1 | SUBROUTINE boundary_conds( range ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: boundary_conds.f90 768 2011-10-14 06:57:15Z gryschka $ |
---|
11 | ! |
---|
12 | ! 767 2011-10-14 06:39:12Z raasch |
---|
13 | ! ug,vg replaced by u_init,v_init as the Dirichlet top boundary condition |
---|
14 | ! |
---|
15 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
16 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng |
---|
17 | ! Removed mirror boundary conditions for u and v at the bottom in case of |
---|
18 | ! ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set |
---|
19 | ! in init_3d_model |
---|
20 | ! |
---|
21 | ! 107 2007-08-17 13:54:45Z raasch |
---|
22 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
23 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
24 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
25 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
26 | ! |
---|
27 | ! 95 2007-06-02 16:48:38Z raasch |
---|
28 | ! Boundary conditions for salinity added |
---|
29 | ! |
---|
30 | ! 75 2007-03-22 09:54:05Z raasch |
---|
31 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
32 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
33 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
34 | ! |
---|
35 | ! 19 2007-02-23 04:53:48Z raasch |
---|
36 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
37 | ! gridpoints are now calculated by the prognostic equation, |
---|
38 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
39 | ! |
---|
40 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
41 | ! |
---|
42 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
43 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
44 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
45 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
46 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
47 | ! |
---|
48 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
49 | ! Initial revision |
---|
50 | ! |
---|
51 | ! |
---|
52 | ! Description: |
---|
53 | ! ------------ |
---|
54 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
55 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
56 | ! the outflow are set after the pressure solver has been called (range= |
---|
57 | ! 'outflow_uvw'). |
---|
58 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
59 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
60 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
61 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
62 | !------------------------------------------------------------------------------! |
---|
63 | |
---|
64 | USE arrays_3d |
---|
65 | USE control_parameters |
---|
66 | USE grid_variables |
---|
67 | USE indices |
---|
68 | USE pegrid |
---|
69 | |
---|
70 | IMPLICIT NONE |
---|
71 | |
---|
72 | CHARACTER (LEN=*) :: range |
---|
73 | |
---|
74 | INTEGER :: i, j, k |
---|
75 | |
---|
76 | REAL :: c_max, denom |
---|
77 | |
---|
78 | |
---|
79 | IF ( range == 'main') THEN |
---|
80 | ! |
---|
81 | !-- Bottom boundary |
---|
82 | IF ( ibc_uv_b == 1 ) THEN |
---|
83 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
84 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
85 | ENDIF |
---|
86 | DO i = nxlg, nxrg |
---|
87 | DO j = nysg, nyng |
---|
88 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
89 | ENDDO |
---|
90 | ENDDO |
---|
91 | |
---|
92 | ! |
---|
93 | !-- Top boundary |
---|
94 | IF ( ibc_uv_t == 0 ) THEN |
---|
95 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
96 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
97 | ELSE |
---|
98 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
99 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
100 | ENDIF |
---|
101 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
102 | |
---|
103 | ! |
---|
104 | !-- Temperature at bottom boundary. |
---|
105 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
106 | !-- the sea surface temperature of the coupled ocean model. |
---|
107 | IF ( ibc_pt_b == 0 ) THEN |
---|
108 | DO i = nxlg, nxrg |
---|
109 | DO j = nysg, nyng |
---|
110 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
111 | ENDDO |
---|
112 | ENDDO |
---|
113 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
114 | DO i = nxlg, nxrg |
---|
115 | DO j = nysg, nyng |
---|
116 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
117 | ENDDO |
---|
