1 | !> @file boundary_conds.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: boundary_conds.f90 2718 2018-01-02 08:49:38Z knoop $ |
---|
27 | ! Corrected "Former revisions" section |
---|
28 | ! |
---|
29 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
30 | ! Change in file header (GPL part) |
---|
31 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
32 | ! Implementation of chemistry module (FK) |
---|
33 | ! |
---|
34 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
35 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
36 | ! |
---|
37 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
38 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
39 | ! on fine grid (SadiqHuq) |
---|
40 | ! |
---|
41 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
42 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
43 | ! |
---|
44 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
45 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
46 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
47 | ! and cloud water content (qc). |
---|
48 | ! |
---|
49 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
50 | ! |
---|
51 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
52 | ! Set boundary conditions on topography top using flag method. |
---|
53 | ! |
---|
54 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
55 | ! OpenACC directives removed |
---|
56 | ! |
---|
57 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
58 | ! Forced header and separation lines into 80 columns |
---|
59 | ! |
---|
60 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
61 | ! Adjustments for top boundary condition for passive scalar |
---|
62 | ! |
---|
63 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
64 | ! Treat humidity and passive scalar separately |
---|
65 | ! |
---|
66 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
67 | ! Initial version of purely vertical nesting introduced. |
---|
68 | ! |
---|
69 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
70 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
71 | ! |
---|
72 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
73 | ! index bug for u_p at left outflow removed |
---|
74 | ! |
---|
75 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
76 | ! Introduction of nested domain feature |
---|
77 | ! |
---|
78 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
79 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
80 | ! |
---|
81 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
82 | ! Bugfix: index error in outflow conditions for left boundary |
---|
83 | ! |
---|
84 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
85 | ! Code annotations made doxygen readable |
---|
86 | ! |
---|
87 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
88 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
89 | ! top |
---|
90 | ! |
---|
91 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
92 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
93 | ! is used. |
---|
94 | ! |
---|
95 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
96 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
97 | ! for large_scale_forcing |
---|
98 | ! |
---|
99 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
100 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
101 | ! |
---|
102 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
103 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
104 | ! rain drop concentration (nr) changed to Dirichlet |
---|
105 | ! |
---|
106 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
107 | ! REAL constants provided with KIND-attribute |
---|
108 | ! |
---|
109 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
110 | ! ONLY-attribute added to USE-statements, |
---|
111 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
112 | ! kinds are defined in new module kinds, |
---|
113 | ! revision history before 2012 removed, |
---|
114 | ! comment fields (!:) to be used for variable explanations added to |
---|
115 | ! all variable declaration statements |
---|
116 | ! |
---|
117 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
118 | ! loop independent clauses added |
---|
119 | ! |
---|
120 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
121 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
122 | ! |
---|
123 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
124 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
125 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
126 | ! velocity that ensures numerical stability (CFL-condition). |
---|
127 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
128 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
129 | ! u_p, v_p, w_p |
---|
130 | ! |
---|
131 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
132 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
133 | ! boundary-conditions |
---|
134 | ! |
---|
135 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
136 | ! GPU-porting |
---|
137 | ! dummy argument "range" removed |
---|
138 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
139 | ! |
---|
140 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
141 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
142 | ! two-moment cloud scheme |
---|
143 | ! |
---|
144 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
145 | ! code put under GPL (PALM 3.9) |
---|
146 | ! |
---|
147 | ! 996 2012-09-07 10:41:47Z raasch |
---|
148 | ! little reformatting |
---|
149 | ! |
---|
150 | ! 978 2012-08-09 08:28:32Z fricke |
---|
