1 | !> @file boundary_conds.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: boundary_conds.f90 2001 2016-08-20 18:41:22Z raasch $ |
---|
27 | ! |
---|
28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
29 | ! Forced header and separation lines into 80 columns |
---|
30 | ! |
---|
31 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
32 | ! Adjustments for top boundary condition for passive scalar |
---|
33 | ! |
---|
34 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
35 | ! Treat humidity and passive scalar separately |
---|
36 | ! |
---|
37 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
38 | ! Initial version of purely vertical nesting introduced. |
---|
39 | ! |
---|
40 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
41 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
42 | ! |
---|
43 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
44 | ! index bug for u_p at left outflow removed |
---|
45 | ! |
---|
46 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
47 | ! Introduction of nested domain feature |
---|
48 | ! |
---|
49 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
50 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
51 | ! |
---|
52 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
53 | ! Bugfix: index error in outflow conditions for left boundary |
---|
54 | ! |
---|
55 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
56 | ! Code annotations made doxygen readable |
---|
57 | ! |
---|
58 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
59 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
60 | ! top |
---|
61 | ! |
---|
62 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
63 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
64 | ! is used. |
---|
65 | ! |
---|
66 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
67 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
68 | ! for large_scale_forcing |
---|
69 | ! |
---|
70 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
71 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
72 | ! |
---|
73 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
74 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
75 | ! rain drop concentration (nr) changed to Dirichlet |
---|
76 | ! |
---|
77 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
78 | ! REAL constants provided with KIND-attribute |
---|
79 | ! |
---|
80 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
81 | ! ONLY-attribute added to USE-statements, |
---|
82 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
83 | ! kinds are defined in new module kinds, |
---|
84 | ! revision history before 2012 removed, |
---|
85 | ! comment fields (!:) to be used for variable explanations added to |
---|
86 | ! all variable declaration statements |
---|
87 | ! |
---|
88 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
89 | ! loop independent clauses added |
---|
90 | ! |
---|
91 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
92 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
93 | ! |
---|
94 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
95 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
96 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
97 | ! velocity that ensures numerical stability (CFL-condition). |
---|
98 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
99 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
100 | ! u_p, v_p, w_p |
---|
101 | ! |
---|
102 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
103 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
104 | ! boundary-conditions |
---|
105 | ! |
---|
106 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
107 | ! GPU-porting |
---|
108 | ! dummy argument "range" removed |
---|
109 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
110 | ! |
---|
111 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
112 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
113 | ! two-moment cloud scheme |
---|
114 | ! |
---|
115 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
116 | ! code put under GPL (PALM 3.9) |
---|
117 | ! |
---|
118 | ! 996 2012-09-07 10:41:47Z raasch |
---|
119 | ! little reformatting |
---|
120 | ! |
---|
121 | ! 978 2012-08-09 08:28:32Z fricke |
---|
122 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
123 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
124 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
125 | ! velocity. |
---|
126 | ! |
---|
127 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
128 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
129 | ! |
---|
130 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
