1 | !> @file boundary_conds.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: boundary_conds.f90 2292 2017-06-20 09:51:42Z suehring $ |
---|
27 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
28 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
29 | ! and cloud water content (qc). |
---|
30 | ! |
---|
31 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
32 | ! |
---|
33 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
34 | ! Set boundary conditions on topography top using flag method. |
---|
35 | ! |
---|
36 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
37 | ! OpenACC directives removed |
---|
38 | ! |
---|
39 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
40 | ! Forced header and separation lines into 80 columns |
---|
41 | ! |
---|
42 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
43 | ! Adjustments for top boundary condition for passive scalar |
---|
44 | ! |
---|
45 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
46 | ! Treat humidity and passive scalar separately |
---|
47 | ! |
---|
48 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
49 | ! Initial version of purely vertical nesting introduced. |
---|
50 | ! |
---|
51 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
52 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
53 | ! |
---|
54 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
55 | ! index bug for u_p at left outflow removed |
---|
56 | ! |
---|
57 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
58 | ! Introduction of nested domain feature |
---|
59 | ! |
---|
60 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
61 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
62 | ! |
---|
63 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
64 | ! Bugfix: index error in outflow conditions for left boundary |
---|
65 | ! |
---|
66 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
67 | ! Code annotations made doxygen readable |
---|
68 | ! |
---|
69 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
70 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
71 | ! top |
---|
72 | ! |
---|
73 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
74 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
75 | ! is used. |
---|
76 | ! |
---|
77 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
78 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
79 | ! for large_scale_forcing |
---|
80 | ! |
---|
81 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
82 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
83 | ! |
---|
84 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
85 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
86 | ! rain drop concentration (nr) changed to Dirichlet |
---|
87 | ! |
---|
88 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
89 | ! REAL constants provided with KIND-attribute |
---|
90 | ! |
---|
91 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
92 | ! ONLY-attribute added to USE-statements, |
---|
93 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
94 | ! kinds are defined in new module kinds, |
---|
95 | ! revision history before 2012 removed, |
---|
96 | ! comment fields (!:) to be used for variable explanations added to |
---|
97 | ! all variable declaration statements |
---|
98 | ! |
---|
99 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
100 | ! loop independent clauses added |
---|
101 | ! |
---|
102 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
103 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
104 | ! |
---|
105 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
106 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
107 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
108 | ! velocity that ensures numerical stability (CFL-condition). |
---|
109 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
110 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
111 | ! u_p, v_p, w_p |
---|
112 | ! |
---|
113 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
114 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
115 | ! boundary-conditions |
---|
116 | ! |
---|
117 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
118 | ! GPU-porting |
---|
119 | ! dummy argument "range" removed |
---|
120 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
121 | ! |
---|
122 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
123 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
124 | ! two-moment cloud scheme |
---|
125 | ! |
---|
126 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
127 | ! code put under GPL (PALM 3.9) |
---|
128 | ! |
---|
129 | ! 996 2012-09-07 10:41:47Z raasch |
---|
130 | ! little reformatting |
---|
131 | ! |
---|
132 | ! 978 2012-08-09 08:28:32Z fricke |
---|
133 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
134 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
135 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
136 | ! velocity. |
---|
137 | ! |
---|
138 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
139 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
140 | ! |
---|
141 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
142 | ! Initial revision |
---|
143 | ! |
---|
144 | ! |
---|
145 | ! Description: |
---|
146 | ! ------------ |
---|
147 | !> Boundary conditions for the prognostic quantities. |
---|
