1 | SUBROUTINE boundary_conds |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: boundary_conds.f90 1354 2014-04-08 15:22:57Z witha $ |
---|
27 | ! |
---|
28 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
29 | ! REAL constants provided with KIND-attribute |
---|
30 | ! |
---|
31 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
32 | ! ONLY-attribute added to USE-statements, |
---|
33 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
34 | ! kinds are defined in new module kinds, |
---|
35 | ! revision history before 2012 removed, |
---|
36 | ! comment fields (!:) to be used for variable explanations added to |
---|
37 | ! all variable declaration statements |
---|
38 | ! |
---|
39 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
40 | ! loop independent clauses added |
---|
41 | ! |
---|
42 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
43 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
44 | ! |
---|
45 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
46 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
47 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
48 | ! velocity that ensures numerical stability (CFL-condition). |
---|
49 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
50 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
51 | ! u_p, v_p, w_p |
---|
52 | ! |
---|
53 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
54 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
55 | ! boundary-conditions |
---|
56 | ! |
---|
57 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
58 | ! GPU-porting |
---|
59 | ! dummy argument "range" removed |
---|
60 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
61 | ! |
---|
62 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
63 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
64 | ! two-moment cloud scheme |
---|
65 | ! |
---|
66 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
67 | ! code put under GPL (PALM 3.9) |
---|
68 | ! |
---|
69 | ! 996 2012-09-07 10:41:47Z raasch |
---|
70 | ! little reformatting |
---|
71 | ! |
---|
72 | ! 978 2012-08-09 08:28:32Z fricke |
---|
73 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
74 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
75 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
76 | ! velocity. |
---|
77 | ! |
---|
78 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
79 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
80 | ! |
---|
81 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
82 | ! Initial revision |
---|
83 | ! |
---|
84 | ! |
---|
85 | ! Description: |
---|
86 | ! ------------ |
---|
87 | ! Boundary conditions for the prognostic quantities. |
---|
88 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
89 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
90 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
91 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
92 | !------------------------------------------------------------------------------! |
---|
93 | |
---|
94 | USE arrays_3d, & |
---|
95 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
96 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, sa, sa_p, & |
---|
97 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
98 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
99 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
100 | |
---|
101 | USE control_parameters, & |
---|
102 | ONLY: bc_pt_t_val, bc_q_t_val, constant_diffusion, & |
---|
103 | cloud_physics, dt_3d, humidity, & |
---|
104 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_sa_t, ibc_uv_b, ibc_uv_t, & |
---|
105 | icloud_scheme, inflow_l, inflow_n, inflow_r, inflow_s, & |
---|
106 | intermediate_timestep_count, large_scale_forcing, ocean, & |
---|
107 | outflow_l, outflow_n, outflow_r, outflow_s, passive_scalar, & |
---|
108 | precipitation, tsc, use_cmax |
---|
109 | |
---|
110 | USE grid_variables, & |
---|
111 | ONLY: ddx, ddy, dx, dy |
---|
112 | |
---|
113 | USE indices, & |
---|
114 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
115 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
116 | |
---|
117 | USE kinds |
---|
118 | |
---|
119 | USE pegrid |
---|
120 | |
---|
121 | |
---|
122 | IMPLICIT NONE |
---|
123 | |
---|
124 | INTEGER(iwp) :: i !: |
---|
125 | INTEGER(iwp) :: j !: |
---|
126 | INTEGER(iwp) :: k !: |
---|
127 | |
---|
128 | REAL(wp) :: c_max !: |
---|
129 | REAL(wp) :: denom !: |
---|
130 | |
---|
131 | |
---|
132 | ! |
---|
133 | !-- Bottom boundary |
---|
134 | IF ( ibc_uv_b == 1 ) THEN |
---|
135 | !$acc kernels present( u_p, v_p ) |
---|
136 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
137 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
