1 | !> @file boundary_conds.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: boundary_conds.f90 3129 2018-07-16 07:45:13Z suehring $ |
---|
27 | ! - Use wall function for e_p and diss_p in case of rans_tke_e |
---|
28 | ! - move limitation of diss_p from tcm_prognostic |
---|
29 | ! |
---|
30 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
31 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
32 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
33 | ! mode |
---|
34 | ! |
---|
35 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
36 | ! Removed preprocessor directive __chem |
---|
37 | ! |
---|
38 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
39 | ! Corrected "Former revisions" section |
---|
40 | ! |
---|
41 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
42 | ! Change in file header (GPL part) |
---|
43 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
44 | ! Implementation of chemistry module (FK) |
---|
45 | ! |
---|
46 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
47 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
48 | ! |
---|
49 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
50 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
51 | ! on fine grid (SadiqHuq) |
---|
52 | ! |
---|
53 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
54 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
55 | ! |
---|
56 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
57 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
58 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
59 | ! and cloud water content (qc). |
---|
60 | ! |
---|
61 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
62 | ! |
---|
63 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
64 | ! Set boundary conditions on topography top using flag method. |
---|
65 | ! |
---|
66 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
67 | ! OpenACC directives removed |
---|
68 | ! |
---|
69 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
70 | ! Forced header and separation lines into 80 columns |
---|
71 | ! |
---|
72 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
73 | ! Adjustments for top boundary condition for passive scalar |
---|
74 | ! |
---|
75 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
76 | ! Treat humidity and passive scalar separately |
---|
77 | ! |
---|
78 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
79 | ! Initial version of purely vertical nesting introduced. |
---|
80 | ! |
---|
81 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
82 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
83 | ! |
---|
84 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
85 | ! index bug for u_p at left outflow removed |
---|
86 | ! |
---|
87 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
88 | ! Introduction of nested domain feature |
---|
89 | ! |
---|
90 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
91 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
92 | ! |
---|
93 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
94 | ! Bugfix: index error in outflow conditions for left boundary |
---|
95 | ! |
---|
96 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
97 | ! Code annotations made doxygen readable |
---|
98 | ! |
---|
99 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
100 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
101 | ! top |
---|
102 | ! |
---|
103 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
104 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
105 | ! is used. |
---|
106 | ! |
---|
107 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
108 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
109 | ! for large_scale_forcing |
---|
110 | ! |
---|
111 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
112 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
113 | ! |
---|
114 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
115 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
116 | ! rain drop concentration (nr) changed to Dirichlet |
---|
117 | ! |
---|
118 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
119 | ! REAL constants provided with KIND-attribute |
---|
120 | ! |
---|
121 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
122 | ! ONLY-attribute added to USE-statements, |
---|
123 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
124 | ! kinds are defined in new module kinds, |
---|
125 | ! revision history before 2012 removed, |
---|
126 | ! comment fields (!:) to be used for variable explanations added to |
---|
127 | ! all variable declaration statements |
---|
128 | ! |
---|
129 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
130 | ! loop independent clauses added |
---|
131 | ! |
---|
132 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
133 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
134 | ! |
---|
135 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
136 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
137 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
138 | ! velocity that ensures numerical stability (CFL-condition). |
---|
139 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
140 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
141 | ! u_p, v_p, w_p |
---|
142 | ! |
---|
143 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
144 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
145 | ! boundary-conditions |
---|
146 | ! |
---|
147 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
148 | ! GPU-porting |
---|
149 | ! dummy argument "range" removed |
---|
150 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
151 | ! |
---|
152 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
153 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
154 | ! two-moment cloud scheme |
---|
155 | ! |
---|
156 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
157 | ! code put under GPL (PALM 3.9) |
---|
158 | ! |
---|
159 | ! 996 2012-09-07 10:41:47Z raasch |
---|
160 | ! little reformatting |
---|
161 | ! |
---|
162 | ! 978 2012-08-09 08:28:32Z fricke |
---|
163 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
164 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
165 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
166 | ! velocity. |
---|
167 | ! |
---|