148 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
149 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
150 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
151 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
152 | !------------------------------------------------------------------------------! |
---|
153 | SUBROUTINE boundary_conds |
---|
154 | |
---|
155 | |
---|
156 | USE arrays_3d, & |
---|
157 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
158 | dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, s_p, sa, & |
---|
159 | sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
160 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
161 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init |
---|
162 | |
---|
163 | USE control_parameters, & |
---|
164 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, constant_diffusion, & |
---|
165 | cloud_physics, dt_3d, humidity, & |
---|
166 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
167 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
168 | inflow_s, intermediate_timestep_count, large_scale_forcing, & |
---|
169 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
170 | nest_bound_l, nest_bound_s, nudging, ocean, outflow_l, & |
---|
171 | outflow_n, outflow_r, outflow_s, passive_scalar, tsc, use_cmax |
---|
172 | |
---|
173 | USE grid_variables, & |
---|
174 | ONLY: ddx, ddy, dx, dy |
---|
175 | |
---|
176 | USE indices, & |
---|
177 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
178 | nzb, nzt, wall_flags_0 |
---|
179 | |
---|
180 | USE kinds |
---|
181 | |
---|
182 | USE pegrid |
---|
183 | |
---|
184 | USE pmc_interface, & |
---|
185 | ONLY : nesting_mode |
---|
186 | |
---|
187 | USE surface_mod, & |
---|
188 | ONLY : bc_h |
---|
189 | |
---|
190 | IMPLICIT NONE |
---|
191 | |
---|
192 | INTEGER(iwp) :: i !< grid index x direction |
---|
193 | INTEGER(iwp) :: j !< grid index y direction |
---|
194 | INTEGER(iwp) :: k !< grid index z direction |
---|
195 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
196 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
197 | INTEGER(iwp) :: m !< running index surface elements |
---|
198 | |
---|
199 | REAL(wp) :: c_max !< |
---|
200 | REAL(wp) :: denom !< |
---|
201 | |
---|
202 | |
---|
203 | ! |
---|
204 | !-- Bottom boundary |
---|
205 | IF ( ibc_uv_b == 1 ) THEN |
---|
206 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
207 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
208 | ENDIF |
---|
209 | ! |
---|
210 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
211 | !-- of downward-facing surfaces. |
---|
212 | DO l = 0, 1 |
---|
213 | ! |
---|
214 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
215 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
216 | kb = MERGE( -1, 1, l == 0 ) |
---|
217 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
218 | DO m = 1, bc_h(l)%ns |
---|
219 | i = bc_h(l)%i(m) |
---|
220 | j = bc_h(l)%j(m) |
---|
221 | k = bc_h(l)%k(m) |
---|
222 | w_p(k+kb,j,i) = 0.0_wp |
---|
223 | ENDDO |
---|
224 | ENDDO |
---|
225 | |
---|
226 | ! |
---|
227 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
228 | IF ( ibc_uv_t == 0 ) THEN |
---|
229 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
230 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
231 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
232 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
233 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
234 | ENDIF |
---|
235 | |
---|
236 | IF ( .NOT. nest_domain ) THEN |
---|
237 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
238 | ENDIF |
---|
239 | |
---|
240 | ! |
---|
241 | !-- Temperature at bottom and top boundary. |
---|
242 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
243 | !-- the sea surface temperature of the coupled ocean model. |
---|
244 | !-- Dirichlet |
---|
245 | IF ( ibc_pt_b == 0 ) THEN |
---|
246 | DO l = 0, 1 |
---|
247 | ! |
---|
248 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
249 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
250 | kb = MERGE( -1, 1, l == 0 ) |
---|
251 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
252 | DO m = 1, bc_h(l)%ns |
---|
253 | i = bc_h(l)%i(m) |
---|
254 | j = bc_h(l)%j(m) |
---|
255 | k = bc_h(l)%k(m) |
---|
256 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
257 | ENDDO |
---|
258 | ENDDO |
---|
259 | ! |
---|
260 | !-- Neumann, zero-gradient |
---|
261 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
262 | DO l = 0, 1 |
---|
263 | ! |
---|
264 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
265 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
266 | kb = MERGE( -1, 1, l == 0 ) |
---|
267 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
268 | DO m = 1, bc_h(l)%ns |
---|
269 | i = bc_h(l)%i(m) |
---|
270 | j = bc_h(l)%j(m) |
---|
271 | k = bc_h(l)%k(m) |
---|
272 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
273 | ENDDO |
---|
274 | ENDDO |
---|
275 | ENDIF |
---|
276 | |
---|
277 | ! |
---|
278 | !-- Temperature at top boundary |
---|
279 | IF ( ibc_pt_t == 0 ) THEN |
---|
280 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
281 | ! |
---|
282 | !-- In case of nudging adjust top boundary to pt which is |
---|
283 | !-- read in from NUDGING-DATA |
---|
284 | IF ( nudging ) THEN |
---|