138 | !$acc end kernels |
---|
139 | ENDIF |
---|
140 | |
---|
141 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
142 | DO i = nxlg, nxrg |
---|
143 | DO j = nysg, nyng |
---|
144 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
145 | ENDDO |
---|
146 | ENDDO |
---|
147 | !$acc end kernels |
---|
148 | |
---|
149 | ! |
---|
150 | !-- Top boundary |
---|
151 | IF ( ibc_uv_t == 0 ) THEN |
---|
152 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
153 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
154 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
155 | IF ( large_scale_forcing) THEN |
---|
156 | u_p(nzt+1,:,:) = ug(nzt+1) |
---|
157 | v_p(nzt+1,:,:) = vg(nzt+1) |
---|
158 | END IF |
---|
159 | !$acc end kernels |
---|
160 | ELSE |
---|
161 | !$acc kernels present( u_p, v_p ) |
---|
162 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
163 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
164 | !$acc end kernels |
---|
165 | ENDIF |
---|
166 | !$acc kernels present( w_p ) |
---|
167 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
168 | !$acc end kernels |
---|
169 | |
---|
170 | ! |
---|
171 | !-- Temperature at bottom boundary. |
---|
172 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
173 | !-- the sea surface temperature of the coupled ocean model. |
---|
174 | IF ( ibc_pt_b == 0 ) THEN |
---|
175 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
176 | !$acc loop independent |
---|
177 | DO i = nxlg, nxrg |
---|
178 | !$acc loop independent |
---|
179 | DO j = nysg, nyng |
---|
180 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
181 | ENDDO |
---|
182 | ENDDO |
---|
183 | !$acc end kernels |
---|
184 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
185 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
186 | !$acc loop independent |
---|
187 | DO i = nxlg, nxrg |
---|
188 | !$acc loop independent |
---|
189 | DO j = nysg, nyng |
---|
190 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
191 | ENDDO |
---|
192 | ENDDO |
---|
193 | !$acc end kernels |
---|
194 | ENDIF |
---|
195 | |
---|
196 | ! |
---|
197 | !-- Temperature at top boundary |
---|
198 | IF ( ibc_pt_t == 0 ) THEN |
---|
199 | !$acc kernels present( pt, pt_p ) |
---|
200 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
201 | !$acc end kernels |
---|
202 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
203 | !$acc kernels present( pt_p ) |
---|
204 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
205 | !$acc end kernels |
---|
206 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
207 | !$acc kernels present( dzu, pt_p ) |
---|
208 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
209 | !$acc end kernels |
---|
210 | ENDIF |
---|
211 | |
---|
212 | ! |
---|
213 | !-- Boundary conditions for TKE |
---|
214 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
215 | IF ( .NOT. constant_diffusion ) THEN |
---|
216 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
217 | !$acc loop independent |
---|
218 | DO i = nxlg, nxrg |
---|
219 | !$acc loop independent |
---|
220 | DO j = nysg, nyng |
---|
221 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
222 | ENDDO |
---|
223 | ENDDO |
---|
224 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
225 | !$acc end kernels |
---|
226 | ENDIF |
---|
227 | |
---|
228 | ! |
---|
229 | !-- Boundary conditions for salinity |
---|
230 | IF ( ocean ) THEN |
---|
231 | ! |
---|
232 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
233 | !-- given |
---|
234 | DO i = nxlg, nxrg |
---|
235 | DO j = nysg, nyng |
---|
236 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
237 | ENDDO |
---|
238 | ENDDO |
---|
239 | |
---|
240 | ! |
---|
241 | !-- Top boundary: Dirichlet or Neumann |
---|
242 | IF ( ibc_sa_t == 0 ) THEN |
---|
243 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
244 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
245 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
246 | ENDIF |
---|
247 | |
---|
248 | ENDIF |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Boundary conditions for total water content or scalar, |
---|
252 | !-- bottom and top boundary (see also temperature) |
---|
253 | IF ( humidity .OR. passive_scalar ) THEN |
---|
254 | ! |
---|
255 | !-- Surface conditions for constant_humidity_flux |
---|
256 | IF ( ibc_q_b == 0 ) THEN |
---|
257 | DO i = nxlg, nxrg |
---|
258 | DO j = nysg, nyng |
---|
259 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
260 | ENDDO |
---|
261 | ENDDO |
---|
262 | ELSE |
---|
263 | DO i = nxlg, nxrg |
---|
264 | DO j = nysg, nyng |
---|
265 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
266 | ENDDO |
---|
267 | ENDDO |
---|
268 | ENDIF |
---|
269 | ! |