131 | ! Initial revision |
---|
132 | ! |
---|
133 | ! |
---|
134 | ! Description: |
---|
135 | ! ------------ |
---|
136 | !> Boundary conditions for the prognostic quantities. |
---|
137 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
138 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
139 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
140 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
141 | !------------------------------------------------------------------------------! |
---|
142 | SUBROUTINE boundary_conds |
---|
143 | |
---|
144 | |
---|
145 | USE arrays_3d, & |
---|
146 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
147 | dzu, e_p, nr_p, pt, pt_p, q, q_p, qr_p, s, s_p, sa, sa_p, & |
---|
148 | u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
149 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
150 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init |
---|
151 | |
---|
152 | USE control_parameters, & |
---|
153 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, constant_diffusion, & |
---|
154 | cloud_physics, dt_3d, humidity, & |
---|
155 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
156 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
157 | inflow_s, intermediate_timestep_count, large_scale_forcing, & |
---|
158 | microphysics_seifert, nest_domain, nest_bound_l, nest_bound_s, & |
---|
159 | nudging, ocean, outflow_l, outflow_n, outflow_r, outflow_s, & |
---|
160 | passive_scalar, tsc, use_cmax |
---|
161 | |
---|
162 | USE grid_variables, & |
---|
163 | ONLY: ddx, ddy, dx, dy |
---|
164 | |
---|
165 | USE indices, & |
---|
166 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
167 | nzb, nzb_s_inner, nzb_w_inner, nzt |
---|
168 | |
---|
169 | USE kinds |
---|
170 | |
---|
171 | USE pegrid |
---|
172 | |
---|
173 | USE pmc_interface, & |
---|
174 | ONLY : nesting_mode |
---|
175 | |
---|
176 | |
---|
177 | IMPLICIT NONE |
---|
178 | |
---|
179 | INTEGER(iwp) :: i !< |
---|
180 | INTEGER(iwp) :: j !< |
---|
181 | INTEGER(iwp) :: k !< |
---|
182 | |
---|
183 | REAL(wp) :: c_max !< |
---|
184 | REAL(wp) :: denom !< |
---|
185 | |
---|
186 | |
---|
187 | ! |
---|
188 | !-- Bottom boundary |
---|
189 | IF ( ibc_uv_b == 1 ) THEN |
---|
190 | !$acc kernels present( u_p, v_p ) |
---|
191 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
192 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
193 | !$acc end kernels |
---|
194 | ENDIF |
---|
195 | |
---|
196 | !$acc kernels present( nzb_w_inner, w_p ) |
---|
197 | DO i = nxlg, nxrg |
---|
198 | DO j = nysg, nyng |
---|
199 | w_p(nzb_w_inner(j,i),j,i) = 0.0_wp |
---|
200 | ENDDO |
---|
201 | ENDDO |
---|
202 | !$acc end kernels |
---|
203 | |
---|
204 | ! |
---|
205 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
206 | IF ( ibc_uv_t == 0 ) THEN |
---|
207 | !$acc kernels present( u_init, u_p, v_init, v_p ) |
---|
208 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
209 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
210 | !$acc end kernels |
---|
211 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
212 | !$acc kernels present( u_p, v_p ) |
---|
213 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
214 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
215 | !$acc end kernels |
---|
216 | ENDIF |
---|
217 | |
---|
218 | IF ( .NOT. nest_domain ) THEN |
---|
219 | !$acc kernels present( w_p ) |
---|
220 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
221 | !$acc end kernels |
---|
222 | ENDIF |
---|
223 | |
---|
224 | ! |
---|
225 | !-- Temperature at bottom boundary. |
---|
226 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
227 | !-- the sea surface temperature of the coupled ocean model. |
---|
228 | IF ( ibc_pt_b == 0 ) THEN |
---|
229 | !$acc kernels present( nzb_s_inner, pt, pt_p ) |
---|
230 | !$acc loop independent |
---|
231 | DO i = nxlg, nxrg |
---|
232 | !$acc loop independent |
---|
233 | DO j = nysg, nyng |
---|
234 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
235 | ENDDO |
---|
236 | ENDDO |
---|
237 | !$acc end kernels |
---|
238 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
239 | !$acc kernels present( nzb_s_inner, pt_p ) |
---|
240 | !$acc loop independent |
---|
241 | DO i = nxlg, nxrg |
---|
242 | !$acc loop independent |
---|
243 | DO j = nysg, nyng |
---|
244 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | !$acc end kernels |
---|
248 | ENDIF |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Temperature at top boundary |
---|
252 | IF ( ibc_pt_t == 0 ) THEN |
---|
253 | !$acc kernels present( pt, pt_p ) |
---|
254 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
255 | ! |
