = sigma * temperature**4.0 |
---|
| 115 | |
---|
| 116 | ENDDO |
---|
| 117 | |
---|
| 118 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
| 119 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 120 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
| 121 | |
---|
| 122 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
| 123 | ql(nzt+1,j,i) |
---|
| 124 | blackbody_emission(nzt+1) = sigma * temperature**4.0 |
---|
| 125 | |
---|
| 126 | ! |
---|
| 127 | !-- See Chlond '92, this is just a first guess |
---|
| 128 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0 |
---|
| 129 | |
---|
| 130 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 131 | ! |
---|
| 132 | !-- Save some computational time, but this may cause load |
---|
| 133 | !-- imbalances if ql is not distributed uniformly |
---|
| 134 | IF ( ql(k,j,i) /= 0.0 ) THEN |
---|
| 135 | ! |
---|
| 136 | !-- Compute effective emissivities |
---|
| 137 | effective_emission_up_p = 1.0 - & |
---|
| 138 | EXP( -130.0 * lwp_ground(k+1) ) |
---|
| 139 | effective_emission_up_m = 1.0 - & |
---|
| 140 | EXP( -130.0 * lwp_ground(k-1) ) |
---|
| 141 | effective_emission_down_p = 1.0 - & |
---|
| 142 | EXP( -158.0 * lwp_top(k+1) ) |
---|
| 143 | effective_emission_down_m = 1.0 - & |
---|
| 144 | EXP( -158.0 * lwp_top(k-1) ) |
---|
| 145 | |
---|
| 146 | ! |
---|
| 147 | !-- Compute vertical long wave radiation fluxes |
---|
| 148 | f_up_p = blackbody_emission(nzb) + & |
---|
| 149 | effective_emission_up_p * & |
---|
| 150 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
| 151 | |
---|
| 152 | f_up_m = blackbody_emission(nzb) + & |
---|
| 153 | effective_emission_up_m * & |
---|
| 154 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
| 155 | |
---|
| 156 | f_down_p = impinging_flux_at_top + & |
---|
| 157 | effective_emission_down_p * & |
---|
| 158 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
| 159 | |
---|
| 160 | f_down_m = impinging_flux_at_top + & |
---|
| 161 | effective_emission_down_m * & |
---|
| 162 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
| 163 | |
---|
| 164 | ! |
---|
| 165 | !-- Divergence of vertical long wave radiation fluxes |
---|
| 166 | df_p = f_up_p - f_down_p |
---|
| 167 | df_m = f_up_m - f_down_m |
---|
| 168 | |
---|
| 169 | ! |
---|
| 170 | !-- Compute tendency term |
---|
| 171 | tend(k,j,i) = tend(k,j,i) - & |
---|
| 172 | ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
| 173 | ( df_p - df_m ) / dzw(k) ) |
---|
| 174 | |
---|
| 175 | ENDIF |
---|
| 176 | |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | |
---|
| 181 | END SUBROUTINE calc_radiation |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | !------------------------------------------------------------------------------! |
---|
| 185 | ! Call for grid point i,j |
---|
| 186 | !------------------------------------------------------------------------------! |
---|
| 187 | SUBROUTINE calc_radiation_ij( i, j ) |
---|
| 188 | |
---|
| 189 | USE arrays_3d |
---|
| 190 | USE cloud_parameters |
---|
| 191 | USE control_parameters |
---|
| 192 | USE indices |
---|
| 193 | USE pegrid |
---|
| 194 | |
---|
| 195 | IMPLICIT NONE |
---|
| 196 | |
---|
| 197 | INTEGER :: i, j, k, k_help |
---|
| 198 | |
---|
| 199 | REAL :: df_p, df_m , effective_emission_up_m, effective_emission_up_p, & |
---|
| 200 | effective_emission_down_m, effective_emission_down_p, & |
---|
| 201 | f_up_m, f_up_p, f_down_m, f_down_p, impinging_flux_at_top, & |
---|
| 202 | temperature |
---|
| 203 | |
---|
| 204 | ! |
---|
| 205 | !-- On first call, allocate temporary arrays |
---|
| 206 | IF ( first_call ) THEN |