---|
270 | !-- Top boundary |
---|
271 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
272 | |
---|
273 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
274 | precipitation ) THEN |
---|
275 | ! |
---|
276 | !-- Surface conditions rain water (Neumann) |
---|
277 | DO i = nxlg, nxrg |
---|
278 | DO j = nysg, nyng |
---|
279 | qr_p(nzb_s_inner(j,i),j,i) = qr_p(nzb_s_inner(j,i)+1,j,i) |
---|
280 | nr_p(nzb_s_inner(j,i),j,i) = nr_p(nzb_s_inner(j,i)+1,j,i) |
---|
281 | ENDDO |
---|
282 | ENDDO |
---|
283 | ! |
---|
284 | !-- Top boundary condition for rain water (Neumann) |
---|
285 | qr_p(nzt+1,:,:) = qr_p(nzt,:,:) |
---|
286 | nr_p(nzt+1,:,:) = nr_p(nzt,:,:) |
---|
287 | |
---|
288 | ENDIF |
---|
289 | ! |
---|
290 | !-- In case of inflow at the south boundary the boundary for v is at nys |
---|
291 | !-- and in case of inflow at the left boundary the boundary for u is at nxl. |
---|
292 | !-- Since in prognostic_equations (cache optimized version) these levels are |
---|
293 | !-- handled as a prognostic level, boundary values have to be restored here. |
---|
294 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
295 | IF ( inflow_s ) THEN |
---|
296 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
297 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
298 | ELSEIF ( inflow_n ) THEN |
---|
299 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
300 | ELSEIF ( inflow_l ) THEN |
---|
301 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
302 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
303 | ELSEIF ( inflow_r ) THEN |
---|
304 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
305 | ENDIF |
---|
306 | |
---|
307 | ! |
---|
308 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
309 | IF ( outflow_s ) THEN |
---|
310 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
311 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
312 | IF ( humidity .OR. passive_scalar ) THEN |
---|
313 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
314 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
315 | precipitation) THEN |
---|
316 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
317 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
318 | ENDIF |
---|
319 | ENDIF |
---|
320 | ELSEIF ( outflow_n ) THEN |
---|
321 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
322 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
323 | IF ( humidity .OR. passive_scalar ) THEN |
---|
324 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
325 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
326 | precipitation ) THEN |
---|
327 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
328 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
329 | ENDIF |
---|
330 | ENDIF |
---|
331 | ELSEIF ( outflow_l ) THEN |
---|
332 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
333 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
334 | IF ( humidity .OR. passive_scalar ) THEN |
---|
335 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
336 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
337 | precipitation ) THEN |
---|
338 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
339 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
340 | ENDIF |
---|
341 | ENDIF |
---|
342 | ELSEIF ( outflow_r ) THEN |
---|
343 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
344 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
345 | IF ( humidity .OR. passive_scalar ) THEN |
---|
346 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
347 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
348 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
349 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
350 | ENDIF |
---|
351 | ENDIF |
---|
352 | ENDIF |
---|
353 | |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ! |
---|
357 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
358 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
359 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
360 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
361 | IF ( outflow_s ) THEN |
---|
362 | |
---|
363 | IF ( use_cmax ) THEN |
---|
364 | u_p(:,-1,:) = u(:,0,:) |
---|
365 | v_p(:,0,:) = v(:,1,:) |
---|
366 | w_p(:,-1,:) = w(:,0,:) |
---|
367 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
368 | |
---|
369 | c_max = dy / dt_3d |
---|
370 | |
---|
371 | c_u_m_l = 0.0_wp |
---|
372 | c_v_m_l = 0.0_wp |
---|
373 | c_w_m_l = 0.0_wp |
---|
374 | |
---|
375 | c_u_m = 0.0_wp |
---|
376 | c_v_m = 0.0_wp |
---|
377 | c_w_m = 0.0_wp |
---|
378 | |
---|
379 | ! |
---|
380 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
381 | !-- average along the outflow boundary. |
---|
382 | DO k = nzb+1, nzt+1 |
