[1] | 1 | MODULE buoyancy_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[247] | 4 | ! Currrent revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[247] | 6 | ! Output of messages replaced by message handling routine |
---|
[98] | 7 | ! |
---|
[247] | 8 | ! |
---|
[98] | 9 | ! Former revisions: |
---|
| 10 | ! ----------------- |
---|
| 11 | ! $Id: buoyancy.f90 247 2009-02-27 14:01:30Z raasch $ |
---|
| 12 | ! |
---|
[139] | 13 | ! 132 2007-11-20 09:46:11Z letzel |
---|
| 14 | ! Vertical scalar profiles now based on nzb_s_inner and ngp_2dh_s_inner. |
---|
| 15 | ! |
---|
[110] | 16 | ! 106 2007-08-16 14:30:26Z raasch |
---|
| 17 | ! i loop for u-component (sloping surface) is starting from nxlu (needed for |
---|
| 18 | ! non-cyclic boundary conditions) |
---|
| 19 | ! |
---|
[98] | 20 | ! 97 2007-06-21 08:23:15Z raasch |
---|
[97] | 21 | ! Routine reneralized to be used with temperature AND density: |
---|
| 22 | ! argument theta renamed var, new argument var_reference, |
---|
| 23 | ! use_pt_reference renamed use_reference, |
---|
[96] | 24 | ! calc_mean_pt_profile renamed calc_mean_profile |
---|
[1] | 25 | ! |
---|
[77] | 26 | ! 57 2007-03-09 12:05:41Z raasch |
---|
| 27 | ! Reference temperature pt_reference can be used. |
---|
| 28 | ! |
---|
[3] | 29 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 30 | ! |
---|
[1] | 31 | ! Revision 1.19 2006/04/26 12:09:56 raasch |
---|
| 32 | ! OpenMP optimization (one dimension added to sums_l) |
---|
| 33 | ! |
---|
| 34 | ! Revision 1.1 1997/08/29 08:56:48 raasch |
---|
| 35 | ! Initial revision |
---|
| 36 | ! |
---|
| 37 | ! |
---|
| 38 | ! Description: |
---|
| 39 | ! ------------ |
---|
| 40 | ! Buoyancy term of the third component of the equation of motion. |
---|
| 41 | ! WARNING: humidity is not regarded when using a sloping surface! |
---|
| 42 | !------------------------------------------------------------------------------! |
---|
| 43 | |
---|
| 44 | PRIVATE |
---|
[96] | 45 | PUBLIC buoyancy, calc_mean_profile |
---|
[1] | 46 | |
---|
| 47 | INTERFACE buoyancy |
---|
| 48 | MODULE PROCEDURE buoyancy |
---|
| 49 | MODULE PROCEDURE buoyancy_ij |
---|
| 50 | END INTERFACE buoyancy |
---|
| 51 | |
---|
[96] | 52 | INTERFACE calc_mean_profile |
---|
| 53 | MODULE PROCEDURE calc_mean_profile |
---|
| 54 | END INTERFACE calc_mean_profile |
---|
[1] | 55 | |
---|
| 56 | CONTAINS |
---|
| 57 | |
---|
| 58 | |
---|
| 59 | !------------------------------------------------------------------------------! |
---|
| 60 | ! Call for all grid points |
---|
| 61 | !------------------------------------------------------------------------------! |
---|
[97] | 62 | SUBROUTINE buoyancy( var, var_reference, wind_component, pr ) |
---|
[1] | 63 | |
---|
| 64 | USE arrays_3d |
---|
| 65 | USE control_parameters |
---|
| 66 | USE indices |
---|
| 67 | USE pegrid |
---|
| 68 | USE statistics |
---|
| 69 | |
---|
| 70 | IMPLICIT NONE |
---|
| 71 | |
---|
| 72 | INTEGER :: i, j, k, pr, wind_component |