151 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
152 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
153 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
154 | ! velocity. |
---|
155 | ! |
---|
156 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
157 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
158 | ! |
---|
159 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
160 | ! Initial revision |
---|
161 | ! |
---|
162 | ! |
---|
163 | ! Description: |
---|
164 | ! ------------ |
---|
165 | !> Boundary conditions for the prognostic quantities. |
---|
166 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
167 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
168 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
169 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
170 | !------------------------------------------------------------------------------! |
---|
171 | SUBROUTINE boundary_conds |
---|
172 | |
---|
173 | |
---|
174 | USE arrays_3d, & |
---|
175 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
176 | diss_p, dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, & |
---|
177 | s_p, sa, sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
178 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
179 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init |
---|
180 | |
---|
181 | #if defined( __chem ) |
---|
182 | USE chemistry_model_mod, & |
---|
183 | ONLY: chem_boundary_conds |
---|
184 | #endif |
---|
185 | |
---|
186 | USE control_parameters, & |
---|
187 | ONLY: air_chemistry, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
188 | constant_diffusion, cloud_physics, coupling_mode, dt_3d, & |
---|
189 | force_bound_l, force_bound_s, forcing, humidity, & |
---|
190 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
191 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
192 | inflow_s, intermediate_timestep_count, & |
---|
193 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
194 | nest_bound_l, nest_bound_s, nudging, ocean, outflow_l, & |
---|
195 | outflow_n, outflow_r, outflow_s, passive_scalar, rans_tke_e, & |
---|
196 | tsc, use_cmax |
---|
197 | |
---|
198 | USE grid_variables, & |
---|
199 | ONLY: ddx, ddy, dx, dy |
---|
200 | |
---|
201 | USE indices, & |
---|
202 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
203 | nzb, nzt, wall_flags_0 |
---|
204 | |
---|
205 | USE kinds |
---|
206 | |
---|
207 | USE pegrid |
---|
208 | |
---|
209 | USE pmc_interface, & |
---|
210 | ONLY : nesting_mode |
---|
211 | |
---|
212 | USE surface_mod, & |
---|
213 | ONLY : bc_h |
---|
214 | |
---|
215 | IMPLICIT NONE |
---|
216 | |
---|
217 | INTEGER(iwp) :: i !< grid index x direction |
---|
218 | INTEGER(iwp) :: j !< grid index y direction |
---|
219 | INTEGER(iwp) :: k !< grid index z direction |
---|
220 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
221 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
222 | INTEGER(iwp) :: m !< running index surface elements |
---|
223 | |
---|
224 | REAL(wp) :: c_max !< |
---|
225 | REAL(wp) :: denom !< |
---|
226 | |
---|
227 | |
---|
228 | ! |
---|
229 | !-- Bottom boundary |
---|
230 | IF ( ibc_uv_b == 1 ) THEN |
---|
231 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
232 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
233 | ENDIF |
---|
234 | ! |
---|
235 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
236 | !-- of downward-facing surfaces. |
---|
237 | DO l = 0, 1 |
---|
238 | ! |
---|
239 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
240 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
241 | kb = MERGE( -1, 1, l == 0 ) |
---|
242 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
243 | DO m = 1, bc_h(l)%ns |
---|
244 | i = bc_h(l)%i(m) |
---|
245 | j = bc_h(l)%j(m) |
---|
246 | k = bc_h(l)%k(m) |
---|
247 | w_p(k+kb,j,i) = 0.0_wp |
---|
248 | ENDDO |
---|
249 | ENDDO |
---|
250 | |
---|
251 | ! |
---|
252 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
253 | IF ( ibc_uv_t == 0 ) THEN |
---|
254 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
255 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
256 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
257 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
258 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
259 | ENDIF |
---|
260 | |
---|
261 | ! |
---|
262 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
263 | IF ( .NOT. nest_domain .AND. & |
---|
264 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
265 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
266 | ENDIF |
---|
267 | |
---|
268 | ! |
---|
269 | !-- Temperature at bottom and top boundary. |
---|
270 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
271 | !-- the sea surface temperature of the coupled ocean model. |
---|
272 | !-- Dirichlet |
---|
273 | IF ( ibc_pt_b == 0 ) THEN |
---|
274 | DO l = 0, 1 |
---|
275 | ! |
---|
276 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
277 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
278 | kb = MERGE( -1, 1, l == 0 ) |
---|
279 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
280 | DO m = 1, bc_h(l)%ns |
---|
281 | i = bc_h(l)%i(m) |
---|
282 | j = bc_h(l)%j(m) |
---|
283 | k = bc_h(l)%k(m) |
---|
284 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
285 | ENDDO |
---|
286 | ENDDO |
---|
287 | ! |
---|
288 | !-- Neumann, zero-gradient |
---|
289 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
290 | DO l = 0, 1 |
---|
291 | ! |
---|
292 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
