[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[98] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: boundary_conds.f90 98 2007-06-21 09:36:33Z raasch $ |
---|
[39] | 11 | ! |
---|
[98] | 12 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 13 | ! Boundary conditions for salinity added |
---|
| 14 | ! |
---|
[77] | 15 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 16 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 17 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 18 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 19 | ! |
---|
[39] | 20 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 21 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 22 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 23 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 24 | ! |
---|
[3] | 25 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 26 | ! |
---|
[1] | 27 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 28 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 29 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 30 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 31 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 32 | ! |
---|
| 33 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 34 | ! Initial revision |
---|
| 35 | ! |
---|
| 36 | ! |
---|
| 37 | ! Description: |
---|
| 38 | ! ------------ |
---|
| 39 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 40 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 41 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 42 | ! 'outflow_uvw'). |
---|
| 43 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 44 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 45 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 46 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 47 | !------------------------------------------------------------------------------! |
---|
| 48 | |
---|
| 49 | USE arrays_3d |
---|
| 50 | USE control_parameters |
---|
| 51 | USE grid_variables |
---|
| 52 | USE indices |
---|
| 53 | USE pegrid |
---|
| 54 | |
---|
| 55 | IMPLICIT NONE |
---|
| 56 | |
---|
| 57 | CHARACTER (LEN=*) :: range |
---|
| 58 | |
---|
| 59 | INTEGER :: i, j, k |
---|
| 60 | |
---|
[73] | 61 | REAL :: c_max, c_u, c_v, c_w, denom |
---|
[1] | 62 | |
---|
[73] | 63 | |
---|
[1] | 64 | IF ( range == 'main') THEN |
---|
| 65 | ! |
---|
| 66 | !-- Bottom boundary |
---|
| 67 | IF ( ibc_uv_b == 0 ) THEN |
---|
[73] | 68 | ! |
---|
| 69 | !-- Satisfying the Dirichlet condition with an extra layer below the |
---|
| 70 | !-- surface where the u and v component change their sign |
---|
| 71 | u_p(nzb,:,:) = -u_p(nzb+1,:,:) |
---|
| 72 | v_p(nzb,:,:) = -v_p(nzb+1,:,:) |
---|
| 73 | ELSE |
---|
| 74 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 75 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 76 | ENDIF |
---|
| 77 | DO i = nxl-1, nxr+1 |
---|
| 78 | DO j = nys-1, nyn+1 |
---|
[73] | 79 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 80 | ENDDO |
---|
| 81 | ENDDO |
---|
| 82 | |
---|
| 83 | ! |
---|
| 84 | !-- Top boundary |
---|
| 85 | IF ( ibc_uv_t == 0 ) THEN |
---|
[73] | 86 | u_p(nzt+1,:,:) = ug(nzt+1) |
---|
| 87 | v_p(nzt+1,:,:) = vg(nzt+1) |
---|
[1] | 88 | ELSE |
---|
[73] | 89 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 90 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 91 | ENDIF |
---|
[73] | 92 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 93 | |
---|
| 94 | ! |
---|
| 95 | !-- Temperature at bottom boundary |
---|
| 96 | IF ( ibc_pt_b == 0 ) THEN |
---|
[73] | 97 | DO i = nxl-1, nxr+1 |
---|
| 98 | DO j = nys-1, nyn+1 |
---|
| 99 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 100 | ENDDO |
---|
[73] | 101 | ENDDO |
---|
[1] | 102 | ELSE |
---|
| 103 | DO i = nxl-1, nxr+1 |
---|
| 104 | DO j = nys-1, nyn+1 |
---|
[73] | 105 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 106 | ENDDO |
---|
| 107 | ENDDO |
---|
| 108 | ENDIF |
---|
| 109 | |
---|
| 110 | ! |
---|
| 111 | !-- Temperature at top boundary |
---|
[19] | 112 | IF ( ibc_pt_t == 0 ) THEN |