118 | ENDDO |
---|
119 | ENDIF |
---|
120 | |
---|
121 | ! |
---|
122 | !-- Temperature at top boundary |
---|
123 | IF ( ibc_pt_t == 0 ) THEN |
---|
124 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
125 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
126 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
127 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
128 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
129 | ENDIF |
---|
130 | |
---|
131 | ! |
---|
132 | !-- Boundary conditions for TKE |
---|
133 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
134 | IF ( .NOT. constant_diffusion ) THEN |
---|
135 | DO i = nxlg, nxrg |
---|
136 | DO j = nysg, nyng |
---|
137 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
138 | ENDDO |
---|
139 | ENDDO |
---|
140 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
141 | ENDIF |
---|
142 | |
---|
143 | ! |
---|
144 | !-- Boundary conditions for salinity |
---|
145 | IF ( ocean ) THEN |
---|
146 | ! |
---|
147 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
148 | !-- given |
---|
149 | DO i = nxlg, nxrg |
---|
150 | DO j = nysg, nyng |
---|
151 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
152 | ENDDO |
---|
153 | ENDDO |
---|
154 | |
---|
155 | ! |
---|
156 | !-- Top boundary: Dirichlet or Neumann |
---|
157 | IF ( ibc_sa_t == 0 ) THEN |
---|
158 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
159 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
160 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
161 | ENDIF |
---|
162 | |
---|
163 | ENDIF |
---|
164 | |
---|
165 | ! |
---|
166 | !-- Boundary conditions for total water content or scalar, |
---|
167 | !-- bottom and top boundary (see also temperature) |
---|
168 | IF ( humidity .OR. passive_scalar ) THEN |
---|
169 | ! |
---|
170 | !-- Surface conditions for constant_humidity_flux |
---|
171 | IF ( ibc_q_b == 0 ) THEN |
---|
172 | DO i = nxlg, nxrg |
---|
173 | DO j = nysg, nyng |
---|
174 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
175 | ENDDO |
---|
176 | ENDDO |
---|
177 | ELSE |
---|
178 | DO i = nxlg, nxrg |
---|
179 | DO j = nysg, nyng |
---|
180 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | ENDIF |
---|
184 | ! |
---|
185 | !-- Top boundary |
---|
186 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
187 | |
---|
188 | |
---|
189 | ENDIF |
---|
190 | |
---|
191 | ! |
---|
192 | !-- Lateral boundary conditions at the inflow. Quasi Neumann conditions |
---|
193 | !-- are needed for the wall normal velocity in order to ensure zero |
---|
194 | !-- divergence. Dirichlet conditions are used for all other quantities. |
---|
195 | IF ( inflow_s ) THEN |
---|
196 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
197 | ELSEIF ( inflow_n ) THEN |
---|
198 | v_p(:,nyn,:) = v_p(:,nyn+1,:) |
---|
199 | ELSEIF ( inflow_l ) THEN |
---|
200 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
201 | ELSEIF ( inflow_r ) THEN |
---|
202 | u_p(:,:,nxr) = u_p(:,:,nxr+1) |
---|
203 | ENDIF |
---|
204 | |
---|
205 | ! |
---|
206 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
207 | IF ( outflow_s ) THEN |
---|
208 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
209 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
210 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
211 | ELSEIF ( outflow_n ) THEN |
---|
212 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
213 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
214 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
215 | ELSEIF ( outflow_l ) THEN |
---|
216 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
217 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
218 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
219 | ELSEIF ( outflow_r ) THEN |
---|
220 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
221 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
222 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
223 | ENDIF |
---|
224 | |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ! |
---|
228 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
229 | IF ( outflow_s ) THEN |
---|
230 | |
---|
231 | c_max = dy / dt_3d |
---|
232 | |
---|
233 | DO i = nxlg, nxrg |
---|
234 | DO k = nzb+1, nzt+1 |
---|
235 | |
---|
236 | ! |
---|
237 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
238 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