285 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
286 | ENDIF |
---|
287 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
288 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
289 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
290 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
291 | ENDIF |
---|
292 | |
---|
293 | ! |
---|
294 | !-- Boundary conditions for TKE |
---|
295 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
296 | IF ( .NOT. constant_diffusion ) THEN |
---|
297 | |
---|
298 | DO l = 0, 1 |
---|
299 | ! |
---|
300 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
301 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
302 | kb = MERGE( -1, 1, l == 0 ) |
---|
303 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
304 | DO m = 1, bc_h(l)%ns |
---|
305 | i = bc_h(l)%i(m) |
---|
306 | j = bc_h(l)%j(m) |
---|
307 | k = bc_h(l)%k(m) |
---|
308 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
309 | ENDDO |
---|
310 | ENDDO |
---|
311 | |
---|
312 | IF ( .NOT. nest_domain ) THEN |
---|
313 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
314 | ENDIF |
---|
315 | ENDIF |
---|
316 | |
---|
317 | ! |
---|
318 | !-- Boundary conditions for salinity |
---|
319 | IF ( ocean ) THEN |
---|
320 | ! |
---|
321 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
322 | !-- given. |
---|
323 | DO l = 0, 1 |
---|
324 | ! |
---|
325 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
326 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
327 | kb = MERGE( -1, 1, l == 0 ) |
---|
328 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
329 | DO m = 1, bc_h(l)%ns |
---|
330 | i = bc_h(l)%i(m) |
---|
331 | j = bc_h(l)%j(m) |
---|
332 | k = bc_h(l)%k(m) |
---|
333 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
334 | ENDDO |
---|
335 | ENDDO |
---|
336 | ! |
---|
337 | !-- Top boundary: Dirichlet or Neumann |
---|
338 | IF ( ibc_sa_t == 0 ) THEN |
---|
339 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
340 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
341 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
342 | ENDIF |
---|
343 | |
---|
344 | ENDIF |
---|
345 | |
---|
346 | ! |
---|
347 | !-- Boundary conditions for total water content, |
---|
348 | !-- bottom and top boundary (see also temperature) |
---|
349 | IF ( humidity ) THEN |
---|
350 | ! |
---|
351 | !-- Surface conditions for constant_humidity_flux |
---|
352 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
353 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
354 | !-- q_p at k-1 |
---|
355 | IF ( ibc_q_b == 0 ) THEN |
---|
356 | |
---|
357 | DO l = 0, 1 |
---|
358 | ! |
---|
359 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
360 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
361 | kb = MERGE( -1, 1, l == 0 ) |
---|
362 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
363 | DO m = 1, bc_h(l)%ns |
---|
364 | i = bc_h(l)%i(m) |
---|
365 | j = bc_h(l)%j(m) |
---|
366 | k = bc_h(l)%k(m) |
---|
367 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
368 | ENDDO |
---|
369 | ENDDO |
---|
370 | |
---|
371 | ELSE |
---|
372 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
373 | DO m = 1, bc_h(0)%ns |
---|
374 | i = bc_h(0)%i(m) |
---|
375 | j = bc_h(0)%j(m) |
---|
376 | k = bc_h(0)%k(m) |
---|
377 | q_p(k-1,j,i) = q_p(k,j,i) |
---|
378 | ENDDO |
---|
379 | |
---|
380 | DO l = 0, 1 |
---|
381 | ! |
---|
382 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
383 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
384 | kb = MERGE( -1, 1, l == 0 ) |
---|
385 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
386 | DO m = 1, bc_h(l)%ns |
---|
387 | i = bc_h(l)%i(m) |
---|
388 | j = bc_h(l)%j(m) |
---|
389 | k = bc_h(l)%k(m) |
---|
390 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
391 | ENDDO |
---|
392 | ENDDO |
---|
393 | ENDIF |
---|
394 | ! |
---|
395 | !-- Top boundary |
---|
396 | IF ( ibc_q_t == 0 ) THEN |
---|
397 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
398 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
399 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
400 | ENDIF |
---|
401 | |
---|
402 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
403 | ! |
---|
404 | !-- Surface conditions cloud water (Dirichlet) |
---|
405 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
406 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
407 | !-- qr_p and nr_p at k-1 |
---|
408 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
409 | DO m = 1, bc_h(0)%ns |
---|
410 | i = bc_h(0)%i(m) |
---|
411 | j = bc_h(0)%j(m) |
---|
412 | k = bc_h(0)%k(m) |
---|
413 | qc_p(k-1,j,i) = 0.0_wp |
---|
414 | nc_p(k-1,j,i) = 0.0_wp |
---|
415 | ENDDO |
---|
416 | ! |
---|
417 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
418 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
419 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
420 | |
---|
421 | ENDIF |
---|
422 | |
---|
423 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
424 | ! |
---|
425 | !-- Surface conditions rain water (Dirichlet) |
---|
426 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
427 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
428 | !-- qr_p and nr_p at k-1 |
---|
429 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
430 | DO m = 1, bc_h(0)%ns |
---|
431 | i = bc_h(0)%i(m) |
---|