---|
[73] | 113 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 114 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[73] | 115 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 116 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[73] | 117 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 118 | ENDIF |
---|
| 119 | |
---|
| 120 | ! |
---|
| 121 | !-- Boundary conditions for TKE |
---|
| 122 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 123 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 124 | DO i = nxl-1, nxr+1 |
---|
| 125 | DO j = nys-1, nyn+1 |
---|
[73] | 126 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 127 | ENDDO |
---|
| 128 | ENDDO |
---|
[73] | 129 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 130 | ENDIF |
---|
| 131 | |
---|
| 132 | ! |
---|
[95] | 133 | !-- Boundary conditions for salinity |
---|
| 134 | IF ( ocean ) THEN |
---|
| 135 | ! |
---|
| 136 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 137 | !-- given |
---|
| 138 | DO i = nxl-1, nxr+1 |
---|
| 139 | DO j = nys-1, nyn+1 |
---|
| 140 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 141 | ENDDO |
---|
| 142 | ENDDO |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Top boundary: Dirichlet or Neumann |
---|
| 146 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 147 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 148 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 149 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
| 150 | ENDIF |
---|
| 151 | |
---|
| 152 | ENDIF |
---|
| 153 | |
---|
| 154 | ! |
---|
[1] | 155 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 156 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 157 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 158 | ! |
---|
[75] | 159 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 160 | IF ( ibc_q_b == 0 ) THEN |
---|
[73] | 161 | DO i = nxl-1, nxr+1 |
---|
| 162 | DO j = nys-1, nyn+1 |
---|
| 163 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 164 | ENDDO |
---|
[73] | 165 | ENDDO |
---|
[1] | 166 | ELSE |
---|
| 167 | DO i = nxl-1, nxr+1 |
---|
| 168 | DO j = nys-1, nyn+1 |
---|
[73] | 169 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 170 | ENDDO |
---|
| 171 | ENDDO |
---|
| 172 | ENDIF |
---|
| 173 | ! |
---|
| 174 | !-- Top boundary |
---|
[73] | 175 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 176 | ENDIF |
---|
| 177 | |
---|
| 178 | ! |
---|
| 179 | !-- Lateral boundary conditions at the inflow. Quasi Neumann conditions |
---|
| 180 | !-- are needed for the wall normal velocity in order to ensure zero |
---|
| 181 | !-- divergence. Dirichlet conditions are used for all other quantities. |
---|
| 182 | IF ( inflow_s ) THEN |
---|
[73] | 183 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[1] | 184 | ELSEIF ( inflow_n ) THEN |
---|
[75] | 185 | v_p(:,nyn,:) = v_p(:,nyn+1,:) |
---|
[1] | 186 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 187 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[1] | 188 | ELSEIF ( inflow_r ) THEN |
---|
[75] | 189 | u_p(:,:,nxr) = u_p(:,:,nxr+1) |
---|
[1] | 190 | ENDIF |
---|
| 191 | |
---|
| 192 | ! |
---|
| 193 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 194 | IF ( outflow_s ) THEN |
---|
[73] | 195 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 196 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[75] | 197 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1] | 198 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 199 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 200 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[75] | 201 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1] | 202 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 203 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 204 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[75] | 205 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1] | 206 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 207 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 208 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[75] | 209 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1] | 210 | ENDIF |