---|
256 | !-- In case of nudging adjust top boundary to pt which is |
---|
257 | !-- read in from NUDGING-DATA |
---|
258 | IF ( nudging ) THEN |
---|
259 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
260 | ENDIF |
---|
261 | !$acc end kernels |
---|
262 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
263 | !$acc kernels present( pt_p ) |
---|
264 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
265 | !$acc end kernels |
---|
266 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
267 | !$acc kernels present( dzu, pt_p ) |
---|
268 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
269 | !$acc end kernels |
---|
270 | ENDIF |
---|
271 | |
---|
272 | ! |
---|
273 | !-- Boundary conditions for TKE |
---|
274 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
275 | IF ( .NOT. constant_diffusion ) THEN |
---|
276 | !$acc kernels present( e_p, nzb_s_inner ) |
---|
277 | !$acc loop independent |
---|
278 | DO i = nxlg, nxrg |
---|
279 | !$acc loop independent |
---|
280 | DO j = nysg, nyng |
---|
281 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
282 | ENDDO |
---|
283 | ENDDO |
---|
284 | IF ( .NOT. nest_domain ) THEN |
---|
285 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
286 | ENDIF |
---|
287 | !$acc end kernels |
---|
288 | ENDIF |
---|
289 | |
---|
290 | ! |
---|
291 | !-- Boundary conditions for salinity |
---|
292 | IF ( ocean ) THEN |
---|
293 | ! |
---|
294 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
295 | !-- given |
---|
296 | DO i = nxlg, nxrg |
---|
297 | DO j = nysg, nyng |
---|
298 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
299 | ENDDO |
---|
300 | ENDDO |
---|
301 | |
---|
302 | ! |
---|
303 | !-- Top boundary: Dirichlet or Neumann |
---|
304 | IF ( ibc_sa_t == 0 ) THEN |
---|
305 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
306 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
307 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
308 | ENDIF |
---|
309 | |
---|
310 | ENDIF |
---|
311 | |
---|
312 | ! |
---|
313 | !-- Boundary conditions for total water content, |
---|
314 | !-- bottom and top boundary (see also temperature) |
---|
315 | IF ( humidity ) THEN |
---|
316 | ! |
---|
317 | !-- Surface conditions for constant_humidity_flux |
---|
318 | IF ( ibc_q_b == 0 ) THEN |
---|
319 | DO i = nxlg, nxrg |
---|
320 | DO j = nysg, nyng |
---|
321 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
322 | ENDDO |
---|
323 | ENDDO |
---|
324 | ELSE |
---|
325 | DO i = nxlg, nxrg |
---|
326 | DO j = nysg, nyng |
---|
327 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
328 | ENDDO |
---|
329 | ENDDO |
---|
330 | ENDIF |
---|
331 | ! |
---|
332 | !-- Top boundary |
---|
333 | IF ( ibc_q_t == 0 ) THEN |
---|
334 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
335 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
336 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
337 | ENDIF |
---|
338 | |
---|
339 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
340 | ! |
---|
341 | !-- Surface conditions rain water (Dirichlet) |
---|
342 | DO i = nxlg, nxrg |
---|
343 | DO j = nysg, nyng |
---|
344 | qr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
345 | nr_p(nzb_s_inner(j,i),j,i) = 0.0_wp |
---|
346 | ENDDO |
---|
347 | ENDDO |
---|
348 | ! |
---|
349 | !-- Top boundary condition for rain water (Dirichlet) |
---|
350 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
351 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
352 | |
---|
353 | ENDIF |
---|
354 | ENDIF |
---|
355 | ! |
---|
356 | !-- Boundary conditions for scalar, |
---|
357 | !-- bottom and top boundary (see also temperature) |
---|
358 | IF ( passive_scalar ) THEN |
---|
359 | ! |
---|
360 | !-- Surface conditions for constant_humidity_flux |
---|
361 | IF ( ibc_s_b == 0 ) THEN |
---|
362 | DO i = nxlg, nxrg |
---|
363 | DO j = nysg, nyng |
---|
364 | s_p(nzb_s_inner(j,i),j,i) = s(nzb_s_inner(j,i),j,i) |
---|
365 | ENDDO |
---|
366 | ENDDO |
---|
367 | ELSE |
---|
368 | DO i = nxlg, nxrg |
---|
369 | DO j = nysg, nyng |
---|
370 | s_p(nzb_s_inner(j,i),j,i) = s_p(nzb_s_inner(j,i)+1,j,i) |
---|
371 | ENDDO |
---|
372 | ENDDO |
---|
373 | ENDIF |
---|
374 | ! |
---|
375 | !-- Top boundary condition |
---|
376 | IF ( ibc_s_t == 0 ) THEN |
---|
377 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
378 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
379 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
380 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
381 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
382 | ENDIF |
---|
383 | |
---|
384 | ENDIF |
---|
385 | ! |
---|