---|
[97] | 73 | REAL :: var_reference |
---|
| 74 | REAL, DIMENSION(:,:,:), POINTER :: var |
---|
[1] | 75 | |
---|
| 76 | |
---|
| 77 | IF ( .NOT. sloping_surface ) THEN |
---|
| 78 | ! |
---|
| 79 | !-- Normal case: horizontal surface |
---|
[97] | 80 | IF ( use_reference ) THEN |
---|
[57] | 81 | DO i = nxl, nxr |
---|
| 82 | DO j = nys, nyn |
---|
| 83 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
[97] | 84 | tend(k,j,i) = tend(k,j,i) + atmos_ocean_sign * g * 0.5 * & |
---|
| 85 | ( & |
---|
| 86 | ( var(k,j,i) - hom(k,1,pr,0) ) / var_reference + & |
---|
| 87 | ( var(k+1,j,i) - hom(k+1,1,pr,0) ) / var_reference & |
---|
[57] | 88 | ) |
---|
| 89 | ENDDO |
---|
| 90 | ENDDO |
---|
| 91 | ENDDO |
---|
| 92 | ELSE |
---|
| 93 | DO i = nxl, nxr |
---|
| 94 | DO j = nys, nyn |
---|
| 95 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
[97] | 96 | tend(k,j,i) = tend(k,j,i) + atmos_ocean_sign * g * 0.5 * & |
---|
| 97 | ( & |
---|
| 98 | ( var(k,j,i) - hom(k,1,pr,0) ) / hom(k,1,pr,0) + & |
---|
| 99 | ( var(k+1,j,i) - hom(k+1,1,pr,0) ) / hom(k+1,1,pr,0) & |
---|
[57] | 100 | ) |
---|
| 101 | ENDDO |
---|
[1] | 102 | ENDDO |
---|
| 103 | ENDDO |
---|
[57] | 104 | ENDIF |
---|
[1] | 105 | |
---|
| 106 | ELSE |
---|
| 107 | ! |
---|
| 108 | !-- Buoyancy term for a surface with a slope in x-direction. The equations |
---|
| 109 | !-- for both the u and w velocity-component contain proportionate terms. |
---|
| 110 | !-- Temperature field at time t=0 serves as environmental temperature. |
---|
| 111 | !-- Reference temperature (pt_surface) is the one at the lower left corner |
---|
| 112 | !-- of the total domain. |
---|
| 113 | IF ( wind_component == 1 ) THEN |
---|
| 114 | |
---|
[106] | 115 | DO i = nxlu, nxr |
---|
[1] | 116 | DO j = nys, nyn |
---|
| 117 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 118 | tend(k,j,i) = tend(k,j,i) + g * sin_alpha_surface * & |
---|
| 119 | 0.5 * ( ( pt(k,j,i-1) + pt(k,j,i) ) & |
---|
| 120 | - ( pt_slope_ref(k,i-1) + pt_slope_ref(k,i) ) & |
---|
| 121 | ) / pt_surface |
---|
| 122 | ENDDO |
---|
| 123 | ENDDO |
---|
| 124 | ENDDO |
---|
| 125 | |
---|
| 126 | ELSEIF ( wind_component == 3 ) THEN |
---|
| 127 | |
---|
| 128 | DO i = nxl, nxr |
---|
| 129 | DO j = nys, nyn |
---|
| 130 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 131 | tend(k,j,i) = tend(k,j,i) + g * cos_alpha_surface * & |
---|
| 132 | 0.5 * ( ( pt(k,j,i) + pt(k+1,j,i) ) & |
---|
| 133 | - ( pt_slope_ref(k,i) + pt_slope_ref(k+1,i) ) & |
---|
| 134 | ) / pt_surface |
---|
| 135 | ENDDO |
---|
| 136 | ENDDO |
---|
| 137 | ENDDO |
---|
| 138 | |
---|
| 139 | ELSE |
---|
[247] | 140 | |
---|
| 141 | WRITE( message_string, * ) 'no term for component "',& |
---|
[1] | 142 | wind_component,'"' |
---|
[247] | 143 | CALL message( 'buoyancy', 'PA0159', 1, 2, 0, 6, 0 ) |
---|
[1] | 144 | |
---|
| 145 | ENDIF |
---|
| 146 | |
---|
| 147 | ENDIF |
---|
| 148 | |
---|