---|
383 | DO i = nxl, nxr |
---|
384 | |
---|
385 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
386 | |
---|
387 | IF ( denom /= 0.0_wp ) THEN |
---|
388 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
389 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
390 | c_u(k,i) = 0.0_wp |
---|
391 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
392 | c_u(k,i) = c_max |
---|
393 | ENDIF |
---|
394 | ELSE |
---|
395 | c_u(k,i) = c_max |
---|
396 | ENDIF |
---|
397 | |
---|
398 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
399 | |
---|
400 | IF ( denom /= 0.0_wp ) THEN |
---|
401 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
402 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
403 | c_v(k,i) = 0.0_wp |
---|
404 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
405 | c_v(k,i) = c_max |
---|
406 | ENDIF |
---|
407 | ELSE |
---|
408 | c_v(k,i) = c_max |
---|
409 | ENDIF |
---|
410 | |
---|
411 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
412 | |
---|
413 | IF ( denom /= 0.0_wp ) THEN |
---|
414 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
415 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
416 | c_w(k,i) = 0.0_wp |
---|
417 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
418 | c_w(k,i) = c_max |
---|
419 | ENDIF |
---|
420 | ELSE |
---|
421 | c_w(k,i) = c_max |
---|
422 | ENDIF |
---|
423 | |
---|
424 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
425 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
426 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
427 | |
---|
428 | ENDDO |
---|
429 | ENDDO |
---|
430 | |
---|
431 | #if defined( __parallel ) |
---|
432 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
433 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
434 | MPI_SUM, comm1dx, ierr ) |
---|
435 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
436 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
437 | MPI_SUM, comm1dx, ierr ) |
---|
438 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
439 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
440 | MPI_SUM, comm1dx, ierr ) |
---|
441 | #else |
---|
442 | c_u_m = c_u_m_l |
---|
443 | c_v_m = c_v_m_l |
---|
444 | c_w_m = c_w_m_l |
---|
445 | #endif |
---|
446 | |
---|
447 | c_u_m = c_u_m / (nx+1) |
---|
448 | c_v_m = c_v_m / (nx+1) |
---|
449 | c_w_m = c_w_m / (nx+1) |
---|
450 | |
---|
451 | ! |
---|
452 | !-- Save old timelevels for the next timestep |
---|
453 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
454 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
455 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
456 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
457 | ENDIF |
---|
458 | |
---|
459 | ! |
---|
460 | !-- Calculate the new velocities |
---|
461 | DO k = nzb+1, nzt+1 |
---|
462 | DO i = nxlg, nxrg |
---|
463 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
464 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
465 | |
---|
466 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
467 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
468 | |
---|
469 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
470 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
471 | ENDDO |
---|
472 | ENDDO |
---|
473 | |
---|
474 | ! |
---|
475 | !-- Bottom boundary at the outflow |
---|
476 | IF ( ibc_uv_b == 0 ) THEN |
---|
477 | u_p(nzb,-1,:) = 0.0_wp |
---|
478 | v_p(nzb,0,:) = 0.0_wp |
---|
479 | ELSE |
---|
480 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
481 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
482 | ENDIF |
---|
483 | w_p(nzb,-1,:) = 0.0_wp |
---|
484 | |
---|
485 | ! |
---|
486 | !-- Top boundary at the outflow |
---|
487 | IF ( ibc_uv_t == 0 ) THEN |
---|
488 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
489 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
490 | ELSE |
---|
491 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
492 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
493 | ENDIF |
---|
494 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
495 | |
---|
496 | ENDIF |
---|
497 | |
---|
498 | ENDIF |
---|
499 | |
---|
500 | IF ( outflow_n ) THEN |
---|
501 | |
---|
502 | IF ( use_cmax ) THEN |
---|
503 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
504 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
505 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
506 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
507 | |
---|
508 | c_max = dy / dt_3d |
---|
509 | |
---|
510 | c_u_m_l = 0.0_wp |
---|
511 | c_v_m_l = 0.0_wp |
---|
512 | c_w_m_l = 0.0_wp |
---|
513 | |
---|
514 | c_u_m = 0.0_wp |
---|
515 | c_v_m = 0.0_wp |
---|
516 | c_w_m = 0.0_wp |
---|
517 | |