293 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
294 | kb = MERGE( -1, 1, l == 0 ) |
---|
295 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
296 | DO m = 1, bc_h(l)%ns |
---|
297 | i = bc_h(l)%i(m) |
---|
298 | j = bc_h(l)%j(m) |
---|
299 | k = bc_h(l)%k(m) |
---|
300 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
301 | ENDDO |
---|
302 | ENDDO |
---|
303 | ENDIF |
---|
304 | |
---|
305 | ! |
---|
306 | !-- Temperature at top boundary |
---|
307 | IF ( ibc_pt_t == 0 ) THEN |
---|
308 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
309 | ! |
---|
310 | !-- In case of nudging adjust top boundary to pt which is |
---|
311 | !-- read in from NUDGING-DATA |
---|
312 | IF ( nudging ) THEN |
---|
313 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
314 | ENDIF |
---|
315 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
316 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
317 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
318 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
319 | ENDIF |
---|
320 | |
---|
321 | ! |
---|
322 | !-- Boundary conditions for TKE |
---|
323 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
324 | IF ( .NOT. constant_diffusion ) THEN |
---|
325 | |
---|
326 | IF ( .NOT. rans_tke_e ) THEN |
---|
327 | DO l = 0, 1 |
---|
328 | ! |
---|
329 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
330 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
331 | kb = MERGE( -1, 1, l == 0 ) |
---|
332 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
333 | DO m = 1, bc_h(l)%ns |
---|
334 | i = bc_h(l)%i(m) |
---|
335 | j = bc_h(l)%j(m) |
---|
336 | k = bc_h(l)%k(m) |
---|
337 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
338 | ENDDO |
---|
339 | ENDDO |
---|
340 | ENDIF |
---|
341 | |
---|
342 | IF ( .NOT. nest_domain ) THEN |
---|
343 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
344 | ENDIF |
---|
345 | ENDIF |
---|
346 | |
---|
347 | ! |
---|
348 | !-- Boundary conditions for TKE dissipation rate |
---|
349 | IF ( rans_tke_e .AND. .NOT. nest_domain ) THEN |
---|
350 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
351 | ENDIF |
---|
352 | |
---|
353 | ! |
---|
354 | !-- Boundary conditions for salinity |
---|
355 | IF ( ocean ) THEN |
---|
356 | ! |
---|
357 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
358 | !-- given. |
---|
359 | DO l = 0, 1 |
---|
360 | ! |
---|
361 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
362 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
363 | kb = MERGE( -1, 1, l == 0 ) |
---|
364 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
365 | DO m = 1, bc_h(l)%ns |
---|
366 | i = bc_h(l)%i(m) |
---|
367 | j = bc_h(l)%j(m) |
---|
368 | k = bc_h(l)%k(m) |
---|
369 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
370 | ENDDO |
---|
371 | ENDDO |
---|
372 | ! |
---|
373 | !-- Top boundary: Dirichlet or Neumann |
---|
374 | IF ( ibc_sa_t == 0 ) THEN |
---|
375 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
376 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
377 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
378 | ENDIF |
---|
379 | |
---|
380 | ENDIF |
---|
381 | |
---|
382 | ! |
---|
383 | !-- Boundary conditions for total water content, |
---|
384 | !-- bottom and top boundary (see also temperature) |
---|
385 | IF ( humidity ) THEN |
---|
386 | ! |
---|
387 | !-- Surface conditions for constant_humidity_flux |
---|
388 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
389 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
390 | !-- q_p at k-1 |
---|
391 | IF ( ibc_q_b == 0 ) THEN |
---|
392 | |
---|
393 | DO l = 0, 1 |
---|
394 | ! |
---|
395 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
396 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
397 | kb = MERGE( -1, 1, l == 0 ) |
---|
398 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
399 | DO m = 1, bc_h(l)%ns |
---|
400 | i = bc_h(l)%i(m) |
---|
401 | j = bc_h(l)%j(m) |
---|
402 | k = bc_h(l)%k(m) |
---|
403 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
404 | ENDDO |
---|
405 | ENDDO |
---|
406 | |
---|
407 | ELSE |
---|
408 | |
---|
409 | DO l = 0, 1 |
---|
410 | ! |
---|
411 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
412 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
413 | kb = MERGE( -1, 1, l == 0 ) |
---|
414 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
415 | DO m = 1, bc_h(l)%ns |
---|
416 | i = bc_h(l)%i(m) |
---|
417 | j = bc_h(l)%j(m) |
---|
418 | k = bc_h(l)%k(m) |
---|
419 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
420 | ENDDO |
---|
421 | ENDDO |
---|
422 | ENDIF |
---|
423 | ! |
---|
424 | !-- Top boundary |
---|
425 | IF ( ibc_q_t == 0 ) THEN |
---|
426 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
427 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
428 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
429 | ENDIF |
---|
430 | |
---|
431 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
432 | ! |
---|
433 | !-- Surface conditions cloud water (Dirichlet) |
---|
434 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
435 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
436 | !-- qr_p and nr_p at k-1 |
---|
437 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
438 | DO m = 1, bc_h(0)%ns |
---|
439 | i = bc_h(0)%i(m) |
---|
440 | j = bc_h(0)%j(m) |
---|
441 | k = bc_h(0)%k(m) |
---|
442 | qc_p(k-1,j,i) = 0.0_wp |
---|
443 | nc_p(k-1,j,i) = 0.0_wp |
---|
444 | ENDDO |
---|
445 | ! |
---|
446 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