386 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
387 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
388 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
389 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
390 | !-- have to be restored here. |
---|
391 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
392 | IF ( inflow_s ) THEN |
---|
393 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
394 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
395 | ELSEIF ( inflow_n ) THEN |
---|
396 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
397 | ELSEIF ( inflow_l ) THEN |
---|
398 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
399 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
400 | ELSEIF ( inflow_r ) THEN |
---|
401 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
402 | ENDIF |
---|
403 | |
---|
404 | ! |
---|
405 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
406 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
407 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
408 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
409 | IF ( nest_bound_s ) THEN |
---|
410 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
411 | ENDIF |
---|
412 | IF ( nest_bound_l ) THEN |
---|
413 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
414 | ENDIF |
---|
415 | ENDIF |
---|
416 | |
---|
417 | ! |
---|
418 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
419 | IF ( outflow_s ) THEN |
---|
420 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
421 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
422 | IF ( humidity ) THEN |
---|
423 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
424 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
425 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
426 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
427 | ENDIF |
---|
428 | ENDIF |
---|
429 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
430 | ELSEIF ( outflow_n ) THEN |
---|
431 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
432 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
433 | IF ( humidity ) THEN |
---|
434 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
435 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
436 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
437 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
438 | ENDIF |
---|
439 | ENDIF |
---|
440 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
441 | ELSEIF ( outflow_l ) THEN |
---|
442 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
443 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
444 | IF ( humidity ) THEN |
---|
445 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
446 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
447 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
448 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
449 | ENDIF |
---|
450 | ENDIF |
---|
451 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
452 | ELSEIF ( outflow_r ) THEN |
---|
453 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
454 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
455 | IF ( humidity ) THEN |
---|
456 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
457 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
458 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
459 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
460 | ENDIF |
---|
461 | ENDIF |
---|
462 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
463 | ENDIF |
---|
464 | |
---|
465 | ! |
---|
466 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
467 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
468 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
469 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
470 | IF ( outflow_s ) THEN |
---|
471 | |
---|
472 | IF ( use_cmax ) THEN |
---|
473 | u_p(:,-1,:) = u(:,0,:) |
---|
474 | v_p(:,0,:) = v(:,1,:) |
---|
475 | w_p(:,-1,:) = w(:,0,:) |
---|
476 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
477 | |
---|
478 | c_max = dy / dt_3d |
---|
479 | |
---|
480 | c_u_m_l = 0.0_wp |
---|
481 | c_v_m_l = 0.0_wp |
---|
482 | c_w_m_l = 0.0_wp |
---|
483 | |
---|
484 | c_u_m = 0.0_wp |
---|
485 | c_v_m = 0.0_wp |
---|
486 | c_w_m = 0.0_wp |
---|
487 | |
---|
488 | ! |
---|
489 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
490 | !-- average along the outflow boundary. |
---|
491 | DO k = nzb+1, nzt+1 |
---|
492 | DO i = nxl, nxr |
---|
493 | |
---|
494 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
495 | |
---|
496 | IF ( denom /= 0.0_wp ) THEN |
---|
497 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