432 | j = bc_h(0)%j(m) |
---|
433 | k = bc_h(0)%k(m) |
---|
434 | qr_p(k-1,j,i) = 0.0_wp |
---|
435 | nr_p(k-1,j,i) = 0.0_wp |
---|
436 | ENDDO |
---|
437 | ! |
---|
438 | !-- Top boundary condition for rain water (Dirichlet) |
---|
439 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
440 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
441 | |
---|
442 | ENDIF |
---|
443 | ENDIF |
---|
444 | ! |
---|
445 | !-- Boundary conditions for scalar, |
---|
446 | !-- bottom and top boundary (see also temperature) |
---|
447 | IF ( passive_scalar ) THEN |
---|
448 | ! |
---|
449 | !-- Surface conditions for constant_humidity_flux |
---|
450 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
451 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
452 | !-- s_p at k-1 |
---|
453 | IF ( ibc_s_b == 0 ) THEN |
---|
454 | |
---|
455 | DO l = 0, 1 |
---|
456 | ! |
---|
457 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
458 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
459 | kb = MERGE( -1, 1, l == 0 ) |
---|
460 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
461 | DO m = 1, bc_h(l)%ns |
---|
462 | i = bc_h(l)%i(m) |
---|
463 | j = bc_h(l)%j(m) |
---|
464 | k = bc_h(l)%k(m) |
---|
465 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
466 | ENDDO |
---|
467 | ENDDO |
---|
468 | |
---|
469 | ELSE |
---|
470 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
471 | DO m = 1, bc_h(0)%ns |
---|
472 | i = bc_h(0)%i(m) |
---|
473 | j = bc_h(0)%j(m) |
---|
474 | k = bc_h(0)%k(m) |
---|
475 | s_p(k-1,j,i) = s_p(k,j,i) |
---|
476 | ENDDO |
---|
477 | |
---|
478 | DO l = 0, 1 |
---|
479 | ! |
---|
480 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
481 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
482 | kb = MERGE( -1, 1, l == 0 ) |
---|
483 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
484 | DO m = 1, bc_h(l)%ns |
---|
485 | i = bc_h(l)%i(m) |
---|
486 | j = bc_h(l)%j(m) |
---|
487 | k = bc_h(l)%k(m) |
---|
488 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
489 | ENDDO |
---|
490 | ENDDO |
---|
491 | ENDIF |
---|
492 | ! |
---|
493 | !-- Top boundary condition |
---|
494 | IF ( ibc_s_t == 0 ) THEN |
---|
495 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
496 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
497 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
498 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
499 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
500 | ENDIF |
---|
501 | |
---|
502 | ENDIF |
---|
503 | ! |
---|
504 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
505 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
506 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
507 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
508 | !-- have to be restored here. |
---|
509 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
510 | IF ( inflow_s ) THEN |
---|
511 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
512 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
513 | ELSEIF ( inflow_n ) THEN |
---|
514 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
515 | ELSEIF ( inflow_l ) THEN |
---|
516 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
517 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
518 | ELSEIF ( inflow_r ) THEN |
---|
519 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
520 | ENDIF |
---|
521 | |
---|
522 | ! |
---|
523 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
524 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
525 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
526 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
527 | IF ( nest_bound_s ) THEN |
---|
528 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
529 | ENDIF |
---|
530 | IF ( nest_bound_l ) THEN |
---|
531 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
532 | ENDIF |
---|
533 | ENDIF |
---|
534 | |
---|
535 | ! |
---|
536 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
537 | IF ( outflow_s ) THEN |
---|
538 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
539 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
540 | IF ( humidity ) THEN |
---|
541 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
542 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
543 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
544 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
545 | ENDIF |
---|
546 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
547 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
548 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
549 | ENDIF |
---|
550 | ENDIF |
---|
551 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
552 | ELSEIF ( outflow_n ) THEN |
---|
553 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
554 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
555 | IF ( humidity ) THEN |
---|
556 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
557 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
558 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
559 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
560 | ENDIF |
---|
561 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
562 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
563 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
564 | ENDIF |
---|
565 | ENDIF |
---|