168 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
169 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
170 | ! |
---|
171 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
172 | ! Initial revision |
---|
173 | ! |
---|
174 | ! |
---|
175 | ! Description: |
---|
176 | ! ------------ |
---|
177 | !> Boundary conditions for the prognostic quantities. |
---|
178 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
179 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
180 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
181 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
182 | !------------------------------------------------------------------------------! |
---|
183 | SUBROUTINE boundary_conds |
---|
184 | |
---|
185 | |
---|
186 | USE arrays_3d, & |
---|
187 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
188 | diss, diss_p, dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, & |
---|
189 | s_p, sa, sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
190 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
191 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init, ddzu |
---|
192 | |
---|
193 | USE chemistry_model_mod, & |
---|
194 | ONLY: chem_boundary_conds |
---|
195 | |
---|
196 | USE control_parameters, & |
---|
197 | ONLY: air_chemistry, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
198 | constant_diffusion, cloud_physics, coupling_mode, dt_3d, & |
---|
199 | force_bound_l, force_bound_s, forcing, humidity, & |
---|
200 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
201 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
202 | inflow_s, intermediate_timestep_count, kappa, & |
---|
203 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
204 | nest_bound_l, nest_bound_n, nest_bound_r, nest_bound_s, nudging,& |
---|
205 | ocean, outflow_l, outflow_n, outflow_r, outflow_s, & |
---|
206 | passive_scalar, rans_mode, rans_tke_e, tsc, use_cmax |
---|
207 | |
---|
208 | USE grid_variables, & |
---|
209 | ONLY: ddx, ddy, dx, dy |
---|
210 | |
---|
211 | USE indices, & |
---|
212 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
213 | nzb, nzt, wall_flags_0 |
---|
214 | |
---|
215 | USE kinds |
---|
216 | |
---|
217 | USE pegrid |
---|
218 | |
---|
219 | USE pmc_interface, & |
---|
220 | ONLY : nesting_mode, rans_mode_parent |
---|
221 | |
---|
222 | USE surface_mod, & |
---|
223 | ONLY : bc_h, surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, & |
---|
224 | surf_usm_h, surf_usm_v |
---|
225 | |
---|
226 | USE turbulence_closure_mod, & |
---|
227 | ONLY: c_0 |
---|
228 | |
---|
229 | IMPLICIT NONE |
---|
230 | |
---|
231 | INTEGER(iwp) :: i !< grid index x direction |
---|
232 | INTEGER(iwp) :: j !< grid index y direction |
---|
233 | INTEGER(iwp) :: k !< grid index z direction |
---|
234 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
235 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
236 | INTEGER(iwp) :: m !< running index surface elements |
---|
237 | |
---|
238 | REAL(wp) :: c_max !< |
---|
239 | REAL(wp) :: denom !< |
---|
240 | |
---|
241 | |
---|
242 | ! |
---|
243 | !-- Bottom boundary |
---|
244 | IF ( ibc_uv_b == 1 ) THEN |
---|
245 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
246 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
247 | ENDIF |
---|
248 | ! |
---|
249 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
250 | !-- of downward-facing surfaces. |
---|
251 | DO l = 0, 1 |
---|
252 | ! |
---|
253 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
254 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
255 | kb = MERGE( -1, 1, l == 0 ) |
---|
256 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
257 | DO m = 1, bc_h(l)%ns |
---|
258 | i = bc_h(l)%i(m) |
---|
259 | j = bc_h(l)%j(m) |
---|
260 | k = bc_h(l)%k(m) |
---|
261 | w_p(k+kb,j,i) = 0.0_wp |
---|
262 | ENDDO |
---|
263 | ENDDO |
---|
264 | |
---|
265 | ! |
---|
266 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
267 | IF ( ibc_uv_t == 0 ) THEN |
---|
268 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
269 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
270 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
271 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
272 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
273 | ENDIF |
---|
274 | |
---|
275 | ! |
---|
276 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
277 | IF ( .NOT. nest_domain .AND. & |
---|
278 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
279 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
280 | ENDIF |
---|
281 | |
---|
282 | ! |
---|
283 | !-- Temperature at bottom and top boundary. |
---|
284 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
285 | !-- the sea surface temperature of the coupled ocean model. |
---|
286 | !-- Dirichlet |
---|
287 | IF ( ibc_pt_b == 0 ) THEN |
---|
288 | DO l = 0, 1 |
---|
289 | ! |
---|
290 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
291 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
292 | kb = MERGE( -1, 1, l == 0 ) |
---|
293 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
294 | DO m = 1, bc_h(l)%ns |
---|
295 | i = bc_h(l)%i(m) |
---|
296 | j = bc_h(l)%j(m) |
---|
297 | k = bc_h(l)%k(m) |
---|
298 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
299 | ENDDO |
---|
300 | ENDDO |
---|
301 | ! |
---|
302 | !-- Neumann, zero-gradient |
---|
303 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
304 | DO l = 0, 1 |
---|
305 | ! |
---|
306 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
307 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
308 | kb = MERGE( -1, 1, l == 0 ) |
---|
309 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
310 | DO m = 1, bc_h(l)%ns |
---|
311 | i = bc_h(l)%i(m) |
---|
312 | j = bc_h(l)%j(m) |
---|
313 | k = bc_h(l)%k(m) |
---|
314 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
315 | ENDDO |
---|
316 | ENDDO |
---|
317 | ENDIF |
---|
318 | |
---|
319 | ! |
---|
320 | !-- Temperature at top boundary |
---|
321 | IF ( ibc_pt_t == 0 ) THEN |
---|
322 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
323 | ! |
---|
324 | !-- In case of nudging adjust top boundary to pt which is |
---|
325 | !-- read in from NUDGING-DATA |
---|
326 | IF ( nudging ) THEN |
---|