447 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
448 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
449 | |
---|
450 | ENDIF |
---|
451 | |
---|
452 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
453 | ! |
---|
454 | !-- Surface conditions rain water (Dirichlet) |
---|
455 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
456 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
457 | !-- qr_p and nr_p at k-1 |
---|
458 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
459 | DO m = 1, bc_h(0)%ns |
---|
460 | i = bc_h(0)%i(m) |
---|
461 | j = bc_h(0)%j(m) |
---|
462 | k = bc_h(0)%k(m) |
---|
463 | qr_p(k-1,j,i) = 0.0_wp |
---|
464 | nr_p(k-1,j,i) = 0.0_wp |
---|
465 | ENDDO |
---|
466 | ! |
---|
467 | !-- Top boundary condition for rain water (Dirichlet) |
---|
468 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
469 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
470 | |
---|
471 | ENDIF |
---|
472 | ENDIF |
---|
473 | ! |
---|
474 | !-- Boundary conditions for scalar, |
---|
475 | !-- bottom and top boundary (see also temperature) |
---|
476 | IF ( passive_scalar ) THEN |
---|
477 | ! |
---|
478 | !-- Surface conditions for constant_humidity_flux |
---|
479 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
480 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
481 | !-- s_p at k-1 |
---|
482 | IF ( ibc_s_b == 0 ) THEN |
---|
483 | |
---|
484 | DO l = 0, 1 |
---|
485 | ! |
---|
486 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
487 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
488 | kb = MERGE( -1, 1, l == 0 ) |
---|
489 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
490 | DO m = 1, bc_h(l)%ns |
---|
491 | i = bc_h(l)%i(m) |
---|
492 | j = bc_h(l)%j(m) |
---|
493 | k = bc_h(l)%k(m) |
---|
494 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
495 | ENDDO |
---|
496 | ENDDO |
---|
497 | |
---|
498 | ELSE |
---|
499 | |
---|
500 | DO l = 0, 1 |
---|
501 | ! |
---|
502 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
503 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
504 | kb = MERGE( -1, 1, l == 0 ) |
---|
505 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
506 | DO m = 1, bc_h(l)%ns |
---|
507 | i = bc_h(l)%i(m) |
---|
508 | j = bc_h(l)%j(m) |
---|
509 | k = bc_h(l)%k(m) |
---|
510 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
511 | ENDDO |
---|
512 | ENDDO |
---|
513 | ENDIF |
---|
514 | ! |
---|
515 | !-- Top boundary condition |
---|
516 | IF ( ibc_s_t == 0 ) THEN |
---|
517 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
518 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
519 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
520 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
521 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
522 | ENDIF |
---|
523 | |
---|
524 | ENDIF |
---|
525 | ! |
---|
526 | !-- Top/bottom boundary conditions for chemical species |
---|
527 | #if defined( __chem ) |
---|
528 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
529 | #endif |
---|
530 | ! |
---|
531 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
532 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
533 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
534 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
535 | !-- have to be restored here. |
---|
536 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
537 | IF ( inflow_s ) THEN |
---|
538 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
539 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
540 | ELSEIF ( inflow_n ) THEN |
---|
541 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
542 | ELSEIF ( inflow_l ) THEN |
---|
543 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
544 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
545 | ELSEIF ( inflow_r ) THEN |
---|
546 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
547 | ENDIF |
---|
548 | |
---|
549 | ! |
---|
550 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
551 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
552 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
553 | IF ( nesting_mode /= 'vertical' .OR. forcing ) THEN |
---|
554 | IF ( nest_bound_s .OR. force_bound_s ) THEN |
---|
555 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
556 | ENDIF |
---|
557 | IF ( nest_bound_l .OR. force_bound_l ) THEN |
---|
558 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
559 | ENDIF |
---|
560 | ENDIF |
---|
561 | |
---|
562 | ! |
---|
563 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
564 | IF ( outflow_s ) THEN |
---|
565 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
566 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
567 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
568 | IF ( humidity ) THEN |
---|
569 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
570 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
571 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
572 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
573 | ENDIF |
---|
574 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
575 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
576 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
577 | ENDIF |
---|
578 | ENDIF |
---|
579 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
580 | ELSEIF ( outflow_n ) THEN |
---|
581 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
582 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
583 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
584 | IF ( humidity ) THEN |
---|