566 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
567 | ELSEIF ( outflow_l ) THEN |
---|
568 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
569 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
570 | IF ( humidity ) THEN |
---|
571 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
572 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
573 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
574 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
575 | ENDIF |
---|
576 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
577 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
578 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
579 | ENDIF |
---|
580 | ENDIF |
---|
581 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
582 | ELSEIF ( outflow_r ) THEN |
---|
583 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
584 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
585 | IF ( humidity ) THEN |
---|
586 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
587 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
588 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
589 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
590 | ENDIF |
---|
591 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
592 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
593 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
594 | ENDIF |
---|
595 | ENDIF |
---|
596 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
597 | ENDIF |
---|
598 | |
---|
599 | ! |
---|
600 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
601 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
602 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
603 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
604 | IF ( outflow_s ) THEN |
---|
605 | |
---|
606 | IF ( use_cmax ) THEN |
---|
607 | u_p(:,-1,:) = u(:,0,:) |
---|
608 | v_p(:,0,:) = v(:,1,:) |
---|
609 | w_p(:,-1,:) = w(:,0,:) |
---|
610 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
611 | |
---|
612 | c_max = dy / dt_3d |
---|
613 | |
---|
614 | c_u_m_l = 0.0_wp |
---|
615 | c_v_m_l = 0.0_wp |
---|
616 | c_w_m_l = 0.0_wp |
---|
617 | |
---|
618 | c_u_m = 0.0_wp |
---|
619 | c_v_m = 0.0_wp |
---|
620 | c_w_m = 0.0_wp |
---|
621 | |
---|
622 | ! |
---|
623 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
624 | !-- average along the outflow boundary. |
---|
625 | DO k = nzb+1, nzt+1 |
---|
626 | DO i = nxl, nxr |
---|
627 | |
---|
628 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
629 | |
---|
630 | IF ( denom /= 0.0_wp ) THEN |
---|
631 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
632 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
633 | c_u(k,i) = 0.0_wp |
---|
634 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
635 | c_u(k,i) = c_max |
---|
636 | ENDIF |
---|
637 | ELSE |
---|
638 | c_u(k,i) = c_max |
---|
639 | ENDIF |
---|
640 | |
---|
641 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
642 | |
---|
643 | IF ( denom /= 0.0_wp ) THEN |
---|
644 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
645 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
646 | c_v(k,i) = 0.0_wp |
---|
647 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
648 | c_v(k,i) = c_max |
---|
649 | ENDIF |
---|
650 | ELSE |
---|
651 | c_v(k,i) = c_max |
---|
652 | ENDIF |
---|
653 | |
---|
654 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
655 | |
---|
656 | IF ( denom /= 0.0_wp ) THEN |
---|
657 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
658 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
659 | c_w(k,i) = 0.0_wp |
---|
660 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
661 | c_w(k,i) = c_max |
---|
662 | ENDIF |
---|
663 | ELSE |
---|
664 | c_w(k,i) = c_max |
---|
665 | ENDIF |
---|
666 | |
---|
667 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
668 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
669 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
670 | |
---|
671 | ENDDO |
---|
672 | ENDDO |
---|
673 | |
---|
674 | #if defined( __parallel ) |
---|
675 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
676 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
677 | MPI_SUM, comm1dx, ierr ) |
---|
678 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
679 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
680 | MPI_SUM, comm1dx, ierr ) |
---|
681 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
682 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
683 | MPI_SUM, comm1dx, ierr ) |
---|
684 | #else |
---|
685 | c_u_m = c_u_m_l |
---|
686 | c_v_m = c_v_m_l |
---|
687 | c_w_m = c_w_m_l |
---|
688 | #endif |
---|
689 | |
---|
690 | c_u_m = c_u_m / (nx+1) |
---|
691 | c_v_m = c_v_m / (nx+1) |
---|
692 | c_w_m = c_w_m / (nx+1) |
---|
693 | |
---|
694 | ! |
---|
695 | !-- Save old timelevels for the next timestep |
---|
696 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
697 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
698 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
699 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
700 | ENDIF |
---|
701 | |
---|
702 | ! |
---|
703 | !-- Calculate the new velocities |
---|
704 | DO k = nzb+1, nzt+1 |
---|
705 | DO i = nxlg, nxrg |
---|
706 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
707 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