239 | !-- reuse this values for the further substeps. |
---|
240 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
241 | |
---|
242 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
243 | |
---|
244 | IF ( denom /= 0.0 ) THEN |
---|
245 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
246 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
247 | c_u(k,i) = 0.0 |
---|
248 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
249 | c_u(k,i) = c_max |
---|
250 | ENDIF |
---|
251 | ELSE |
---|
252 | c_u(k,i) = c_max |
---|
253 | ENDIF |
---|
254 | |
---|
255 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
256 | |
---|
257 | IF ( denom /= 0.0 ) THEN |
---|
258 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / denom |
---|
259 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
260 | c_v(k,i) = 0.0 |
---|
261 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
262 | c_v(k,i) = c_max |
---|
263 | ENDIF |
---|
264 | ELSE |
---|
265 | c_v(k,i) = c_max |
---|
266 | ENDIF |
---|
267 | |
---|
268 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
269 | |
---|
270 | IF ( denom /= 0.0 ) THEN |
---|
271 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
272 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
273 | c_w(k,i) = 0.0 |
---|
274 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
275 | c_w(k,i) = c_max |
---|
276 | ENDIF |
---|
277 | ELSE |
---|
278 | c_w(k,i) = c_max |
---|
279 | ENDIF |
---|
280 | |
---|
281 | ! |
---|
282 | !-- Save old timelevels for the next timestep |
---|
283 | u_m_s(k,:,i) = u(k,0:1,i) |
---|
284 | v_m_s(k,:,i) = v(k,1:2,i) |
---|
285 | w_m_s(k,:,i) = w(k,0:1,i) |
---|
286 | |
---|
287 | ENDIF |
---|
288 | |
---|
289 | ! |
---|
290 | !-- Calculate the new velocities |
---|
291 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
292 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
293 | |
---|
294 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
295 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
296 | |
---|
297 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
298 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
299 | |
---|
300 | ENDDO |
---|
301 | ENDDO |
---|
302 | |
---|
303 | ! |
---|
304 | !-- Bottom boundary at the outflow |
---|
305 | IF ( ibc_uv_b == 0 ) THEN |
---|
306 | u_p(nzb,-1,:) = 0.0 |
---|
307 | v_p(nzb,0,:) = 0.0 |
---|
308 | ELSE |
---|
309 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
310 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
311 | ENDIF |
---|
312 | w_p(nzb,-1,:) = 0.0 |
---|
313 | |
---|
314 | ! |
---|
315 | !-- Top boundary at the outflow |
---|
316 | IF ( ibc_uv_t == 0 ) THEN |
---|
317 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
318 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
319 | ELSE |
---|
320 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
321 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
322 | ENDIF |
---|
323 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
324 | |
---|
325 | ENDIF |
---|
326 | |
---|
327 | IF ( outflow_n ) THEN |
---|
328 | |
---|
329 | c_max = dy / dt_3d |
---|
330 | |
---|
331 | DO i = nxlg, nxrg |
---|
332 | DO k = nzb+1, nzt+1 |
---|
333 | |
---|
334 | ! |
---|
335 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
336 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
337 | !-- reuse this values for the further substeps. |
---|
338 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
339 | |
---|
340 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
341 | |
---|
342 | IF ( denom /= 0.0 ) THEN |
---|
343 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
344 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
345 | c_u(k,i) = 0.0 |
---|
346 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
347 | c_u(k,i) = c_max |
---|
348 | ENDIF |
---|
349 | ELSE |
---|
350 | c_u(k,i) = c_max |
---|
351 | ENDIF |
---|
352 | |
---|
353 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
354 | |
---|
355 | IF ( denom /= 0.0 ) THEN |
---|
356 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
357 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
358 | c_v(k,i) = 0.0 |
---|
359 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
360 | c_v(k,i) = c_max |
---|
361 | ENDIF |
---|
362 | ELSE |
---|
363 | c_v(k,i) = c_max |
---|
364 | ENDIF |
---|
365 | |
---|