585 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
586 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
587 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
588 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
589 | ENDIF |
---|
590 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
591 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
592 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
593 | ENDIF |
---|
594 | ENDIF |
---|
595 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
596 | ELSEIF ( outflow_l ) THEN |
---|
597 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
598 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
599 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
600 | IF ( humidity ) THEN |
---|
601 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
602 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
603 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
604 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
605 | ENDIF |
---|
606 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
607 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
608 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
609 | ENDIF |
---|
610 | ENDIF |
---|
611 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
612 | ELSEIF ( outflow_r ) THEN |
---|
613 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
614 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
615 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
616 | IF ( humidity ) THEN |
---|
617 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
618 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
619 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
620 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
621 | ENDIF |
---|
622 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
623 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
624 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
625 | ENDIF |
---|
626 | ENDIF |
---|
627 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
628 | ENDIF |
---|
629 | |
---|
630 | ! |
---|
631 | !-- Lateral boundary conditions for chemical species |
---|
632 | #if defined( __chem ) |
---|
633 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
634 | #endif |
---|
635 | |
---|
636 | |
---|
637 | ! |
---|
638 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
639 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
640 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
641 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
642 | IF ( outflow_s ) THEN |
---|
643 | |
---|
644 | IF ( use_cmax ) THEN |
---|
645 | u_p(:,-1,:) = u(:,0,:) |
---|
646 | v_p(:,0,:) = v(:,1,:) |
---|
647 | w_p(:,-1,:) = w(:,0,:) |
---|
648 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
649 | |
---|
650 | c_max = dy / dt_3d |
---|
651 | |
---|
652 | c_u_m_l = 0.0_wp |
---|
653 | c_v_m_l = 0.0_wp |
---|
654 | c_w_m_l = 0.0_wp |
---|
655 | |
---|
656 | c_u_m = 0.0_wp |
---|
657 | c_v_m = 0.0_wp |
---|
658 | c_w_m = 0.0_wp |
---|
659 | |
---|
660 | ! |
---|
661 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
662 | !-- average along the outflow boundary. |
---|
663 | DO k = nzb+1, nzt+1 |
---|
664 | DO i = nxl, nxr |
---|
665 | |
---|
666 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
667 | |
---|
668 | IF ( denom /= 0.0_wp ) THEN |
---|
669 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
670 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
671 | c_u(k,i) = 0.0_wp |
---|
672 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
673 | c_u(k,i) = c_max |
---|
674 | ENDIF |
---|
675 | ELSE |
---|
676 | c_u(k,i) = c_max |
---|
677 | ENDIF |
---|
678 | |
---|
679 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
680 | |
---|
681 | IF ( denom /= 0.0_wp ) THEN |
---|
682 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
683 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
684 | c_v(k,i) = 0.0_wp |
---|
685 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
686 | c_v(k,i) = c_max |
---|
687 | ENDIF |
---|
688 | ELSE |
---|
689 | c_v(k,i) = c_max |
---|
690 | ENDIF |
---|
691 | |
---|
692 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
693 | |
---|
694 | IF ( denom /= 0.0_wp ) THEN |
---|
695 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
696 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
697 | c_w(k,i) = 0.0_wp |
---|
698 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
699 | c_w(k,i) = c_max |
---|
700 | ENDIF |
---|
701 | ELSE |
---|
702 | c_w(k,i) = c_max |
---|
703 | ENDIF |
---|
704 | |
---|
705 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
706 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
707 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
708 | |
---|
709 | ENDDO |
---|
710 | ENDDO |
---|
711 | |
---|
712 | #if defined( __parallel ) |
---|
713 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
714 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
715 | MPI_SUM, comm1dx, ierr ) |
---|
716 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
717 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
718 | MPI_SUM, comm1dx, ierr ) |
---|
719 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
720 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
721 | MPI_SUM, comm1dx, ierr ) |
---|
722 | #else |
---|
723 | c_u_m = c_u_m_l |
---|
724 | c_v_m = c_v_m_l |
---|
725 | c_w_m = c_w_m_l |
---|
726 | #endif |
---|
727 | |
---|
728 | c_u_m = c_u_m / (nx+1) |
---|
729 | c_v_m = c_v_m / (nx+1) |
---|
730 | c_w_m = c_w_m / (nx+1) |
---|