327 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
328 | ENDIF |
---|
329 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
330 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
331 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
332 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
333 | ENDIF |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Boundary conditions for TKE. |
---|
337 | !-- Generally Neumann conditions with de/dz=0 are assumed. |
---|
338 | IF ( .NOT. constant_diffusion ) THEN |
---|
339 | |
---|
340 | IF ( .NOT. rans_tke_e ) THEN |
---|
341 | DO l = 0, 1 |
---|
342 | ! |
---|
343 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
344 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
345 | kb = MERGE( -1, 1, l == 0 ) |
---|
346 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
347 | DO m = 1, bc_h(l)%ns |
---|
348 | i = bc_h(l)%i(m) |
---|
349 | j = bc_h(l)%j(m) |
---|
350 | k = bc_h(l)%k(m) |
---|
351 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
352 | ENDDO |
---|
353 | ENDDO |
---|
354 | ELSE |
---|
355 | ! |
---|
356 | !-- Use wall function within constant-flux layer |
---|
357 | !-- Upward-facing surfaces |
---|
358 | !-- Default surfaces |
---|
359 | DO m = 1, surf_def_h(0)%ns |
---|
360 | i = surf_def_h(0)%i(m) |
---|
361 | j = surf_def_h(0)%j(m) |
---|
362 | k = surf_def_h(0)%k(m) |
---|
363 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
364 | ENDDO |
---|
365 | ! |
---|
366 | !-- Natural surfaces |
---|
367 | DO m = 1, surf_lsm_h%ns |
---|
368 | i = surf_lsm_h%i(m) |
---|
369 | j = surf_lsm_h%j(m) |
---|
370 | k = surf_lsm_h%k(m) |
---|
371 | e_p(k,j,i) = ( surf_lsm_h%us(m) / c_0 )**2 |
---|
372 | ENDDO |
---|
373 | ! |
---|
374 | !-- Urban surfaces |
---|
375 | DO m = 1, surf_usm_h%ns |
---|
376 | i = surf_usm_h%i(m) |
---|
377 | j = surf_usm_h%j(m) |
---|
378 | k = surf_usm_h%k(m) |
---|
379 | e_p(k,j,i) = ( surf_usm_h%us(m) / c_0 )**2 |
---|
380 | ENDDO |
---|
381 | ! |
---|
382 | !-- Vertical surfaces |
---|
383 | DO l = 0, 3 |
---|
384 | ! |
---|
385 | !-- Default surfaces |
---|
386 | DO m = 1, surf_def_v(l)%ns |
---|
387 | i = surf_def_v(l)%i(m) |
---|
388 | j = surf_def_v(l)%j(m) |
---|
389 | k = surf_def_v(l)%k(m) |
---|
390 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
391 | ENDDO |
---|
392 | ! |
---|
393 | !-- Natural surfaces |
---|
394 | DO m = 1, surf_lsm_v(l)%ns |
---|
395 | i = surf_lsm_v(l)%i(m) |
---|
396 | j = surf_lsm_v(l)%j(m) |
---|
397 | k = surf_lsm_v(l)%k(m) |
---|
398 | e_p(k,j,i) = ( surf_lsm_v(l)%us(m) / c_0 )**2 |
---|
399 | ENDDO |
---|
400 | ! |
---|
401 | !-- Urban surfaces |
---|
402 | DO m = 1, surf_usm_v(l)%ns |
---|
403 | i = surf_usm_v(l)%i(m) |
---|
404 | j = surf_usm_v(l)%j(m) |
---|
405 | k = surf_usm_v(l)%k(m) |
---|
406 | e_p(k,j,i) = ( surf_usm_v(l)%us(m) / c_0 )**2 |
---|
407 | ENDDO |
---|
408 | ENDDO |
---|
409 | ENDIF |
---|
410 | |
---|
411 | IF ( .NOT. nest_domain ) THEN |
---|
412 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
413 | ! |
---|
414 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
415 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
416 | !-- top child boundaries. |
---|
417 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
418 | !-- is treated in the nesting. |
---|
419 | ELSE |
---|
420 | |
---|
421 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
422 | |
---|
423 | |
---|
424 | |
---|
425 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
426 | IF ( nest_bound_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
427 | IF ( nest_bound_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
428 | IF ( nest_bound_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
429 | IF ( nest_bound_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
430 | |
---|
431 | ENDIF |
---|
432 | ENDIF |
---|
433 | ENDIF |
---|
434 | |
---|
435 | ! |
---|
436 | !-- Boundary conditions for TKE dissipation rate. |
---|
437 | IF ( rans_tke_e ) THEN |
---|
438 | ! |
---|
439 | !-- Use wall function within constant-flux layer |
---|
440 | !-- Upward-facing surfaces |
---|
441 | !-- Default surfaces |
---|
442 | DO m = 1, surf_def_h(0)%ns |
---|
443 | i = surf_def_h(0)%i(m) |
---|
444 | j = surf_def_h(0)%j(m) |
---|
445 | k = surf_def_h(0)%k(m) |
---|
446 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 & |
---|
447 | / ( kappa * surf_def_h(0)%z_mo(m) ) |
---|
448 | ENDDO |
---|
449 | ! |
---|
450 | !-- Natural surfaces |
---|
451 | DO m = 1, surf_lsm_h%ns |
---|
452 | i = surf_lsm_h%i(m) |
---|
453 | j = surf_lsm_h%j(m) |
---|
454 | k = surf_lsm_h%k(m) |
---|
455 | diss_p(k,j,i) = surf_lsm_h%us(m)**3 & |
---|
456 | / ( kappa * surf_lsm_h%z_mo(m) ) |
---|
457 | ENDDO |
---|
458 | ! |
---|
459 | !-- Urban surfaces |
---|
460 | DO m = 1, surf_usm_h%ns |
---|
461 | i = surf_usm_h%i(m) |
---|
462 | j = surf_usm_h%j(m) |
---|
463 | k = surf_usm_h%k(m) |
---|
464 | diss_p(k,j,i) = surf_usm_h%us(m)**3 & |
---|
465 | / ( kappa * surf_usm_h%z_mo(m) ) |
---|
466 | ENDDO |
---|
467 | ! |
---|
468 | !-- Vertical surfaces |
---|
469 | DO l = 0, 3 |
---|
470 | ! |
---|
471 | !-- Default surfaces |
---|
472 | DO m = 1, surf_def_v(l)%ns |
---|
473 | i = surf_def_v(l)%i(m) |
---|
474 | j = surf_def_v(l)%j(m) |
---|
475 | k = surf_def_v(l)%k(m) |
---|
476 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 & |
---|
477 | / ( kappa * surf_def_v(l)%z_mo(m) ) |
---|
478 | ENDDO |
---|
479 | ! |
---|
480 | !-- Natural surfaces |
---|
481 | DO m = 1, surf_lsm_v(l)%ns |
---|
482 | i = surf_lsm_v(l)%i(m) |
---|
483 | j = surf_lsm_v(l)%j(m) |
---|
484 | k = surf_lsm_v(l)%k(m) |
---|
485 | diss_p(k,j,i) = surf_lsm_v(l)%us(m)**3 & |
---|
486 | / ( kappa * surf_lsm_v(l)%z_mo(m) ) |
---|
487 | ENDDO |
---|
488 | ! |
---|
489 | !-- Urban surfaces |
---|
490 | DO m = 1, surf_usm_v(l)%ns |
---|
491 | i = surf_usm_v(l)%i(m) |
---|
492 | j = surf_usm_v(l)%j(m) |
---|
493 | k = surf_usm_v(l)%k(m) |
---|
494 | diss_p(k,j,i) = surf_usm_v(l)%us(m)**3 & |
---|
495 | / ( kappa * surf_usm_v(l)%z_mo(m) ) |
---|
496 | ENDDO |
---|
497 | ENDDO |
---|
498 | ! |
---|
499 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
500 | !-- minimum value |
---|
501 | DO i = nxl, nxr |
---|
502 | DO j = nys, nyn |
---|
503 | DO k = nzb, nzt+1 |
---|
504 | diss_p(k,j,i) = MAX( MIN( diss_p(k,j,i), & |
---|