708 | |
---|
709 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
710 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
711 | |
---|
712 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
713 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
714 | ENDDO |
---|
715 | ENDDO |
---|
716 | |
---|
717 | ! |
---|
718 | !-- Bottom boundary at the outflow |
---|
719 | IF ( ibc_uv_b == 0 ) THEN |
---|
720 | u_p(nzb,-1,:) = 0.0_wp |
---|
721 | v_p(nzb,0,:) = 0.0_wp |
---|
722 | ELSE |
---|
723 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
724 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
725 | ENDIF |
---|
726 | w_p(nzb,-1,:) = 0.0_wp |
---|
727 | |
---|
728 | ! |
---|
729 | !-- Top boundary at the outflow |
---|
730 | IF ( ibc_uv_t == 0 ) THEN |
---|
731 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
732 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
733 | ELSE |
---|
734 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
735 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
736 | ENDIF |
---|
737 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
738 | |
---|
739 | ENDIF |
---|
740 | |
---|
741 | ENDIF |
---|
742 | |
---|
743 | IF ( outflow_n ) THEN |
---|
744 | |
---|
745 | IF ( use_cmax ) THEN |
---|
746 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
747 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
748 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
749 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
750 | |
---|
751 | c_max = dy / dt_3d |
---|
752 | |
---|
753 | c_u_m_l = 0.0_wp |
---|
754 | c_v_m_l = 0.0_wp |
---|
755 | c_w_m_l = 0.0_wp |
---|
756 | |
---|
757 | c_u_m = 0.0_wp |
---|
758 | c_v_m = 0.0_wp |
---|
759 | c_w_m = 0.0_wp |
---|
760 | |
---|
761 | ! |
---|
762 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
763 | !-- average along the outflow boundary. |
---|
764 | DO k = nzb+1, nzt+1 |
---|
765 | DO i = nxl, nxr |
---|
766 | |
---|
767 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
768 | |
---|
769 | IF ( denom /= 0.0_wp ) THEN |
---|
770 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
771 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
772 | c_u(k,i) = 0.0_wp |
---|
773 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
774 | c_u(k,i) = c_max |
---|
775 | ENDIF |
---|
776 | ELSE |
---|
777 | c_u(k,i) = c_max |
---|
778 | ENDIF |
---|
779 | |
---|
780 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
781 | |
---|
782 | IF ( denom /= 0.0_wp ) THEN |
---|
783 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
784 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
785 | c_v(k,i) = 0.0_wp |
---|
786 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
787 | c_v(k,i) = c_max |
---|
788 | ENDIF |
---|
789 | ELSE |
---|
790 | c_v(k,i) = c_max |
---|
791 | ENDIF |
---|
792 | |
---|
793 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
794 | |
---|
795 | IF ( denom /= 0.0_wp ) THEN |
---|
796 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
797 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
798 | c_w(k,i) = 0.0_wp |
---|
799 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
800 | c_w(k,i) = c_max |
---|
801 | ENDIF |
---|
802 | ELSE |
---|
803 | c_w(k,i) = c_max |
---|
804 | ENDIF |
---|
805 | |
---|
806 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
807 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
808 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
809 | |
---|
810 | ENDDO |
---|
811 | ENDDO |
---|
812 | |
---|
813 | #if defined( __parallel ) |
---|
814 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
815 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
816 | MPI_SUM, comm1dx, ierr ) |
---|
817 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
818 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
819 | MPI_SUM, comm1dx, ierr ) |
---|
820 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
821 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
822 | MPI_SUM, comm1dx, ierr ) |
---|
823 | #else |
---|
824 | c_u_m = c_u_m_l |
---|
825 | c_v_m = c_v_m_l |
---|
826 | c_w_m = c_w_m_l |
---|
827 | #endif |
---|
828 | |
---|
829 | c_u_m = c_u_m / (nx+1) |
---|
830 | c_v_m = c_v_m / (nx+1) |
---|
831 | c_w_m = c_w_m / (nx+1) |
---|
832 | |
---|
833 | ! |
---|
834 | !-- Save old timelevels for the next timestep |
---|
835 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
836 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
837 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
838 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
839 | ENDIF |
---|
840 | |
---|
841 | ! |
---|
842 | !-- Calculate the new velocities |
---|
843 | DO k = nzb+1, nzt+1 |
---|
844 | DO i = nxlg, nxrg |
---|
845 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
846 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
847 | |
---|
848 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
849 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
850 | |
---|
851 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
852 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
853 | ENDDO |
---|
854 | ENDDO |
---|
855 | |
---|
856 | ! |
---|
857 | !-- Bottom boundary at the outflow |
---|
858 | IF ( ibc_uv_b == 0 ) THEN |
---|
859 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