---|
518 | ! |
---|
519 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
520 | !-- average along the outflow boundary. |
---|
521 | DO k = nzb+1, nzt+1 |
---|
522 | DO i = nxl, nxr |
---|
523 | |
---|
524 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
525 | |
---|
526 | IF ( denom /= 0.0_wp ) THEN |
---|
527 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
528 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
529 | c_u(k,i) = 0.0_wp |
---|
530 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
531 | c_u(k,i) = c_max |
---|
532 | ENDIF |
---|
533 | ELSE |
---|
534 | c_u(k,i) = c_max |
---|
535 | ENDIF |
---|
536 | |
---|
537 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
538 | |
---|
539 | IF ( denom /= 0.0_wp ) THEN |
---|
540 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
541 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
542 | c_v(k,i) = 0.0_wp |
---|
543 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
544 | c_v(k,i) = c_max |
---|
545 | ENDIF |
---|
546 | ELSE |
---|
547 | c_v(k,i) = c_max |
---|
548 | ENDIF |
---|
549 | |
---|
550 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
551 | |
---|
552 | IF ( denom /= 0.0_wp ) THEN |
---|
553 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
554 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
555 | c_w(k,i) = 0.0_wp |
---|
556 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
557 | c_w(k,i) = c_max |
---|
558 | ENDIF |
---|
559 | ELSE |
---|
560 | c_w(k,i) = c_max |
---|
561 | ENDIF |
---|
562 | |
---|
563 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
564 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
565 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
566 | |
---|
567 | ENDDO |
---|
568 | ENDDO |
---|
569 | |
---|
570 | #if defined( __parallel ) |
---|
571 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
572 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
573 | MPI_SUM, comm1dx, ierr ) |
---|
574 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
575 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
576 | MPI_SUM, comm1dx, ierr ) |
---|
577 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
578 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
579 | MPI_SUM, comm1dx, ierr ) |
---|
580 | #else |
---|
581 | c_u_m = c_u_m_l |
---|
582 | c_v_m = c_v_m_l |
---|
583 | c_w_m = c_w_m_l |
---|
584 | #endif |
---|
585 | |
---|
586 | c_u_m = c_u_m / (nx+1) |
---|
587 | c_v_m = c_v_m / (nx+1) |
---|
588 | c_w_m = c_w_m / (nx+1) |
---|
589 | |
---|
590 | ! |
---|
591 | !-- Save old timelevels for the next timestep |
---|
592 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
593 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
594 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
595 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
596 | ENDIF |
---|
597 | |
---|
598 | ! |
---|
599 | !-- Calculate the new velocities |
---|
600 | DO k = nzb+1, nzt+1 |
---|
601 | DO i = nxlg, nxrg |
---|
602 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
603 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
604 | |
---|
605 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
606 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
607 | |
---|
608 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
609 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
610 | ENDDO |
---|
611 | ENDDO |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Bottom boundary at the outflow |
---|
615 | IF ( ibc_uv_b == 0 ) THEN |
---|
616 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
617 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
618 | ELSE |
---|
619 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
620 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
621 | ENDIF |
---|
622 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
623 | |
---|
624 | ! |
---|
625 | !-- Top boundary at the outflow |
---|
626 | IF ( ibc_uv_t == 0 ) THEN |
---|
627 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
628 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
629 | ELSE |
---|
630 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
631 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
632 | ENDIF |
---|
633 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
634 | |
---|
635 | ENDIF |
---|
636 | |
---|
637 | ENDIF |
---|
638 | |
---|
639 | IF ( outflow_l ) THEN |
---|
640 | |
---|
641 | IF ( use_cmax ) THEN |
---|
642 | u_p(:,:,-1) = u(:,:,0) |
---|
643 | v_p(:,:,0) = v(:,:,1) |
---|
644 | w_p(:,:,-1) = w(:,:,0) |
---|
645 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
646 | |
---|
647 | c_max = dx / dt_3d |
---|
648 | |
---|
649 | c_u_m_l = 0.0_wp |
---|