505 | 2.0_wp * diss(k,j,i) ), & |
---|
506 | 0.1_wp * diss(k,j,i), & |
---|
507 | 0.0001_wp ) |
---|
508 | ENDDO |
---|
509 | ENDDO |
---|
510 | ENDDO |
---|
511 | |
---|
512 | IF ( .NOT. nest_domain ) THEN |
---|
513 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
514 | ENDIF |
---|
515 | ENDIF |
---|
516 | |
---|
517 | ! |
---|
518 | !-- Boundary conditions for salinity |
---|
519 | IF ( ocean ) THEN |
---|
520 | ! |
---|
521 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
522 | !-- given. |
---|
523 | DO l = 0, 1 |
---|
524 | ! |
---|
525 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
526 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
527 | kb = MERGE( -1, 1, l == 0 ) |
---|
528 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
529 | DO m = 1, bc_h(l)%ns |
---|
530 | i = bc_h(l)%i(m) |
---|
531 | j = bc_h(l)%j(m) |
---|
532 | k = bc_h(l)%k(m) |
---|
533 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
534 | ENDDO |
---|
535 | ENDDO |
---|
536 | ! |
---|
537 | !-- Top boundary: Dirichlet or Neumann |
---|
538 | IF ( ibc_sa_t == 0 ) THEN |
---|
539 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
540 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
541 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
542 | ENDIF |
---|
543 | |
---|
544 | ENDIF |
---|
545 | |
---|
546 | ! |
---|
547 | !-- Boundary conditions for total water content, |
---|
548 | !-- bottom and top boundary (see also temperature) |
---|
549 | IF ( humidity ) THEN |
---|
550 | ! |
---|
551 | !-- Surface conditions for constant_humidity_flux |
---|
552 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
553 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
554 | !-- q_p at k-1 |
---|
555 | IF ( ibc_q_b == 0 ) THEN |
---|
556 | |
---|
557 | DO l = 0, 1 |
---|
558 | ! |
---|
559 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
560 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
561 | kb = MERGE( -1, 1, l == 0 ) |
---|
562 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
563 | DO m = 1, bc_h(l)%ns |
---|
564 | i = bc_h(l)%i(m) |
---|
565 | j = bc_h(l)%j(m) |
---|
566 | k = bc_h(l)%k(m) |
---|
567 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
568 | ENDDO |
---|
569 | ENDDO |
---|
570 | |
---|
571 | ELSE |
---|
572 | |
---|
573 | DO l = 0, 1 |
---|
574 | ! |
---|
575 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
576 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
577 | kb = MERGE( -1, 1, l == 0 ) |
---|
578 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
579 | DO m = 1, bc_h(l)%ns |
---|
580 | i = bc_h(l)%i(m) |
---|
581 | j = bc_h(l)%j(m) |
---|
582 | k = bc_h(l)%k(m) |
---|
583 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
584 | ENDDO |
---|
585 | ENDDO |
---|
586 | ENDIF |
---|
587 | ! |
---|
588 | !-- Top boundary |
---|
589 | IF ( ibc_q_t == 0 ) THEN |
---|
590 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
591 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
592 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
593 | ENDIF |
---|
594 | |
---|
595 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
596 | ! |
---|
597 | !-- Surface conditions cloud water (Dirichlet) |
---|
598 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
599 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
600 | !-- qr_p and nr_p at k-1 |
---|
601 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
602 | DO m = 1, bc_h(0)%ns |
---|
603 | i = bc_h(0)%i(m) |
---|
604 | j = bc_h(0)%j(m) |
---|
605 | k = bc_h(0)%k(m) |
---|
606 | qc_p(k-1,j,i) = 0.0_wp |
---|
607 | nc_p(k-1,j,i) = 0.0_wp |
---|
608 | ENDDO |
---|
609 | ! |
---|
610 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
611 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
612 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
613 | |
---|
614 | ENDIF |
---|
615 | |
---|
616 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
617 | ! |
---|
618 | !-- Surface conditions rain water (Dirichlet) |
---|
619 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
620 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
621 | !-- qr_p and nr_p at k-1 |
---|
622 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
623 | DO m = 1, bc_h(0)%ns |
---|
624 | i = bc_h(0)%i(m) |
---|
625 | j = bc_h(0)%j(m) |
---|
626 | k = bc_h(0)%k(m) |
---|
627 | qr_p(k-1,j,i) = 0.0_wp |
---|
628 | nr_p(k-1,j,i) = 0.0_wp |
---|
629 | ENDDO |
---|
630 | ! |
---|
631 | !-- Top boundary condition for rain water (Dirichlet) |
---|
632 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
633 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
634 | |
---|
635 | ENDIF |
---|
636 | ENDIF |
---|
637 | ! |
---|
638 | !-- Boundary conditions for scalar, |
---|
639 | !-- bottom and top boundary (see also temperature) |
---|
640 | IF ( passive_scalar ) THEN |
---|
641 | ! |
---|
642 | !-- Surface conditions for constant_humidity_flux |
---|
643 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
644 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
645 | !-- s_p at k-1 |
---|
646 | IF ( ibc_s_b == 0 ) THEN |
---|
647 | |
---|
648 | DO l = 0, 1 |
---|
649 | ! |
---|
650 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
651 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
652 | kb = MERGE( -1, 1, l == 0 ) |
---|
653 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
654 | DO m = 1, bc_h(l)%ns |
---|
655 | i = bc_h(l)%i(m) |
---|
656 | j = bc_h(l)%j(m) |
---|
657 | k = bc_h(l)%k(m) |
---|
658 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
659 | ENDDO |
---|
660 | ENDDO |
---|
661 | |
---|
662 | ELSE |
---|
663 | |
---|
664 | DO l = 0, 1 |
---|
665 | ! |
---|
666 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
667 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
668 | kb = MERGE( -1, 1, l == 0 ) |
---|
669 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
670 | DO m = 1, bc_h(l)%ns |
---|
671 | i = bc_h(l)%i(m) |
---|
672 | j = bc_h(l)%j(m) |
---|
673 | k = bc_h(l)%k(m) |
---|
674 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
675 | ENDDO |
---|
676 | ENDDO |
---|
677 | ENDIF |
---|
678 | ! |
---|
679 | !-- Top boundary condition |
---|
680 | IF ( ibc_s_t == 0 ) THEN |
---|
681 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
682 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