860 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
861 | ELSE |
---|
862 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
863 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
864 | ENDIF |
---|
865 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
866 | |
---|
867 | ! |
---|
868 | !-- Top boundary at the outflow |
---|
869 | IF ( ibc_uv_t == 0 ) THEN |
---|
870 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
871 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
872 | ELSE |
---|
873 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
874 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
875 | ENDIF |
---|
876 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
877 | |
---|
878 | ENDIF |
---|
879 | |
---|
880 | ENDIF |
---|
881 | |
---|
882 | IF ( outflow_l ) THEN |
---|
883 | |
---|
884 | IF ( use_cmax ) THEN |
---|
885 | u_p(:,:,0) = u(:,:,1) |
---|
886 | v_p(:,:,-1) = v(:,:,0) |
---|
887 | w_p(:,:,-1) = w(:,:,0) |
---|
888 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
889 | |
---|
890 | c_max = dx / dt_3d |
---|
891 | |
---|
892 | c_u_m_l = 0.0_wp |
---|
893 | c_v_m_l = 0.0_wp |
---|
894 | c_w_m_l = 0.0_wp |
---|
895 | |
---|
896 | c_u_m = 0.0_wp |
---|
897 | c_v_m = 0.0_wp |
---|
898 | c_w_m = 0.0_wp |
---|
899 | |
---|
900 | ! |
---|
901 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
902 | !-- average along the outflow boundary. |
---|
903 | DO k = nzb+1, nzt+1 |
---|
904 | DO j = nys, nyn |
---|
905 | |
---|
906 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
907 | |
---|
908 | IF ( denom /= 0.0_wp ) THEN |
---|
909 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
910 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
911 | c_u(k,j) = 0.0_wp |
---|
912 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
913 | c_u(k,j) = c_max |
---|
914 | ENDIF |
---|
915 | ELSE |
---|
916 | c_u(k,j) = c_max |
---|
917 | ENDIF |
---|
918 | |
---|
919 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
920 | |
---|
921 | IF ( denom /= 0.0_wp ) THEN |
---|
922 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
923 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
924 | c_v(k,j) = 0.0_wp |
---|
925 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
926 | c_v(k,j) = c_max |
---|
927 | ENDIF |
---|
928 | ELSE |
---|
929 | c_v(k,j) = c_max |
---|
930 | ENDIF |
---|
931 | |
---|
932 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
933 | |
---|
934 | IF ( denom /= 0.0_wp ) THEN |
---|
935 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
936 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
937 | c_w(k,j) = 0.0_wp |
---|
938 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
939 | c_w(k,j) = c_max |
---|
940 | ENDIF |
---|
941 | ELSE |
---|
942 | c_w(k,j) = c_max |
---|
943 | ENDIF |
---|
944 | |
---|
945 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
946 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
947 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
948 | |
---|
949 | ENDDO |
---|
950 | ENDDO |
---|
951 | |
---|
952 | #if defined( __parallel ) |
---|
953 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
954 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
955 | MPI_SUM, comm1dy, ierr ) |
---|
956 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
957 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
958 | MPI_SUM, comm1dy, ierr ) |
---|
959 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
960 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
961 | MPI_SUM, comm1dy, ierr ) |
---|
962 | #else |
---|
963 | c_u_m = c_u_m_l |
---|
964 | c_v_m = c_v_m_l |
---|
965 | c_w_m = c_w_m_l |
---|
966 | #endif |
---|
967 | |
---|
968 | c_u_m = c_u_m / (ny+1) |
---|
969 | c_v_m = c_v_m / (ny+1) |
---|
970 | c_w_m = c_w_m / (ny+1) |
---|
971 | |
---|
972 | ! |
---|
973 | !-- Save old timelevels for the next timestep |
---|
974 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
975 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
976 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
977 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
978 | ENDIF |
---|
979 | |
---|
980 | ! |
---|
981 | !-- Calculate the new velocities |
---|
982 | DO k = nzb+1, nzt+1 |
---|
983 | DO j = nysg, nyng |
---|
984 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
985 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
986 | |
---|
987 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
988 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
989 | |
---|
990 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
991 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
992 | ENDDO |
---|
993 | ENDDO |
---|
994 | |
---|
995 | ! |
---|
996 | !-- Bottom boundary at the outflow |
---|
997 | IF ( ibc_uv_b == 0 ) THEN |
---|
998 | u_p(nzb,:,0) = 0.0_wp |
---|
999 | v_p(nzb,:,-1) = 0.0_wp |
---|
1000 | ELSE |
---|
1001 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
1002 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
1003 | ENDIF |
---|
1004 | w_p(nzb,:,-1) = 0.0_wp |
---|
1005 | |
---|
1006 | ! |
---|
1007 | !-- Top boundary at the outflow |
---|
1008 | IF ( ibc_uv_t == 0 ) THEN |
---|
1009 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
1010 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
1011 | ELSE |
---|