498 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
499 | c_u(k,i) = 0.0_wp |
---|
500 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
501 | c_u(k,i) = c_max |
---|
502 | ENDIF |
---|
503 | ELSE |
---|
504 | c_u(k,i) = c_max |
---|
505 | ENDIF |
---|
506 | |
---|
507 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
508 | |
---|
509 | IF ( denom /= 0.0_wp ) THEN |
---|
510 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
511 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
512 | c_v(k,i) = 0.0_wp |
---|
513 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
514 | c_v(k,i) = c_max |
---|
515 | ENDIF |
---|
516 | ELSE |
---|
517 | c_v(k,i) = c_max |
---|
518 | ENDIF |
---|
519 | |
---|
520 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
521 | |
---|
522 | IF ( denom /= 0.0_wp ) THEN |
---|
523 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
524 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
525 | c_w(k,i) = 0.0_wp |
---|
526 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
527 | c_w(k,i) = c_max |
---|
528 | ENDIF |
---|
529 | ELSE |
---|
530 | c_w(k,i) = c_max |
---|
531 | ENDIF |
---|
532 | |
---|
533 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
534 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
535 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
536 | |
---|
537 | ENDDO |
---|
538 | ENDDO |
---|
539 | |
---|
540 | #if defined( __parallel ) |
---|
541 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
542 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
543 | MPI_SUM, comm1dx, ierr ) |
---|
544 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
545 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
546 | MPI_SUM, comm1dx, ierr ) |
---|
547 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
548 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
549 | MPI_SUM, comm1dx, ierr ) |
---|
550 | #else |
---|
551 | c_u_m = c_u_m_l |
---|
552 | c_v_m = c_v_m_l |
---|
553 | c_w_m = c_w_m_l |
---|
554 | #endif |
---|
555 | |
---|
556 | c_u_m = c_u_m / (nx+1) |
---|
557 | c_v_m = c_v_m / (nx+1) |
---|
558 | c_w_m = c_w_m / (nx+1) |
---|
559 | |
---|
560 | ! |
---|
561 | !-- Save old timelevels for the next timestep |
---|
562 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
563 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
564 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
565 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
566 | ENDIF |
---|
567 | |
---|
568 | ! |
---|
569 | !-- Calculate the new velocities |
---|
570 | DO k = nzb+1, nzt+1 |
---|
571 | DO i = nxlg, nxrg |
---|
572 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
573 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
574 | |
---|
575 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
576 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
577 | |
---|
578 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
579 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
580 | ENDDO |
---|
581 | ENDDO |
---|
582 | |
---|
583 | ! |
---|
584 | !-- Bottom boundary at the outflow |
---|
585 | IF ( ibc_uv_b == 0 ) THEN |
---|
586 | u_p(nzb,-1,:) = 0.0_wp |
---|
587 | v_p(nzb,0,:) = 0.0_wp |
---|
588 | ELSE |
---|
589 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
590 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
591 | ENDIF |
---|
592 | w_p(nzb,-1,:) = 0.0_wp |
---|
593 | |
---|
594 | ! |
---|
595 | !-- Top boundary at the outflow |
---|
596 | IF ( ibc_uv_t == 0 ) THEN |
---|
597 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
598 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
599 | ELSE |
---|
600 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
601 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
602 | ENDIF |
---|
603 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
604 | |
---|
605 | ENDIF |
---|
606 | |
---|
607 | ENDIF |
---|
608 | |
---|
609 | IF ( outflow_n ) THEN |
---|
610 | |
---|
611 | IF ( use_cmax ) THEN |
---|
612 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
613 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
614 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
615 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
616 | |
---|
617 | c_max = dy / dt_3d |
---|
618 | |
---|
619 | c_u_m_l = 0.0_wp |
---|
620 | c_v_m_l = 0.0_wp |
---|
621 | c_w_m_l = 0.0_wp |
---|
622 | |
---|
623 | c_u_m = 0.0_wp |
---|
624 | c_v_m = 0.0_wp |
---|
625 | c_w_m = 0.0_wp |
---|
626 | |
---|
627 | ! |
---|
628 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
629 | !-- average along the outflow boundary. |
---|
630 | DO k = nzb+1, nzt+1 |
---|
631 | DO i = nxl, nxr |
---|