683 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
684 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
685 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
686 | ENDIF |
---|
687 | |
---|
688 | ENDIF |
---|
689 | ! |
---|
690 | !-- Top/bottom boundary conditions for chemical species |
---|
691 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
692 | ! |
---|
693 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
694 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
695 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
696 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
697 | !-- have to be restored here. |
---|
698 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
699 | IF ( inflow_s ) THEN |
---|
700 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
701 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
702 | ELSEIF ( inflow_n ) THEN |
---|
703 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
704 | ELSEIF ( inflow_l ) THEN |
---|
705 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
706 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
707 | ELSEIF ( inflow_r ) THEN |
---|
708 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
709 | ENDIF |
---|
710 | |
---|
711 | ! |
---|
712 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
713 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
714 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
715 | IF ( nesting_mode /= 'vertical' .OR. forcing ) THEN |
---|
716 | IF ( nest_bound_s .OR. force_bound_s ) THEN |
---|
717 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
718 | ENDIF |
---|
719 | IF ( nest_bound_l .OR. force_bound_l ) THEN |
---|
720 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
721 | ENDIF |
---|
722 | ENDIF |
---|
723 | |
---|
724 | ! |
---|
725 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
726 | IF ( outflow_s ) THEN |
---|
727 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
728 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
729 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
730 | IF ( humidity ) THEN |
---|
731 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
732 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
733 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
734 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
735 | ENDIF |
---|
736 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
737 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
738 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
739 | ENDIF |
---|
740 | ENDIF |
---|
741 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
742 | ELSEIF ( outflow_n ) THEN |
---|
743 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
744 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
745 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
746 | IF ( humidity ) THEN |
---|
747 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
748 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
749 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
750 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
751 | ENDIF |
---|
752 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
753 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
754 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
755 | ENDIF |
---|
756 | ENDIF |
---|
757 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
758 | ELSEIF ( outflow_l ) THEN |
---|
759 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
760 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
761 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
762 | IF ( humidity ) THEN |
---|
763 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
764 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
765 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
766 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
767 | ENDIF |
---|
768 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
769 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
770 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
771 | ENDIF |
---|
772 | ENDIF |
---|
773 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
774 | ELSEIF ( outflow_r ) THEN |
---|
775 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
776 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
777 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
778 | IF ( humidity ) THEN |
---|
779 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
780 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
781 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
782 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
783 | ENDIF |
---|
784 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
785 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
786 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
787 | ENDIF |
---|
788 | ENDIF |
---|
789 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
790 | ENDIF |
---|
791 | |
---|
792 | ! |
---|
793 | !-- Lateral boundary conditions for chemical species |
---|
794 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
795 | |
---|
796 | ! |
---|
797 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
798 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
799 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
800 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
801 | IF ( outflow_s ) THEN |
---|
802 | |
---|
803 | IF ( use_cmax ) THEN |
---|
804 | u_p(:,-1,:) = u(:,0,:) |
---|
805 | v_p(:,0,:) = v(:,1,:) |
---|
806 | w_p(:,-1,:) = w(:,0,:) |
---|
807 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
808 | |
---|
809 | c_max = dy / dt_3d |
---|
810 | |
---|
811 | c_u_m_l = 0.0_wp |
---|
812 | c_v_m_l = 0.0_wp |
---|
813 | c_w_m_l = 0.0_wp |
---|
814 | |
---|
815 | c_u_m = 0.0_wp |
---|
816 | c_v_m = 0.0_wp |
---|
817 | c_w_m = 0.0_wp |
---|
818 | |
---|
819 | ! |
---|
820 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
821 | !-- average along the outflow boundary. |
---|
822 | DO k = nzb+1, nzt+1 |
---|
823 | DO i = nxl, nxr |
---|
824 | |
---|
825 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
826 | |
---|
827 | IF ( denom /= 0.0_wp ) THEN |
---|
828 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
829 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