650 | c_v_m_l = 0.0_wp |
---|
651 | c_w_m_l = 0.0_wp |
---|
652 | |
---|
653 | c_u_m = 0.0_wp |
---|
654 | c_v_m = 0.0_wp |
---|
655 | c_w_m = 0.0_wp |
---|
656 | |
---|
657 | ! |
---|
658 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
659 | !-- average along the outflow boundary. |
---|
660 | DO k = nzb+1, nzt+1 |
---|
661 | DO j = nys, nyn |
---|
662 | |
---|
663 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
664 | |
---|
665 | IF ( denom /= 0.0_wp ) THEN |
---|
666 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
667 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
668 | c_u(k,j) = 0.0_wp |
---|
669 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
670 | c_u(k,j) = c_max |
---|
671 | ENDIF |
---|
672 | ELSE |
---|
673 | c_u(k,j) = c_max |
---|
674 | ENDIF |
---|
675 | |
---|
676 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
677 | |
---|
678 | IF ( denom /= 0.0_wp ) THEN |
---|
679 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
680 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
681 | c_v(k,j) = 0.0_wp |
---|
682 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
683 | c_v(k,j) = c_max |
---|
684 | ENDIF |
---|
685 | ELSE |
---|
686 | c_v(k,j) = c_max |
---|
687 | ENDIF |
---|
688 | |
---|
689 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
690 | |
---|
691 | IF ( denom /= 0.0_wp ) THEN |
---|
692 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
693 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
694 | c_w(k,j) = 0.0_wp |
---|
695 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
696 | c_w(k,j) = c_max |
---|
697 | ENDIF |
---|
698 | ELSE |
---|
699 | c_w(k,j) = c_max |
---|
700 | ENDIF |
---|
701 | |
---|
702 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
703 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
704 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
705 | |
---|
706 | ENDDO |
---|
707 | ENDDO |
---|
708 | |
---|
709 | #if defined( __parallel ) |
---|
710 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
711 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
712 | MPI_SUM, comm1dy, ierr ) |
---|
713 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
714 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
715 | MPI_SUM, comm1dy, ierr ) |
---|
716 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
717 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
718 | MPI_SUM, comm1dy, ierr ) |
---|
719 | #else |
---|
720 | c_u_m = c_u_m_l |
---|
721 | c_v_m = c_v_m_l |
---|
722 | c_w_m = c_w_m_l |
---|
723 | #endif |
---|
724 | |
---|
725 | c_u_m = c_u_m / (ny+1) |
---|
726 | c_v_m = c_v_m / (ny+1) |
---|
727 | c_w_m = c_w_m / (ny+1) |
---|
728 | |
---|
729 | ! |
---|
730 | !-- Save old timelevels for the next timestep |
---|
731 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
732 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
733 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
734 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
735 | ENDIF |
---|
736 | |
---|
737 | ! |
---|
738 | !-- Calculate the new velocities |
---|
739 | DO k = nzb+1, nzt+1 |
---|
740 | DO j = nysg, nyng |
---|
741 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
742 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
743 | |
---|
744 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
745 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
746 | |
---|
747 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
748 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
749 | ENDDO |
---|
750 | ENDDO |
---|
751 | |
---|
752 | ! |
---|
753 | !-- Bottom boundary at the outflow |
---|
754 | IF ( ibc_uv_b == 0 ) THEN |
---|
755 | u_p(nzb,:,0) = 0.0_wp |
---|
756 | v_p(nzb,:,-1) = 0.0_wp |
---|
757 | ELSE |
---|
758 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
759 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
760 | ENDIF |
---|
761 | w_p(nzb,:,-1) = 0.0_wp |
---|
762 | |
---|
763 | ! |
---|
764 | !-- Top boundary at the outflow |
---|
765 | IF ( ibc_uv_t == 0 ) THEN |
---|
766 | u_p(nzt+1,:,-1) = u_init(nzt+1) |
---|
767 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
768 | ELSE |
---|
769 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
770 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
771 | ENDIF |
---|
772 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
773 | |
---|
774 | ENDIF |
---|
775 | |
---|
776 | ENDIF |
---|
777 | |
---|
778 | IF ( outflow_r ) THEN |
---|
779 | |
---|
780 | IF ( use_cmax ) THEN |
---|
781 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
782 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
783 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