632 | |
---|
633 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
634 | |
---|
635 | IF ( denom /= 0.0_wp ) THEN |
---|
636 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
637 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
638 | c_u(k,i) = 0.0_wp |
---|
639 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
640 | c_u(k,i) = c_max |
---|
641 | ENDIF |
---|
642 | ELSE |
---|
643 | c_u(k,i) = c_max |
---|
644 | ENDIF |
---|
645 | |
---|
646 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
647 | |
---|
648 | IF ( denom /= 0.0_wp ) THEN |
---|
649 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
650 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
651 | c_v(k,i) = 0.0_wp |
---|
652 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
653 | c_v(k,i) = c_max |
---|
654 | ENDIF |
---|
655 | ELSE |
---|
656 | c_v(k,i) = c_max |
---|
657 | ENDIF |
---|
658 | |
---|
659 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
660 | |
---|
661 | IF ( denom /= 0.0_wp ) THEN |
---|
662 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
663 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
664 | c_w(k,i) = 0.0_wp |
---|
665 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
666 | c_w(k,i) = c_max |
---|
667 | ENDIF |
---|
668 | ELSE |
---|
669 | c_w(k,i) = c_max |
---|
670 | ENDIF |
---|
671 | |
---|
672 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
673 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
674 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
675 | |
---|
676 | ENDDO |
---|
677 | ENDDO |
---|
678 | |
---|
679 | #if defined( __parallel ) |
---|
680 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
681 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
682 | MPI_SUM, comm1dx, ierr ) |
---|
683 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
684 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
685 | MPI_SUM, comm1dx, ierr ) |
---|
686 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
687 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
688 | MPI_SUM, comm1dx, ierr ) |
---|
689 | #else |
---|
690 | c_u_m = c_u_m_l |
---|
691 | c_v_m = c_v_m_l |
---|
692 | c_w_m = c_w_m_l |
---|
693 | #endif |
---|
694 | |
---|
695 | c_u_m = c_u_m / (nx+1) |
---|
696 | c_v_m = c_v_m / (nx+1) |
---|
697 | c_w_m = c_w_m / (nx+1) |
---|
698 | |
---|
699 | ! |
---|
700 | !-- Save old timelevels for the next timestep |
---|
701 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
702 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
703 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
704 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
705 | ENDIF |
---|
706 | |
---|
707 | ! |
---|
708 | !-- Calculate the new velocities |
---|
709 | DO k = nzb+1, nzt+1 |
---|
710 | DO i = nxlg, nxrg |
---|
711 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
712 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
713 | |
---|
714 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
715 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
716 | |
---|
717 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
718 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
719 | ENDDO |
---|
720 | ENDDO |
---|
721 | |
---|
722 | ! |
---|
723 | !-- Bottom boundary at the outflow |
---|
724 | IF ( ibc_uv_b == 0 ) THEN |
---|
725 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
726 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
727 | ELSE |
---|
728 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
729 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
730 | ENDIF |
---|
731 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
732 | |
---|
733 | ! |
---|
734 | !-- Top boundary at the outflow |
---|
735 | IF ( ibc_uv_t == 0 ) THEN |
---|
736 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
737 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
738 | ELSE |
---|
739 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
740 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
741 | ENDIF |
---|
742 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
743 | |
---|
744 | ENDIF |
---|
745 | |
---|
746 | ENDIF |
---|
747 | |
---|
748 | IF ( outflow_l ) THEN |
---|
749 | |
---|
750 | IF ( use_cmax ) THEN |
---|
751 | u_p(:,:,0) = u(:,:,1) |
---|
752 | v_p(:,:,-1) = v(:,:,0) |
---|
753 | w_p(:,:,-1) = w(:,:,0) |
---|
754 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
755 | |
---|
756 | c_max = dx / dt_3d |
---|
757 | |
---|
758 | c_u_m_l = 0.0_wp |
---|
759 | c_v_m_l = 0.0_wp |
---|
760 | c_w_m_l = 0.0_wp |
---|
761 | |
---|
762 | c_u_m = 0.0_wp |
---|
763 | c_v_m = 0.0_wp |
---|
764 | c_w_m = 0.0_wp |