830 | c_u(k,i) = 0.0_wp |
---|
831 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
832 | c_u(k,i) = c_max |
---|
833 | ENDIF |
---|
834 | ELSE |
---|
835 | c_u(k,i) = c_max |
---|
836 | ENDIF |
---|
837 | |
---|
838 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
839 | |
---|
840 | IF ( denom /= 0.0_wp ) THEN |
---|
841 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
842 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
843 | c_v(k,i) = 0.0_wp |
---|
844 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
845 | c_v(k,i) = c_max |
---|
846 | ENDIF |
---|
847 | ELSE |
---|
848 | c_v(k,i) = c_max |
---|
849 | ENDIF |
---|
850 | |
---|
851 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
852 | |
---|
853 | IF ( denom /= 0.0_wp ) THEN |
---|
854 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
855 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
856 | c_w(k,i) = 0.0_wp |
---|
857 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
858 | c_w(k,i) = c_max |
---|
859 | ENDIF |
---|
860 | ELSE |
---|
861 | c_w(k,i) = c_max |
---|
862 | ENDIF |
---|
863 | |
---|
864 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
865 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
866 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
867 | |
---|
868 | ENDDO |
---|
869 | ENDDO |
---|
870 | |
---|
871 | #if defined( __parallel ) |
---|
872 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
873 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
874 | MPI_SUM, comm1dx, ierr ) |
---|
875 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
876 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
877 | MPI_SUM, comm1dx, ierr ) |
---|
878 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
879 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
880 | MPI_SUM, comm1dx, ierr ) |
---|
881 | #else |
---|
882 | c_u_m = c_u_m_l |
---|
883 | c_v_m = c_v_m_l |
---|
884 | c_w_m = c_w_m_l |
---|
885 | #endif |
---|
886 | |
---|
887 | c_u_m = c_u_m / (nx+1) |
---|
888 | c_v_m = c_v_m / (nx+1) |
---|
889 | c_w_m = c_w_m / (nx+1) |
---|
890 | |
---|
891 | ! |
---|
892 | !-- Save old timelevels for the next timestep |
---|
893 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
894 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
895 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
896 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
897 | ENDIF |
---|
898 | |
---|
899 | ! |
---|
900 | !-- Calculate the new velocities |
---|
901 | DO k = nzb+1, nzt+1 |
---|
902 | DO i = nxlg, nxrg |
---|
903 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
904 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
905 | |
---|
906 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
907 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
908 | |
---|
909 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
910 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
911 | ENDDO |
---|
912 | ENDDO |
---|
913 | |
---|
914 | ! |
---|
915 | !-- Bottom boundary at the outflow |
---|
916 | IF ( ibc_uv_b == 0 ) THEN |
---|
917 | u_p(nzb,-1,:) = 0.0_wp |
---|
918 | v_p(nzb,0,:) = 0.0_wp |
---|
919 | ELSE |
---|
920 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
921 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
922 | ENDIF |
---|
923 | w_p(nzb,-1,:) = 0.0_wp |
---|
924 | |
---|
925 | ! |
---|
926 | !-- Top boundary at the outflow |
---|
927 | IF ( ibc_uv_t == 0 ) THEN |
---|
928 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
929 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
930 | ELSE |
---|
931 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
932 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
933 | ENDIF |
---|
934 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
935 | |
---|
936 | ENDIF |
---|
937 | |
---|
938 | ENDIF |
---|
939 | |
---|
940 | IF ( outflow_n ) THEN |
---|
941 | |
---|
942 | IF ( use_cmax ) THEN |
---|
943 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
944 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
945 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
946 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
947 | |
---|
948 | c_max = dy / dt_3d |
---|
949 | |
---|
950 | c_u_m_l = 0.0_wp |
---|
951 | c_v_m_l = 0.0_wp |
---|
952 | c_w_m_l = 0.0_wp |
---|
953 | |
---|
954 | c_u_m = 0.0_wp |
---|
955 | c_v_m = 0.0_wp |
---|
956 | c_w_m = 0.0_wp |
---|
957 | |
---|
958 | ! |
---|
959 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
960 | !-- average along the outflow boundary. |
---|
961 | DO k = nzb+1, nzt+1 |
---|
962 | DO i = nxl, nxr |
---|
963 | |
---|
964 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
965 | |
---|
966 | IF ( denom /= 0.0_wp ) THEN |
---|
967 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
968 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
969 | c_u(k,i) = 0.0_wp |
---|
970 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
971 | c_u(k,i) = c_max |
---|
972 | ENDIF |
---|
973 | ELSE |
---|
974 | c_u(k,i) = c_max |
---|
975 | ENDIF |
---|
976 | |
---|
977 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
978 | |
---|
979 | IF ( denom /= 0.0_wp ) THEN |
---|
980 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
981 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
982 | c_v(k,i) = 0.0_wp |
---|
983 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
984 | c_v(k,i) = c_max |
---|
985 | ENDIF |
---|
986 | ELSE |
---|
987 | c_v(k,i) = c_max |
---|
988 | ENDIF |
---|
989 | |
---|
990 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
991 | |
---|
992 | IF ( denom /= 0.0_wp ) THEN |
---|
993 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
994 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
995 | c_w(k,i) = 0.0_wp |
---|
996 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
997 | c_w(k,i) = c_max |
---|
998 | ENDIF |
---|
999 | ELSE |
---|
1000 | c_w(k,i) = c_max |
---|
1001 | ENDIF |
---|
1002 | |
---|
1003 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
1004 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
1005 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
1006 | |
---|
1007 | ENDDO |
---|
1008 | ENDDO |
---|
1009 | |
---|
1010 | #if defined( __parallel ) |
---|