731 | |
---|
732 | ! |
---|
733 | !-- Save old timelevels for the next timestep |
---|
734 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
735 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
736 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
737 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
738 | ENDIF |
---|
739 | |
---|
740 | ! |
---|
741 | !-- Calculate the new velocities |
---|
742 | DO k = nzb+1, nzt+1 |
---|
743 | DO i = nxlg, nxrg |
---|
744 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
745 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
746 | |
---|
747 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
748 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
749 | |
---|
750 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
751 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
752 | ENDDO |
---|
753 | ENDDO |
---|
754 | |
---|
755 | ! |
---|
756 | !-- Bottom boundary at the outflow |
---|
757 | IF ( ibc_uv_b == 0 ) THEN |
---|
758 | u_p(nzb,-1,:) = 0.0_wp |
---|
759 | v_p(nzb,0,:) = 0.0_wp |
---|
760 | ELSE |
---|
761 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
762 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
763 | ENDIF |
---|
764 | w_p(nzb,-1,:) = 0.0_wp |
---|
765 | |
---|
766 | ! |
---|
767 | !-- Top boundary at the outflow |
---|
768 | IF ( ibc_uv_t == 0 ) THEN |
---|
769 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
770 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
771 | ELSE |
---|
772 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
773 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
774 | ENDIF |
---|
775 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
776 | |
---|
777 | ENDIF |
---|
778 | |
---|
779 | ENDIF |
---|
780 | |
---|
781 | IF ( outflow_n ) THEN |
---|
782 | |
---|
783 | IF ( use_cmax ) THEN |
---|
784 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
785 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
786 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
787 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
788 | |
---|
789 | c_max = dy / dt_3d |
---|
790 | |
---|
791 | c_u_m_l = 0.0_wp |
---|
792 | c_v_m_l = 0.0_wp |
---|
793 | c_w_m_l = 0.0_wp |
---|
794 | |
---|
795 | c_u_m = 0.0_wp |
---|
796 | c_v_m = 0.0_wp |
---|
797 | c_w_m = 0.0_wp |
---|
798 | |
---|
799 | ! |
---|
800 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
801 | !-- average along the outflow boundary. |
---|
802 | DO k = nzb+1, nzt+1 |
---|
803 | DO i = nxl, nxr |
---|
804 | |
---|
805 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
806 | |
---|
807 | IF ( denom /= 0.0_wp ) THEN |
---|
808 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
809 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
810 | c_u(k,i) = 0.0_wp |
---|
811 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
812 | c_u(k,i) = c_max |
---|
813 | ENDIF |
---|
814 | ELSE |
---|
815 | c_u(k,i) = c_max |
---|
816 | ENDIF |
---|
817 | |
---|
818 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
819 | |
---|
820 | IF ( denom /= 0.0_wp ) THEN |
---|
821 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
822 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
823 | c_v(k,i) = 0.0_wp |
---|
824 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
825 | c_v(k,i) = c_max |
---|
826 | ENDIF |
---|
827 | ELSE |
---|
828 | c_v(k,i) = c_max |
---|
829 | ENDIF |
---|
830 | |
---|
831 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
832 | |
---|
833 | IF ( denom /= 0.0_wp ) THEN |
---|
834 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
835 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
836 | c_w(k,i) = 0.0_wp |
---|
837 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
838 | c_w(k,i) = c_max |
---|
839 | ENDIF |
---|
840 | ELSE |
---|
841 | c_w(k,i) = c_max |
---|
842 | ENDIF |
---|
843 | |
---|
844 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
845 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
846 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
847 | |
---|
848 | ENDDO |
---|
849 | ENDDO |
---|
850 | |
---|
851 | #if defined( __parallel ) |
---|
852 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
853 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
854 | MPI_SUM, comm1dx, ierr ) |
---|
855 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
856 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
857 | MPI_SUM, comm1dx, ierr ) |
---|
858 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
859 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
860 | MPI_SUM, comm1dx, ierr ) |
---|
861 | #else |
---|
862 | c_u_m = c_u_m_l |
---|
863 | c_v_m = c_v_m_l |
---|
864 | c_w_m = c_w_m_l |
---|
865 | #endif |
---|
866 | |
---|
867 | c_u_m = c_u_m / (nx+1) |
---|
868 | c_v_m = c_v_m / (nx+1) |
---|
869 | c_w_m = c_w_m / (nx+1) |
---|
870 | |
---|
871 | ! |
---|
872 | !-- Save old timelevels for the next timestep |
---|
873 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
874 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
875 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
876 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
877 | ENDIF |
---|
878 | |
---|
879 | ! |
---|
880 | !-- Calculate the new velocities |
---|
881 | DO k = nzb+1, nzt+1 |
---|
882 | DO i = nxlg, nxrg |
---|
883 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
884 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
885 | |
---|
886 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
887 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