| 149 | END SUBROUTINE buoyancy |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | !------------------------------------------------------------------------------! |
---|
| 153 | ! Call for grid point i,j |
---|
| 154 | !------------------------------------------------------------------------------! |
---|
[97] | 155 | SUBROUTINE buoyancy_ij( i, j, var, var_reference, wind_component, pr ) |
---|
[1] | 156 | |
---|
| 157 | USE arrays_3d |
---|
| 158 | USE control_parameters |
---|
| 159 | USE indices |
---|
| 160 | USE pegrid |
---|
| 161 | USE statistics |
---|
| 162 | |
---|
| 163 | IMPLICIT NONE |
---|
| 164 | |
---|
| 165 | INTEGER :: i, j, k, pr, wind_component |
---|
[97] | 166 | REAL :: var_reference |
---|
| 167 | REAL, DIMENSION(:,:,:), POINTER :: var |
---|
[1] | 168 | |
---|
| 169 | |
---|
| 170 | IF ( .NOT. sloping_surface ) THEN |
---|
| 171 | ! |
---|
| 172 | !-- Normal case: horizontal surface |
---|
[97] | 173 | IF ( use_reference ) THEN |
---|
[57] | 174 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
[97] | 175 | tend(k,j,i) = tend(k,j,i) + atmos_ocean_sign * g * 0.5 * ( & |
---|
| 176 | ( var(k,j,i) - hom(k,1,pr,0) ) / var_reference + & |
---|
| 177 | ( var(k+1,j,i) - hom(k+1,1,pr,0) ) / var_reference & |
---|
| 178 | ) |
---|
[57] | 179 | ENDDO |
---|
| 180 | ELSE |
---|
| 181 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
[97] | 182 | tend(k,j,i) = tend(k,j,i) + atmos_ocean_sign * g * 0.5 * ( & |
---|
| 183 | ( var(k,j,i) - hom(k,1,pr,0) ) / hom(k,1,pr,0) + & |
---|
| 184 | ( var(k+1,j,i) - hom(k+1,1,pr,0) ) / hom(k+1,1,pr,0) & |
---|
| 185 | ) |
---|
[57] | 186 | ENDDO |
---|
| 187 | ENDIF |
---|
[1] | 188 | |
---|
| 189 | ELSE |
---|
| 190 | ! |
---|
| 191 | !-- Buoyancy term for a surface with a slope in x-direction. The equations |
---|
| 192 | !-- for both the u and w velocity-component contain proportionate terms. |
---|
| 193 | !-- Temperature field at time t=0 serves as environmental temperature. |
---|
| 194 | !-- Reference temperature (pt_surface) is the one at the lower left corner |
---|
| 195 | !-- of the total domain. |
---|
| 196 | IF ( wind_component == 1 ) THEN |
---|
| 197 | |
---|
| 198 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 199 | tend(k,j,i) = tend(k,j,i) + g * sin_alpha_surface * & |
---|
| 200 | 0.5 * ( ( pt(k,j,i-1) + pt(k,j,i) ) & |
---|
| 201 | - ( pt_slope_ref(k,i-1) + pt_slope_ref(k,i) ) & |
---|
| 202 | ) / pt_surface |
---|
| 203 | ENDDO |
---|
| 204 | |
---|
| 205 | ELSEIF ( wind_component == 3 ) THEN |
---|
| 206 | |
---|
| 207 | DO k = nzb_s_inner(j,i)+1, nzt-1 |
---|
| 208 | tend(k,j,i) = tend(k,j,i) + g * cos_alpha_surface * & |
---|
| 209 | 0.5 * ( ( pt(k,j,i) + pt(k+1,j,i) ) & |
---|
| 210 | - ( pt_slope_ref(k,i) + pt_slope_ref(k+1,i) ) & |
---|
| 211 | ) / pt_surface |
---|
| 212 | ENDDO |
---|
| 213 | |
---|
| 214 | ELSE |
---|
| 215 | |
---|
[247] | 216 | WRITE( message_string, * ) 'no term for component "',& |
---|
[1] | 217 | wind_component,'"' |
---|