---|
765 | |
---|
766 | ! |
---|
767 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
768 | !-- average along the outflow boundary. |
---|
769 | DO k = nzb+1, nzt+1 |
---|
770 | DO j = nys, nyn |
---|
771 | |
---|
772 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
773 | |
---|
774 | IF ( denom /= 0.0_wp ) THEN |
---|
775 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
776 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
777 | c_u(k,j) = 0.0_wp |
---|
778 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
779 | c_u(k,j) = c_max |
---|
780 | ENDIF |
---|
781 | ELSE |
---|
782 | c_u(k,j) = c_max |
---|
783 | ENDIF |
---|
784 | |
---|
785 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
786 | |
---|
787 | IF ( denom /= 0.0_wp ) THEN |
---|
788 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
789 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
790 | c_v(k,j) = 0.0_wp |
---|
791 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
792 | c_v(k,j) = c_max |
---|
793 | ENDIF |
---|
794 | ELSE |
---|
795 | c_v(k,j) = c_max |
---|
796 | ENDIF |
---|
797 | |
---|
798 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
799 | |
---|
800 | IF ( denom /= 0.0_wp ) THEN |
---|
801 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
802 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
803 | c_w(k,j) = 0.0_wp |
---|
804 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
805 | c_w(k,j) = c_max |
---|
806 | ENDIF |
---|
807 | ELSE |
---|
808 | c_w(k,j) = c_max |
---|
809 | ENDIF |
---|
810 | |
---|
811 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
812 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
813 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
814 | |
---|
815 | ENDDO |
---|
816 | ENDDO |
---|
817 | |
---|
818 | #if defined( __parallel ) |
---|
819 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
820 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
821 | MPI_SUM, comm1dy, ierr ) |
---|
822 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
823 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
824 | MPI_SUM, comm1dy, ierr ) |
---|
825 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
826 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
827 | MPI_SUM, comm1dy, ierr ) |
---|
828 | #else |
---|
829 | c_u_m = c_u_m_l |
---|
830 | c_v_m = c_v_m_l |
---|
831 | c_w_m = c_w_m_l |
---|
832 | #endif |
---|
833 | |
---|
834 | c_u_m = c_u_m / (ny+1) |
---|
835 | c_v_m = c_v_m / (ny+1) |
---|
836 | c_w_m = c_w_m / (ny+1) |
---|
837 | |
---|
838 | ! |
---|
839 | !-- Save old timelevels for the next timestep |
---|
840 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
841 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
842 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
843 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
844 | ENDIF |
---|
845 | |
---|
846 | ! |
---|
847 | !-- Calculate the new velocities |
---|
848 | DO k = nzb+1, nzt+1 |
---|
849 | DO j = nysg, nyng |
---|
850 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
851 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
852 | |
---|
853 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
854 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
855 | |
---|
856 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
857 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
858 | ENDDO |
---|
859 | ENDDO |
---|
860 | |
---|
861 | ! |
---|
862 | !-- Bottom boundary at the outflow |
---|
863 | IF ( ibc_uv_b == 0 ) THEN |
---|
864 | u_p(nzb,:,0) = 0.0_wp |
---|
865 | v_p(nzb,:,-1) = 0.0_wp |
---|
866 | ELSE |
---|
867 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
868 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
869 | ENDIF |
---|
870 | w_p(nzb,:,-1) = 0.0_wp |
---|
871 | |
---|
872 | ! |
---|
873 | !-- Top boundary at the outflow |
---|
874 | IF ( ibc_uv_t == 0 ) THEN |
---|
875 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
876 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
877 | ELSE |
---|
878 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
879 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
880 | ENDIF |
---|
881 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
882 | |
---|
883 | ENDIF |
---|
884 | |
---|
885 | ENDIF |
---|
886 | |
---|
887 | IF ( outflow_r ) THEN |
---|
888 | |
---|
889 | IF ( use_cmax ) THEN |
---|
890 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
891 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
892 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
893 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
894 | |
---|
895 | c_max = dx / dt_3d |