366 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
367 | |
---|
368 | IF ( denom /= 0.0 ) THEN |
---|
369 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
370 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
371 | c_w(k,i) = 0.0 |
---|
372 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
373 | c_w(k,i) = c_max |
---|
374 | ENDIF |
---|
375 | ELSE |
---|
376 | c_w(k,i) = c_max |
---|
377 | ENDIF |
---|
378 | |
---|
379 | ! |
---|
380 | !-- Swap timelevels for the next timestep |
---|
381 | u_m_n(k,:,i) = u(k,ny-1:ny,i) |
---|
382 | v_m_n(k,:,i) = v(k,ny-1:ny,i) |
---|
383 | w_m_n(k,:,i) = w(k,ny-1:ny,i) |
---|
384 | |
---|
385 | ENDIF |
---|
386 | |
---|
387 | ! |
---|
388 | !-- Calculate the new velocities |
---|
389 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
390 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
391 | |
---|
392 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
393 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
394 | |
---|
395 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
396 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
397 | |
---|
398 | ENDDO |
---|
399 | ENDDO |
---|
400 | |
---|
401 | ! |
---|
402 | !-- Bottom boundary at the outflow |
---|
403 | IF ( ibc_uv_b == 0 ) THEN |
---|
404 | u_p(nzb,ny+1,:) = 0.0 |
---|
405 | v_p(nzb,ny+1,:) = 0.0 |
---|
406 | ELSE |
---|
407 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
408 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
409 | ENDIF |
---|
410 | w_p(nzb,ny+1,:) = 0.0 |
---|
411 | |
---|
412 | ! |
---|
413 | !-- Top boundary at the outflow |
---|
414 | IF ( ibc_uv_t == 0 ) THEN |
---|
415 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
416 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
417 | ELSE |
---|
418 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
419 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
420 | ENDIF |
---|
421 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
422 | |
---|
423 | ENDIF |
---|
424 | |
---|
425 | IF ( outflow_l ) THEN |
---|
426 | |
---|
427 | c_max = dx / dt_3d |
---|
428 | |
---|
429 | DO j = nysg, nyng |
---|
430 | DO k = nzb+1, nzt+1 |
---|
431 | |
---|
432 | ! |
---|
433 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
434 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
435 | !-- reuse this values for the further substeps. |
---|
436 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
437 | |
---|
438 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
439 | |
---|
440 | IF ( denom /= 0.0 ) THEN |
---|
441 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / denom |
---|
442 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
443 | c_u(k,j) = 0.0 |
---|
444 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
445 | c_u(k,j) = c_max |
---|
446 | ENDIF |
---|
447 | ELSE |
---|
448 | c_u(k,j) = c_max |
---|
449 | ENDIF |
---|
450 | |
---|
451 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
452 | |
---|
453 | IF ( denom /= 0.0 ) THEN |
---|
454 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
455 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
456 | c_v(k,j) = 0.0 |
---|
457 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
458 | c_v(k,j) = c_max |
---|
459 | ENDIF |
---|
460 | ELSE |
---|
461 | c_v(k,j) = c_max |
---|
462 | ENDIF |
---|
463 | |
---|
464 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
465 | |
---|
466 | IF ( denom /= 0.0 ) THEN |
---|
467 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
468 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
469 | c_w(k,j) = 0.0 |
---|
470 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
471 | c_w(k,j) = c_max |
---|
472 | ENDIF |
---|
473 | ELSE |
---|
474 | c_w(k,j) = c_max |
---|
475 | ENDIF |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Swap timelevels for the next timestep |
---|
479 | u_m_l(k,j,:) = u(k,j,1:2) |
---|
480 | v_m_l(k,j,:) = v(k,j,0:1) |
---|
481 | w_m_l(k,j,:) = w(k,j,0:1) |
---|
482 | |
---|
483 | ENDIF |
---|
484 | |
---|
485 | ! |
---|
486 | !-- Calculate the new velocities |
---|
487 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
488 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
489 | |
---|
490 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
491 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
492 | |
---|
493 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