[247] | 218 | CALL message( 'buoyancy', 'PA0159', 1, 2, 0, 6, 0 ) |
---|
[1] | 219 | |
---|
| 220 | ENDIF |
---|
| 221 | |
---|
| 222 | ENDIF |
---|
| 223 | |
---|
| 224 | END SUBROUTINE buoyancy_ij |
---|
| 225 | |
---|
| 226 | |
---|
[96] | 227 | SUBROUTINE calc_mean_profile( var, pr ) |
---|
[1] | 228 | |
---|
| 229 | !------------------------------------------------------------------------------! |
---|
| 230 | ! Description: |
---|
| 231 | ! ------------ |
---|
| 232 | ! Calculate the horizontally averaged vertical temperature profile (pr=4 in case |
---|
| 233 | ! of potential temperature and 44 in case of virtual potential temperature). |
---|
| 234 | !------------------------------------------------------------------------------! |
---|
| 235 | |
---|
| 236 | USE control_parameters |
---|
| 237 | USE indices |
---|
| 238 | USE pegrid |
---|
| 239 | USE statistics |
---|
| 240 | |
---|
| 241 | IMPLICIT NONE |
---|
| 242 | |
---|
| 243 | INTEGER :: i, j, k, omp_get_thread_num, pr, tn |
---|
[96] | 244 | REAL, DIMENSION(:,:,:), POINTER :: var |
---|
[1] | 245 | |
---|
| 246 | ! |
---|
[96] | 247 | !-- Computation of the horizontally averaged profile of variable var, unless |
---|
[1] | 248 | !-- already done by the relevant call from flow_statistics. The calculation |
---|
| 249 | !-- is done only for the first respective intermediate timestep in order to |
---|
| 250 | !-- spare communication time and to produce identical model results with jobs |
---|
| 251 | !-- which are calling flow_statistics at different time intervals. |
---|
| 252 | IF ( .NOT. flow_statistics_called .AND. & |
---|
| 253 | intermediate_timestep_count == 1 ) THEN |
---|
| 254 | |
---|
| 255 | ! |
---|
[96] | 256 | !-- Horizontal average of variable var |
---|
[1] | 257 | tn = 0 ! Default thread number in case of one thread |
---|
| 258 | !$OMP PARALLEL PRIVATE( i, j, k, tn ) |
---|
| 259 | !$ tn = omp_get_thread_num() |
---|
| 260 | sums_l(:,pr,tn) = 0.0 |
---|
| 261 | !$OMP DO |
---|
| 262 | DO i = nxl, nxr |
---|
| 263 | DO j = nys, nyn |
---|
[132] | 264 | DO k = nzb_s_inner(j,i), nzt+1 |
---|
[96] | 265 | sums_l(k,pr,tn) = sums_l(k,pr,tn) + var(k,j,i) |
---|
[1] | 266 | ENDDO |
---|
| 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | !$OMP END PARALLEL |
---|
| 270 | |
---|
| 271 | DO i = 1, threads_per_task-1 |
---|
| 272 | sums_l(:,pr,0) = sums_l(:,pr,0) + sums_l(:,pr,i) |
---|
| 273 | ENDDO |
---|
| 274 | |
---|
| 275 | #if defined( __parallel ) |
---|
| 276 | |
---|
| 277 | CALL MPI_ALLREDUCE( sums_l(nzb,pr,0), sums(nzb,pr), nzt+2-nzb, & |
---|
| 278 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 279 | |
---|
| 280 | #else |
---|
| 281 | |
---|
| 282 | sums(:,pr) = sums_l(:,pr,0) |
---|
| 283 | |
---|
| 284 | #endif |
---|
| 285 | |
---|
[132] | 286 | hom(:,1,pr,0) = sums(:,pr) / ngp_2dh_s_inner(:,0) |
---|
[1] | 287 | |
---|
| 288 | ENDIF |
---|
| 289 | |
---|
[96] | 290 | END SUBROUTINE calc_mean_profile |
---|
[1] | 291 | |
---|
| 292 | END MODULE buoyancy_mod |
---|