1011 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1012 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1013 | MPI_SUM, comm1dx, ierr ) |
---|
1014 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1015 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1016 | MPI_SUM, comm1dx, ierr ) |
---|
1017 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
1018 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1019 | MPI_SUM, comm1dx, ierr ) |
---|
1020 | #else |
---|
1021 | c_u_m = c_u_m_l |
---|
1022 | c_v_m = c_v_m_l |
---|
1023 | c_w_m = c_w_m_l |
---|
1024 | #endif |
---|
1025 | |
---|
1026 | c_u_m = c_u_m / (nx+1) |
---|
1027 | c_v_m = c_v_m / (nx+1) |
---|
1028 | c_w_m = c_w_m / (nx+1) |
---|
1029 | |
---|
1030 | ! |
---|
1031 | !-- Save old timelevels for the next timestep |
---|
1032 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1033 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
1034 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
1035 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
1036 | ENDIF |
---|
1037 | |
---|
1038 | ! |
---|
1039 | !-- Calculate the new velocities |
---|
1040 | DO k = nzb+1, nzt+1 |
---|
1041 | DO i = nxlg, nxrg |
---|
1042 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1043 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
1044 | |
---|
1045 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1046 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
1047 | |
---|
1048 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1049 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
1050 | ENDDO |
---|
1051 | ENDDO |
---|
1052 | |
---|
1053 | ! |
---|
1054 | !-- Bottom boundary at the outflow |
---|
1055 | IF ( ibc_uv_b == 0 ) THEN |
---|
1056 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
1057 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
1058 | ELSE |
---|
1059 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
1060 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
1061 | ENDIF |
---|
1062 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
1063 | |
---|
1064 | ! |
---|
1065 | !-- Top boundary at the outflow |
---|
1066 | IF ( ibc_uv_t == 0 ) THEN |
---|
1067 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
1068 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
1069 | ELSE |
---|
1070 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
1071 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
1072 | ENDIF |
---|
1073 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
1074 | |
---|
1075 | ENDIF |
---|
1076 | |
---|
1077 | ENDIF |
---|
1078 | |
---|
1079 | IF ( outflow_l ) THEN |
---|
1080 | |
---|
1081 | IF ( use_cmax ) THEN |
---|
1082 | u_p(:,:,0) = u(:,:,1) |
---|
1083 | v_p(:,:,-1) = v(:,:,0) |
---|
1084 | w_p(:,:,-1) = w(:,:,0) |
---|
1085 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1086 | |
---|
1087 | c_max = dx / dt_3d |
---|
1088 | |
---|
1089 | c_u_m_l = 0.0_wp |
---|
1090 | c_v_m_l = 0.0_wp |
---|
1091 | c_w_m_l = 0.0_wp |
---|
1092 | |
---|
1093 | c_u_m = 0.0_wp |
---|
1094 | c_v_m = 0.0_wp |
---|
1095 | c_w_m = 0.0_wp |
---|
1096 | |
---|
1097 | ! |
---|
1098 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1099 | !-- average along the outflow boundary. |
---|
1100 | DO k = nzb+1, nzt+1 |
---|
1101 | DO j = nys, nyn |
---|
1102 | |
---|
1103 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
1104 | |
---|
1105 | IF ( denom /= 0.0_wp ) THEN |
---|
1106 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
1107 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1108 | c_u(k,j) = 0.0_wp |
---|
1109 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1110 | c_u(k,j) = c_max |
---|
1111 | ENDIF |
---|
1112 | ELSE |
---|
1113 | c_u(k,j) = c_max |
---|
1114 | ENDIF |
---|
1115 | |
---|
1116 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
1117 | |
---|
1118 | IF ( denom /= 0.0_wp ) THEN |
---|
1119 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
1120 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1121 | c_v(k,j) = 0.0_wp |
---|
1122 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1123 | c_v(k,j) = c_max |
---|
1124 | ENDIF |
---|
1125 | ELSE |
---|
1126 | c_v(k,j) = c_max |
---|
1127 | ENDIF |
---|
1128 | |
---|
1129 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
1130 | |
---|
1131 | IF ( denom /= 0.0_wp ) THEN |
---|
1132 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
1133 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1134 | c_w(k,j) = 0.0_wp |
---|
1135 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1136 | c_w(k,j) = c_max |
---|
1137 | ENDIF |
---|
1138 | ELSE |
---|
1139 | c_w(k,j) = c_max |
---|
1140 | ENDIF |
---|
1141 | |
---|
1142 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1143 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1144 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1145 | |
---|
1146 | ENDDO |
---|
1147 | ENDDO |
---|
1148 | |
---|
1149 | #if defined( __parallel ) |
---|
1150 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1151 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1152 | MPI_SUM, comm1dy, ierr ) |
---|
1153 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1154 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1155 | MPI_SUM, comm1dy, ierr ) |
---|
1156 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1157 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1158 | MPI_SUM, comm1dy, ierr ) |
---|
1159 | #else |
---|
1160 | c_u_m = c_u_m_l |
---|
1161 | c_v_m = c_v_m_l |
---|
1162 | c_w_m = c_w_m_l |
---|
1163 | #endif |
---|
1164 | |
---|
1165 | c_u_m = c_u_m / (ny+1) |
---|
1166 | c_v_m = c_v_m / (ny+1) |
---|
1167 | c_w_m = c_w_m / (ny+1) |
---|
1168 | |
---|
1169 | ! |
---|
1170 | !-- Save old timelevels for the next timestep |
---|
1171 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1172 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
1173 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
1174 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
1175 | ENDIF |
---|
1176 | |
---|
1177 | ! |
---|
1178 | !-- Calculate the new velocities |
---|
1179 | DO k = nzb+1, nzt+1 |
---|
1180 | DO j = nysg, nyng |
---|
1181 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1182 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
1183 | |