888 | |
---|
889 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
890 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
891 | ENDDO |
---|
892 | ENDDO |
---|
893 | |
---|
894 | ! |
---|
895 | !-- Bottom boundary at the outflow |
---|
896 | IF ( ibc_uv_b == 0 ) THEN |
---|
897 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
898 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
899 | ELSE |
---|
900 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
901 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
902 | ENDIF |
---|
903 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
904 | |
---|
905 | ! |
---|
906 | !-- Top boundary at the outflow |
---|
907 | IF ( ibc_uv_t == 0 ) THEN |
---|
908 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
909 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
910 | ELSE |
---|
911 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
912 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
913 | ENDIF |
---|
914 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
915 | |
---|
916 | ENDIF |
---|
917 | |
---|
918 | ENDIF |
---|
919 | |
---|
920 | IF ( outflow_l ) THEN |
---|
921 | |
---|
922 | IF ( use_cmax ) THEN |
---|
923 | u_p(:,:,0) = u(:,:,1) |
---|
924 | v_p(:,:,-1) = v(:,:,0) |
---|
925 | w_p(:,:,-1) = w(:,:,0) |
---|
926 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
927 | |
---|
928 | c_max = dx / dt_3d |
---|
929 | |
---|
930 | c_u_m_l = 0.0_wp |
---|
931 | c_v_m_l = 0.0_wp |
---|
932 | c_w_m_l = 0.0_wp |
---|
933 | |
---|
934 | c_u_m = 0.0_wp |
---|
935 | c_v_m = 0.0_wp |
---|
936 | c_w_m = 0.0_wp |
---|
937 | |
---|
938 | ! |
---|
939 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
940 | !-- average along the outflow boundary. |
---|
941 | DO k = nzb+1, nzt+1 |
---|
942 | DO j = nys, nyn |
---|
943 | |
---|
944 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
945 | |
---|
946 | IF ( denom /= 0.0_wp ) THEN |
---|
947 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
948 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
949 | c_u(k,j) = 0.0_wp |
---|
950 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
951 | c_u(k,j) = c_max |
---|
952 | ENDIF |
---|
953 | ELSE |
---|
954 | c_u(k,j) = c_max |
---|
955 | ENDIF |
---|
956 | |
---|
957 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
958 | |
---|
959 | IF ( denom /= 0.0_wp ) THEN |
---|
960 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
961 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
962 | c_v(k,j) = 0.0_wp |
---|
963 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
964 | c_v(k,j) = c_max |
---|
965 | ENDIF |
---|
966 | ELSE |
---|
967 | c_v(k,j) = c_max |
---|
968 | ENDIF |
---|
969 | |
---|
970 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
971 | |
---|
972 | IF ( denom /= 0.0_wp ) THEN |
---|
973 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
974 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
975 | c_w(k,j) = 0.0_wp |
---|
976 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
977 | c_w(k,j) = c_max |
---|
978 | ENDIF |
---|
979 | ELSE |
---|
980 | c_w(k,j) = c_max |
---|
981 | ENDIF |
---|
982 | |
---|
983 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
984 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
985 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
986 | |
---|
987 | ENDDO |
---|
988 | ENDDO |
---|
989 | |
---|
990 | #if defined( __parallel ) |
---|
991 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
992 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
993 | MPI_SUM, comm1dy, ierr ) |
---|
994 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
995 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
996 | MPI_SUM, comm1dy, ierr ) |
---|
997 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
998 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
999 | MPI_SUM, comm1dy, ierr ) |
---|
1000 | #else |
---|
1001 | c_u_m = c_u_m_l |
---|
1002 | c_v_m = c_v_m_l |
---|
1003 | c_w_m = c_w_m_l |
---|
1004 | #endif |
---|
1005 | |
---|
1006 | c_u_m = c_u_m / (ny+1) |
---|
1007 | c_v_m = c_v_m / (ny+1) |
---|
1008 | c_w_m = c_w_m / (ny+1) |
---|
1009 | |
---|
1010 | ! |
---|
1011 | !-- Save old timelevels for the next timestep |
---|
1012 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1013 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
1014 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
1015 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
1016 | ENDIF |
---|
1017 | |
---|
1018 | ! |
---|
1019 | !-- Calculate the new velocities |
---|
1020 | DO k = nzb+1, nzt+1 |
---|
1021 | DO j = nysg, nyng |
---|
1022 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1023 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
1024 | |
---|
1025 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1026 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
1027 | |
---|
1028 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1029 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
1030 | ENDDO |
---|
1031 | ENDDO |
---|
1032 | |
---|
1033 | ! |
---|
1034 | !-- Bottom boundary at the outflow |
---|
1035 | IF ( ibc_uv_b == 0 ) THEN |
---|
1036 | u_p(nzb,:,0) = 0.0_wp |
---|
1037 | v_p(nzb,:,-1) = 0.0_wp |
---|
1038 | ELSE |
---|
1039 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
1040 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
1041 | ENDIF |
---|
1042 | w_p(nzb,:,-1) = 0.0_wp |
---|
1043 | |
---|
1044 | ! |
---|
1045 | !-- Top boundary at the outflow |
---|