784 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
785 | |
---|
786 | c_max = dx / dt_3d |
---|
787 | |
---|
788 | c_u_m_l = 0.0_wp |
---|
789 | c_v_m_l = 0.0_wp |
---|
790 | c_w_m_l = 0.0_wp |
---|
791 | |
---|
792 | c_u_m = 0.0_wp |
---|
793 | c_v_m = 0.0_wp |
---|
794 | c_w_m = 0.0_wp |
---|
795 | |
---|
796 | ! |
---|
797 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
798 | !-- average along the outflow boundary. |
---|
799 | DO k = nzb+1, nzt+1 |
---|
800 | DO j = nys, nyn |
---|
801 | |
---|
802 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
803 | |
---|
804 | IF ( denom /= 0.0_wp ) THEN |
---|
805 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
806 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
807 | c_u(k,j) = 0.0_wp |
---|
808 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
809 | c_u(k,j) = c_max |
---|
810 | ENDIF |
---|
811 | ELSE |
---|
812 | c_u(k,j) = c_max |
---|
813 | ENDIF |
---|
814 | |
---|
815 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
816 | |
---|
817 | IF ( denom /= 0.0_wp ) THEN |
---|
818 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
819 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
820 | c_v(k,j) = 0.0_wp |
---|
821 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
822 | c_v(k,j) = c_max |
---|
823 | ENDIF |
---|
824 | ELSE |
---|
825 | c_v(k,j) = c_max |
---|
826 | ENDIF |
---|
827 | |
---|
828 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
829 | |
---|
830 | IF ( denom /= 0.0_wp ) THEN |
---|
831 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
832 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
833 | c_w(k,j) = 0.0_wp |
---|
834 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
835 | c_w(k,j) = c_max |
---|
836 | ENDIF |
---|
837 | ELSE |
---|
838 | c_w(k,j) = c_max |
---|
839 | ENDIF |
---|
840 | |
---|
841 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
842 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
843 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
844 | |
---|
845 | ENDDO |
---|
846 | ENDDO |
---|
847 | |
---|
848 | #if defined( __parallel ) |
---|
849 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
850 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
851 | MPI_SUM, comm1dy, ierr ) |
---|
852 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
853 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
854 | MPI_SUM, comm1dy, ierr ) |
---|
855 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
856 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
857 | MPI_SUM, comm1dy, ierr ) |
---|
858 | #else |
---|
859 | c_u_m = c_u_m_l |
---|
860 | c_v_m = c_v_m_l |
---|
861 | c_w_m = c_w_m_l |
---|
862 | #endif |
---|
863 | |
---|
864 | c_u_m = c_u_m / (ny+1) |
---|
865 | c_v_m = c_v_m / (ny+1) |
---|
866 | c_w_m = c_w_m / (ny+1) |
---|
867 | |
---|
868 | ! |
---|
869 | !-- Save old timelevels for the next timestep |
---|
870 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
871 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
872 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
873 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
874 | ENDIF |
---|
875 | |
---|
876 | ! |
---|
877 | !-- Calculate the new velocities |
---|
878 | DO k = nzb+1, nzt+1 |
---|
879 | DO j = nysg, nyng |
---|
880 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
881 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
882 | |
---|
883 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
884 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
885 | |
---|
886 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
887 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
888 | ENDDO |
---|
889 | ENDDO |
---|
890 | |
---|
891 | ! |
---|
892 | !-- Bottom boundary at the outflow |
---|
893 | IF ( ibc_uv_b == 0 ) THEN |
---|
894 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
895 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
896 | ELSE |
---|
897 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
898 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
899 | ENDIF |
---|
900 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
901 | |
---|
902 | ! |
---|
903 | !-- Top boundary at the outflow |
---|
904 | IF ( ibc_uv_t == 0 ) THEN |
---|
905 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
906 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
907 | ELSE |
---|
908 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
909 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
910 | ENDIF |
---|
911 | w(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
912 | |
---|
913 | ENDIF |
---|
914 | |
---|
915 | ENDIF |
---|
916 | |
---|
917 | END SUBROUTINE boundary_conds |
---|