---|
1184 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1185 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
1186 | |
---|
1187 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1188 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
1189 | ENDDO |
---|
1190 | ENDDO |
---|
1191 | |
---|
1192 | ! |
---|
1193 | !-- Bottom boundary at the outflow |
---|
1194 | IF ( ibc_uv_b == 0 ) THEN |
---|
1195 | u_p(nzb,:,0) = 0.0_wp |
---|
1196 | v_p(nzb,:,-1) = 0.0_wp |
---|
1197 | ELSE |
---|
1198 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
1199 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
1200 | ENDIF |
---|
1201 | w_p(nzb,:,-1) = 0.0_wp |
---|
1202 | |
---|
1203 | ! |
---|
1204 | !-- Top boundary at the outflow |
---|
1205 | IF ( ibc_uv_t == 0 ) THEN |
---|
1206 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
1207 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
1208 | ELSE |
---|
1209 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
1210 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
1211 | ENDIF |
---|
1212 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
1213 | |
---|
1214 | ENDIF |
---|
1215 | |
---|
1216 | ENDIF |
---|
1217 | |
---|
1218 | IF ( outflow_r ) THEN |
---|
1219 | |
---|
1220 | IF ( use_cmax ) THEN |
---|
1221 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
1222 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
1223 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
1224 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1225 | |
---|
1226 | c_max = dx / dt_3d |
---|
1227 | |
---|
1228 | c_u_m_l = 0.0_wp |
---|
1229 | c_v_m_l = 0.0_wp |
---|
1230 | c_w_m_l = 0.0_wp |
---|
1231 | |
---|
1232 | c_u_m = 0.0_wp |
---|
1233 | c_v_m = 0.0_wp |
---|
1234 | c_w_m = 0.0_wp |
---|
1235 | |
---|
1236 | ! |
---|
1237 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1238 | !-- average along the outflow boundary. |
---|
1239 | DO k = nzb+1, nzt+1 |
---|
1240 | DO j = nys, nyn |
---|
1241 | |
---|
1242 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
1243 | |
---|
1244 | IF ( denom /= 0.0_wp ) THEN |
---|
1245 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1246 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1247 | c_u(k,j) = 0.0_wp |
---|
1248 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1249 | c_u(k,j) = c_max |
---|
1250 | ENDIF |
---|
1251 | ELSE |
---|
1252 | c_u(k,j) = c_max |
---|
1253 | ENDIF |
---|
1254 | |
---|
1255 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
1256 | |
---|
1257 | IF ( denom /= 0.0_wp ) THEN |
---|
1258 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1259 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1260 | c_v(k,j) = 0.0_wp |
---|
1261 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1262 | c_v(k,j) = c_max |
---|
1263 | ENDIF |
---|
1264 | ELSE |
---|
1265 | c_v(k,j) = c_max |
---|
1266 | ENDIF |
---|
1267 | |
---|
1268 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
1269 | |
---|
1270 | IF ( denom /= 0.0_wp ) THEN |
---|
1271 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1272 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1273 | c_w(k,j) = 0.0_wp |
---|
1274 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1275 | c_w(k,j) = c_max |
---|
1276 | ENDIF |
---|
1277 | ELSE |
---|
1278 | c_w(k,j) = c_max |
---|
1279 | ENDIF |
---|
1280 | |
---|
1281 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1282 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1283 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1284 | |
---|
1285 | ENDDO |
---|
1286 | ENDDO |
---|
1287 | |
---|
1288 | #if defined( __parallel ) |
---|
1289 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1290 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1291 | MPI_SUM, comm1dy, ierr ) |
---|
1292 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1293 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1294 | MPI_SUM, comm1dy, ierr ) |
---|
1295 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1296 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1297 | MPI_SUM, comm1dy, ierr ) |
---|
1298 | #else |
---|
1299 | c_u_m = c_u_m_l |
---|
1300 | c_v_m = c_v_m_l |
---|
1301 | c_w_m = c_w_m_l |
---|
1302 | #endif |
---|
1303 | |
---|
1304 | c_u_m = c_u_m / (ny+1) |
---|
1305 | c_v_m = c_v_m / (ny+1) |
---|
1306 | c_w_m = c_w_m / (ny+1) |
---|
1307 | |
---|
1308 | ! |
---|
1309 | !-- Save old timelevels for the next timestep |
---|
1310 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1311 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
1312 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
1313 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
1314 | ENDIF |
---|
1315 | |
---|
1316 | ! |
---|
1317 | !-- Calculate the new velocities |
---|
1318 | DO k = nzb+1, nzt+1 |
---|
1319 | DO j = nysg, nyng |
---|
1320 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1321 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
1322 | |
---|
1323 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1324 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
1325 | |
---|
1326 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1327 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
1328 | ENDDO |
---|
1329 | ENDDO |
---|
1330 | |
---|
1331 | ! |
---|
1332 | !-- Bottom boundary at the outflow |
---|
1333 | IF ( ibc_uv_b == 0 ) THEN |
---|
1334 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
1335 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
1336 | ELSE |
---|
1337 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
1338 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
1339 | ENDIF |
---|
1340 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
1341 | |
---|
1342 | ! |
---|
1343 | !-- Top boundary at the outflow |
---|
1344 | IF ( ibc_uv_t == 0 ) THEN |
---|
1345 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
1346 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
1347 | ELSE |
---|
1348 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
1349 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
1350 | ENDIF |
---|
1351 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
1352 | |
---|
1353 | ENDIF |
---|
1354 | |
---|
1355 | ENDIF |
---|
1356 | |
---|
1357 | END SUBROUTINE boundary_conds |
---|