1046 | IF ( ibc_uv_t == 0 ) THEN |
---|
1047 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
1048 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
1049 | ELSE |
---|
1050 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
1051 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
1052 | ENDIF |
---|
1053 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
1054 | |
---|
1055 | ENDIF |
---|
1056 | |
---|
1057 | ENDIF |
---|
1058 | |
---|
1059 | IF ( outflow_r ) THEN |
---|
1060 | |
---|
1061 | IF ( use_cmax ) THEN |
---|
1062 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
1063 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
1064 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
1065 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
1066 | |
---|
1067 | c_max = dx / dt_3d |
---|
1068 | |
---|
1069 | c_u_m_l = 0.0_wp |
---|
1070 | c_v_m_l = 0.0_wp |
---|
1071 | c_w_m_l = 0.0_wp |
---|
1072 | |
---|
1073 | c_u_m = 0.0_wp |
---|
1074 | c_v_m = 0.0_wp |
---|
1075 | c_w_m = 0.0_wp |
---|
1076 | |
---|
1077 | ! |
---|
1078 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
1079 | !-- average along the outflow boundary. |
---|
1080 | DO k = nzb+1, nzt+1 |
---|
1081 | DO j = nys, nyn |
---|
1082 | |
---|
1083 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
1084 | |
---|
1085 | IF ( denom /= 0.0_wp ) THEN |
---|
1086 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1087 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
1088 | c_u(k,j) = 0.0_wp |
---|
1089 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
1090 | c_u(k,j) = c_max |
---|
1091 | ENDIF |
---|
1092 | ELSE |
---|
1093 | c_u(k,j) = c_max |
---|
1094 | ENDIF |
---|
1095 | |
---|
1096 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
1097 | |
---|
1098 | IF ( denom /= 0.0_wp ) THEN |
---|
1099 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1100 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
1101 | c_v(k,j) = 0.0_wp |
---|
1102 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
1103 | c_v(k,j) = c_max |
---|
1104 | ENDIF |
---|
1105 | ELSE |
---|
1106 | c_v(k,j) = c_max |
---|
1107 | ENDIF |
---|
1108 | |
---|
1109 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
1110 | |
---|
1111 | IF ( denom /= 0.0_wp ) THEN |
---|
1112 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
1113 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
1114 | c_w(k,j) = 0.0_wp |
---|
1115 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
1116 | c_w(k,j) = c_max |
---|
1117 | ENDIF |
---|
1118 | ELSE |
---|
1119 | c_w(k,j) = c_max |
---|
1120 | ENDIF |
---|
1121 | |
---|
1122 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
1123 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
1124 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
1125 | |
---|
1126 | ENDDO |
---|
1127 | ENDDO |
---|
1128 | |
---|
1129 | #if defined( __parallel ) |
---|
1130 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1131 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1132 | MPI_SUM, comm1dy, ierr ) |
---|
1133 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1134 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1135 | MPI_SUM, comm1dy, ierr ) |
---|
1136 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
1137 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
1138 | MPI_SUM, comm1dy, ierr ) |
---|
1139 | #else |
---|
1140 | c_u_m = c_u_m_l |
---|
1141 | c_v_m = c_v_m_l |
---|
1142 | c_w_m = c_w_m_l |
---|
1143 | #endif |
---|
1144 | |
---|
1145 | c_u_m = c_u_m / (ny+1) |
---|
1146 | c_v_m = c_v_m / (ny+1) |
---|
1147 | c_w_m = c_w_m / (ny+1) |
---|
1148 | |
---|
1149 | ! |
---|
1150 | !-- Save old timelevels for the next timestep |
---|
1151 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
1152 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
1153 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
1154 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
1155 | ENDIF |
---|
1156 | |
---|
1157 | ! |
---|
1158 | !-- Calculate the new velocities |
---|
1159 | DO k = nzb+1, nzt+1 |
---|
1160 | DO j = nysg, nyng |
---|
1161 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
1162 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
1163 | |
---|
1164 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
1165 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
1166 | |
---|
1167 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
1168 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
1169 | ENDDO |
---|
1170 | ENDDO |
---|
1171 | |
---|
1172 | ! |
---|
1173 | !-- Bottom boundary at the outflow |
---|
1174 | IF ( ibc_uv_b == 0 ) THEN |
---|
1175 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
1176 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
1177 | ELSE |
---|
1178 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
1179 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
1180 | ENDIF |
---|
1181 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
1182 | |
---|
1183 | ! |
---|
1184 | !-- Top boundary at the outflow |
---|
1185 | IF ( ibc_uv_t == 0 ) THEN |
---|
1186 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
1187 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
1188 | ELSE |
---|
1189 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
1190 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
1191 | ENDIF |
---|
1192 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
1193 | |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | ENDIF |
---|
1197 | |
---|
1198 | END SUBROUTINE boundary_conds |
---|