---|
| 207 | ALLOCATE( blackbody_emission(nzb:nzt+1), lwp_ground(nzb:nzt+1), & |
---|
| 208 | lwp_top(nzb:nzt+1) ) |
---|
| 209 | first_call = .FALSE. |
---|
| 210 | ENDIF |
---|
| 211 | |
---|
| 212 | ! |
---|
| 213 | !-- Compute the liquid water path (LWP) and blackbody_emission |
---|
| 214 | !-- at all vertical levels |
---|
| 215 | lwp_ground(nzb) = 0.0 |
---|
| 216 | lwp_top(nzt+1) = rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 217 | |
---|
| 218 | temperature = pt(nzb,j,i) * t_d_pt(nzb) + l_d_cp * ql(nzb,j,i) |
---|
| 219 | blackbody_emission(nzb) = sigma * temperature**4.0 |
---|
| 220 | |
---|
| 221 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 222 | k_help = ( nzt+nzb+1 ) - k |
---|
| 223 | lwp_ground(k) = lwp_ground(k-1) + rho_surface * ql(k,j,i) * dzw(k) |
---|
| 224 | |
---|
| 225 | lwp_top(k_help) = lwp_top(k_help+1) + & |
---|
| 226 | rho_surface * ql(k_help,j,i) * dzw(k_help) |
---|
| 227 | |
---|
| 228 | temperature = pt(k,j,i) * t_d_pt(k) + l_d_cp * ql(k,j,i) |
---|
| 229 | blackbody_emission(k) = sigma * temperature**4.0 |
---|
| 230 | |
---|
| 231 | ENDDO |
---|
| 232 | lwp_ground(nzt+1) = lwp_ground(nzt) + & |
---|
| 233 | rho_surface * ql(nzt+1,j,i) * dzw(nzt+1) |
---|
| 234 | lwp_top(nzb) = lwp_top(nzb+1) |
---|
| 235 | |
---|
| 236 | temperature = pt(nzt+1,j,i) * t_d_pt(nzt+1) + l_d_cp * & |
---|
| 237 | ql(nzt+1,j,i) |
---|
| 238 | blackbody_emission(nzt+1) = sigma * temperature**4.0 |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- See Chlond '92, this is just a first guess |
---|
| 242 | impinging_flux_at_top = blackbody_emission(nzb) - 100.0 |
---|
| 243 | |
---|
| 244 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 245 | ! |
---|
| 246 | !-- Store some computational time, |
---|
| 247 | !-- this may cause load imbalances if ql is not distributed uniformly |
---|
| 248 | IF ( ql(k,j,i) /= 0.0 ) THEN |
---|
| 249 | ! |
---|
| 250 | !-- Compute effective emissivities |
---|
| 251 | effective_emission_up_p = 1.0 - & |
---|
| 252 | EXP( -130.0 * lwp_ground(k+1) ) |
---|
| 253 | effective_emission_up_m = 1.0 - & |
---|
| 254 | EXP( -130.0 * lwp_ground(k-1) ) |
---|
| 255 | effective_emission_down_p = 1.0 - & |
---|
| 256 | EXP( -158.0 * lwp_top(k+1) ) |
---|
| 257 | effective_emission_down_m = 1.0 - & |
---|
| 258 | EXP( -158.0 * lwp_top(k-1) ) |
---|
| 259 | |
---|
| 260 | ! |
---|
| 261 | !-- Compute vertical long wave radiation fluxes |
---|
| 262 | f_up_p = blackbody_emission(nzb) + effective_emission_up_p * & |
---|
| 263 | ( blackbody_emission(k) - blackbody_emission(nzb) ) |
---|
| 264 | |
---|
| 265 | f_up_m = blackbody_emission(nzb) + effective_emission_up_m * & |
---|
| 266 | ( blackbody_emission(k-1) - blackbody_emission(nzb) ) |
---|
| 267 | |
---|
| 268 | f_down_p = impinging_flux_at_top + effective_emission_down_p * & |
---|
| 269 | ( blackbody_emission(k) - impinging_flux_at_top ) |
---|
| 270 | |
---|
| 271 | f_down_m = impinging_flux_at_top + effective_emission_down_m * & |
---|
| 272 | ( blackbody_emission(k-1) - impinging_flux_at_top ) |
---|
| 273 | |
---|
| 274 | ! |
---|
| 275 | !- Divergence of vertical long wave radiation fluxes |
---|
| 276 | df_p = f_up_p - f_down_p |
---|
| 277 | df_m = f_up_m - f_down_m |
---|
| 278 | |
---|
| 279 | ! |
---|
| 280 | !-- Compute tendency term |
---|
| 281 | tend(k,j,i) = tend(k,j,i) - ( pt_d_t(k) / ( rho_surface * cp ) * & |
---|
| 282 | ( df_p - df_m ) / dzw(k) ) |
---|
| 283 | |
---|
| 284 | ENDIF |
---|
| 285 | |
---|
| 286 | ENDDO |
---|
| 287 | |
---|
| 288 | END SUBROUTINE calc_radiation_ij |
---|
| 289 | |
---|
| 290 | END MODULE calc_radiation_mod |
---|