---|
896 | |
---|
897 | c_u_m_l = 0.0_wp |
---|
898 | c_v_m_l = 0.0_wp |
---|
899 | c_w_m_l = 0.0_wp |
---|
900 | |
---|
901 | c_u_m = 0.0_wp |
---|
902 | c_v_m = 0.0_wp |
---|
903 | c_w_m = 0.0_wp |
---|
904 | |
---|
905 | ! |
---|
906 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
907 | !-- average along the outflow boundary. |
---|
908 | DO k = nzb+1, nzt+1 |
---|
909 | DO j = nys, nyn |
---|
910 | |
---|
911 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
912 | |
---|
913 | IF ( denom /= 0.0_wp ) THEN |
---|
914 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
915 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
916 | c_u(k,j) = 0.0_wp |
---|
917 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
918 | c_u(k,j) = c_max |
---|
919 | ENDIF |
---|
920 | ELSE |
---|
921 | c_u(k,j) = c_max |
---|
922 | ENDIF |
---|
923 | |
---|
924 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
925 | |
---|
926 | IF ( denom /= 0.0_wp ) THEN |
---|
927 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
928 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
929 | c_v(k,j) = 0.0_wp |
---|
930 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
931 | c_v(k,j) = c_max |
---|
932 | ENDIF |
---|
933 | ELSE |
---|
934 | c_v(k,j) = c_max |
---|
935 | ENDIF |
---|
936 | |
---|
937 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
938 | |
---|
939 | IF ( denom /= 0.0_wp ) THEN |
---|
940 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
941 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
942 | c_w(k,j) = 0.0_wp |
---|
943 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
944 | c_w(k,j) = c_max |
---|
945 | ENDIF |
---|
946 | ELSE |
---|
947 | c_w(k,j) = c_max |
---|
948 | ENDIF |
---|
949 | |
---|
950 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
951 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
952 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
953 | |
---|
954 | ENDDO |
---|
955 | ENDDO |
---|
956 | |
---|
957 | #if defined( __parallel ) |
---|
958 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
959 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
960 | MPI_SUM, comm1dy, ierr ) |
---|
961 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
962 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
963 | MPI_SUM, comm1dy, ierr ) |
---|
964 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
965 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
966 | MPI_SUM, comm1dy, ierr ) |
---|
967 | #else |
---|
968 | c_u_m = c_u_m_l |
---|
969 | c_v_m = c_v_m_l |
---|
970 | c_w_m = c_w_m_l |
---|
971 | #endif |
---|
972 | |
---|
973 | c_u_m = c_u_m / (ny+1) |
---|
974 | c_v_m = c_v_m / (ny+1) |
---|
975 | c_w_m = c_w_m / (ny+1) |
---|
976 | |
---|
977 | ! |
---|
978 | !-- Save old timelevels for the next timestep |
---|
979 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
980 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
981 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
982 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
983 | ENDIF |
---|
984 | |
---|
985 | ! |
---|
986 | !-- Calculate the new velocities |
---|
987 | DO k = nzb+1, nzt+1 |
---|
988 | DO j = nysg, nyng |
---|
989 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
990 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
991 | |
---|
992 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
993 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
994 | |
---|
995 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
996 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
997 | ENDDO |
---|
998 | ENDDO |
---|
999 | |
---|
1000 | ! |
---|
1001 | !-- Bottom boundary at the outflow |
---|
1002 | IF ( ibc_uv_b == 0 ) THEN |
---|
1003 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
1004 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
1005 | ELSE |
---|
1006 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
1007 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
1008 | ENDIF |
---|
1009 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
1010 | |
---|
1011 | ! |
---|
1012 | !-- Top boundary at the outflow |
---|
1013 | IF ( ibc_uv_t == 0 ) THEN |
---|
1014 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
1015 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
1016 | ELSE |
---|
1017 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
1018 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
1019 | ENDIF |
---|
1020 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
1021 | |
---|
1022 | ENDIF |
---|
1023 | |
---|
1024 | ENDIF |
---|
1025 | |
---|
1026 | END SUBROUTINE boundary_conds |
---|