1012 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
1013 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
1014 | ENDIF |
---|
1015 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
1016 | |
---|
1017 | ENDIF |
---|
1018 | |
---|
1019 | ENDIF |
---|
1020 | |
---|
1021 | IF ( outflow_r ) THEN |
---|
1022 | |
---|
1023 | IF ( use_cmax ) THEN |
---|
1024 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
1025 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
1026 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
1027 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1028 | |
---|
1029 | c_max = dx / dt_3d |
---|
1030 | |
---|
1031 | c_u_m_l = 0.0_wp |
---|
1032 | c_v_m_l = 0.0_wp |
---|
1033 | c_w_m_l = 0.0_wp |
---|
1034 | |
---|
1035 | c_u_m = 0.0_wp |
---|
1036 | c_v_m = 0.0_wp |
---|
1037 | c_w_m = 0.0_wp |
---|
1038 | |
---|
1039 | ! |
---|
1040 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1041 | !-- average along the outflow boundary. |
---|
1042 | DO k = nzb+1, nzt+1 |
---|
1043 | DO j = nys, nyn |
---|
1044 | |
---|
1045 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
1046 | |
---|
1047 | IF ( denom /= 0.0_wp ) THEN |
---|
1048 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1049 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1050 | c_u(k,j) = 0.0_wp |
---|
1051 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1052 | c_u(k,j) = c_max |
---|
1053 | ENDIF |
---|
1054 | ELSE |
---|
1055 | c_u(k,j) = c_max |
---|
1056 | ENDIF |
---|
1057 | |
---|
1058 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
1059 | |
---|
1060 | IF ( denom /= 0.0_wp ) THEN |
---|
1061 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1062 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1063 | c_v(k,j) = 0.0_wp |
---|
1064 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1065 | c_v(k,j) = c_max |
---|
1066 | ENDIF |
---|
1067 | ELSE |
---|
1068 | c_v(k,j) = c_max |
---|
1069 | ENDIF |
---|
1070 | |
---|
1071 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
1072 | |
---|
1073 | IF ( denom /= 0.0_wp ) THEN |
---|
1074 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1075 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1076 | c_w(k,j) = 0.0_wp |
---|
1077 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1078 | c_w(k,j) = c_max |
---|
1079 | ENDIF |
---|
1080 | ELSE |
---|
1081 | c_w(k,j) = c_max |
---|
1082 | ENDIF |
---|
1083 | |
---|
1084 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1085 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1086 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1087 | |
---|
1088 | ENDDO |
---|
1089 | ENDDO |
---|
1090 | |
---|
1091 | #if defined( __parallel ) |
---|
1092 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1093 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1094 | MPI_SUM, comm1dy, ierr ) |
---|
1095 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1096 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1097 | MPI_SUM, comm1dy, ierr ) |
---|
1098 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1099 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1100 | MPI_SUM, comm1dy, ierr ) |
---|
1101 | #else |
---|
1102 | c_u_m = c_u_m_l |
---|
1103 | c_v_m = c_v_m_l |
---|
1104 | c_w_m = c_w_m_l |
---|
1105 | #endif |
---|
1106 | |
---|
1107 | c_u_m = c_u_m / (ny+1) |
---|
1108 | c_v_m = c_v_m / (ny+1) |
---|
1109 | c_w_m = c_w_m / (ny+1) |
---|
1110 | |
---|
1111 | ! |
---|
1112 | !-- Save old timelevels for the next timestep |
---|
1113 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1114 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
1115 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
1116 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
1117 | ENDIF |
---|
1118 | |
---|
1119 | ! |
---|
1120 | !-- Calculate the new velocities |
---|
1121 | DO k = nzb+1, nzt+1 |
---|
1122 | DO j = nysg, nyng |
---|
1123 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1124 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
1125 | |
---|
1126 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1127 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
1128 | |
---|
1129 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1130 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
1131 | ENDDO |
---|
1132 | ENDDO |
---|
1133 | |
---|
1134 | ! |
---|
1135 | !-- Bottom boundary at the outflow |
---|
1136 | IF ( ibc_uv_b == 0 ) THEN |
---|
1137 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
1138 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
1139 | ELSE |
---|
1140 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
1141 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
1142 | ENDIF |
---|
1143 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
1144 | |
---|
1145 | ! |
---|
1146 | !-- Top boundary at the outflow |
---|
1147 | IF ( ibc_uv_t == 0 ) THEN |
---|
1148 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
1149 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
1150 | ELSE |
---|
1151 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
1152 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
1153 | ENDIF |
---|
1154 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
1155 | |
---|
1156 | ENDIF |
---|
1157 | |
---|
1158 | ENDIF |
---|
1159 | |
---|
1160 | END SUBROUTINE boundary_conds |
---|