494 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
495 | |
---|
496 | ENDDO |
---|
497 | ENDDO |
---|
498 | |
---|
499 | ! |
---|
500 | !-- Bottom boundary at the outflow |
---|
501 | IF ( ibc_uv_b == 0 ) THEN |
---|
502 | u_p(nzb,:,0) = 0.0 |
---|
503 | v_p(nzb,:,-1) = 0.0 |
---|
504 | ELSE |
---|
505 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
506 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
507 | ENDIF |
---|
508 | w_p(nzb,:,-1) = 0.0 |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Top boundary at the outflow |
---|
512 | IF ( ibc_uv_t == 0 ) THEN |
---|
513 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
514 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
515 | ELSE |
---|
516 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
517 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
518 | ENDIF |
---|
519 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
520 | |
---|
521 | ENDIF |
---|
522 | |
---|
523 | IF ( outflow_r ) THEN |
---|
524 | |
---|
525 | c_max = dx / dt_3d |
---|
526 | |
---|
527 | DO j = nysg, nyng |
---|
528 | DO k = nzb+1, nzt+1 |
---|
529 | |
---|
530 | ! |
---|
531 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
532 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
533 | !-- reuse this values for the further substeps. |
---|
534 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
535 | |
---|
536 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
537 | |
---|
538 | IF ( denom /= 0.0 ) THEN |
---|
539 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
540 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
541 | c_u(k,j) = 0.0 |
---|
542 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
543 | c_u(k,j) = c_max |
---|
544 | ENDIF |
---|
545 | ELSE |
---|
546 | c_u(k,j) = c_max |
---|
547 | ENDIF |
---|
548 | |
---|
549 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
550 | |
---|
551 | IF ( denom /= 0.0 ) THEN |
---|
552 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
553 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
554 | c_v(k,j) = 0.0 |
---|
555 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
556 | c_v(k,j) = c_max |
---|
557 | ENDIF |
---|
558 | ELSE |
---|
559 | c_v(k,j) = c_max |
---|
560 | ENDIF |
---|
561 | |
---|
562 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
563 | |
---|
564 | IF ( denom /= 0.0 ) THEN |
---|
565 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
566 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
567 | c_w(k,j) = 0.0 |
---|
568 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
569 | c_w(k,j) = c_max |
---|
570 | ENDIF |
---|
571 | ELSE |
---|
572 | c_w(k,j) = c_max |
---|
573 | ENDIF |
---|
574 | |
---|
575 | ! |
---|
576 | !-- Swap timelevels for the next timestep |
---|
577 | u_m_r(k,j,:) = u(k,j,nx-1:nx) |
---|
578 | v_m_r(k,j,:) = v(k,j,nx-1:nx) |
---|
579 | w_m_r(k,j,:) = w(k,j,nx-1:nx) |
---|
580 | |
---|
581 | ENDIF |
---|
582 | |
---|
583 | ! |
---|
584 | !-- Calculate the new velocities |
---|
585 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
586 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
587 | |
---|
588 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
589 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
590 | |
---|
591 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
592 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
593 | |
---|
594 | ENDDO |
---|
595 | ENDDO |
---|
596 | |
---|
597 | ! |
---|
598 | !-- Bottom boundary at the outflow |
---|
599 | IF ( ibc_uv_b == 0 ) THEN |
---|
600 | u_p(nzb,:,nx+1) = 0.0 |
---|
601 | v_p(nzb,:,nx+1) = 0.0 |
---|
602 | ELSE |
---|
603 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
604 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
605 | ENDIF |
---|
606 | w_p(nzb,:,nx+1) = 0.0 |
---|
607 | |
---|
608 | ! |
---|
609 | !-- Top boundary at the outflow |
---|
610 | IF ( ibc_uv_t == 0 ) THEN |
---|
611 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
612 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
613 | ELSE |
---|
614 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
615 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
616 | ENDIF |
---|
617 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
618 | |
---|
619 | ENDIF |
---|
620 | |
---|
621 | |
---|
622 | END SUBROUTINE boundary_conds |
---|