---|
| 211 | |
---|
| 212 | ENDIF |
---|
| 213 | |
---|
| 214 | ! |
---|
[75] | 215 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
| 216 | IF ( outflow_s .AND. & |
---|
| 217 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 218 | THEN |
---|
| 219 | |
---|
| 220 | c_max = dy / dt_3d |
---|
| 221 | |
---|
| 222 | DO i = nxl-1, nxr+1 |
---|
| 223 | DO k = nzb+1, nzt+1 |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | !-- First calculate the phase speeds for u,v, and w |
---|
| 227 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 228 | |
---|
| 229 | IF ( denom /= 0.0 ) THEN |
---|
| 230 | c_u = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
| 231 | IF ( c_u < 0.0 ) THEN |
---|
| 232 | c_u = 0.0 |
---|
| 233 | ELSEIF ( c_u > c_max ) THEN |
---|
| 234 | c_u = c_max |
---|
| 235 | ENDIF |
---|
| 236 | ELSE |
---|
| 237 | c_u = c_max |
---|
| 238 | ENDIF |
---|
| 239 | denom = v_m_s(k,0,i) - v_m_s(k,1,i) |
---|
| 240 | |
---|
| 241 | IF ( denom /= 0.0 ) THEN |
---|
| 242 | c_v = -c_max * ( v(k,0,i) - v_m_s(k,0,i) ) / denom |
---|
| 243 | IF ( c_v < 0.0 ) THEN |
---|
| 244 | c_v = 0.0 |
---|
| 245 | ELSEIF ( c_v > c_max ) THEN |
---|
| 246 | c_v = c_max |
---|
| 247 | ENDIF |
---|
| 248 | ELSE |
---|
| 249 | c_v = c_max |
---|
| 250 | ENDIF |
---|
| 251 | |
---|
| 252 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
| 253 | |
---|
| 254 | IF ( denom /= 0.0 ) THEN |
---|
| 255 | c_w = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
| 256 | IF ( c_w < 0.0 ) THEN |
---|
| 257 | c_w = 0.0 |
---|
| 258 | ELSEIF ( c_w > c_max ) THEN |
---|
| 259 | c_w = c_max |
---|
| 260 | ENDIF |
---|
| 261 | ELSE |
---|
| 262 | c_w = c_max |
---|
| 263 | ENDIF |
---|
| 264 | |
---|
| 265 | ! |
---|
| 266 | !-- Calculate the new velocities |
---|
| 267 | u_p(k,-1,i) = u(k,-1,i) + dt_3d * c_u * & |
---|
| 268 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 269 | |
---|
| 270 | v_p(k,-1,i) = v(k,-1,i) + dt_3d * c_v * & |
---|
| 271 | ( v(k,-1,i) - v_m_s(k,0,i) ) * ddy |
---|
| 272 | |
---|
| 273 | w_p(k,-1,i) = w(k,-1,i) + dt_3d * c_w * & |
---|
| 274 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
| 275 | |
---|
| 276 | ! |
---|
| 277 | !-- Save old timelevels for the next timestep |
---|
| 278 | u_m_s(k,:,i) = u(k,-1:1,i) |
---|
| 279 | v_m_s(k,:,i) = v(k,-1:1,i) |
---|
| 280 | w_m_s(k,:,i) = w(k,-1:1,i) |
---|
| 281 | |
---|
| 282 | ENDDO |
---|
| 283 | ENDDO |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- Bottom boundary at the outflow |
---|
| 287 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 288 | u_p(nzb,-1,:) = -u_p(nzb+1,-1,:) |
---|
| 289 | v_p(nzb,-1,:) = -v_p(nzb+1,-1,:) |
---|
| 290 | ELSE |
---|
| 291 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 292 | v_p(nzb,-1,:) = v_p(nzb+1,-1,:) |
---|
[73] | 293 | ENDIF |
---|
[75] | 294 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 295 | |
---|
[75] | 296 | ! |
---|
| 297 | !-- Top boundary at the outflow |
---|
| 298 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 299 | u_p(nzt+1,-1,:) = ug(nzt+1) |
---|
| 300 | v_p(nzt+1,-1,:) = vg(nzt+1) |
---|
| 301 | ELSE |
---|
| 302 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 303 | v_p(nzt+1,-1,:) = v(nzt,-1,:) |
---|
| 304 | ENDIF |
---|
| 305 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
[73] | 306 | |
---|
[75] | 307 | ENDIF |
---|
[73] | 308 | |
---|
[75] | 309 | IF ( outflow_n .AND. & |
---|
| 310 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 311 | THEN |
---|
[73] | 312 | |
---|
[75] | 313 | c_max = dy / dt_3d |
---|
| 314 | |
---|
| 315 | DO i = nxl-1, nxr+1 |
---|
| 316 | DO k = nzb+1, nzt+1 |
---|
| 317 | |
---|
[1] | 318 | ! |
---|
[75] | 319 | !-- First calculate the phase speeds for u,v, and w |
---|
| 320 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
[73] | 321 | |
---|
[75] | 322 | IF ( denom /= 0.0 ) THEN |
---|
| 323 | c_u = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
| 324 | IF ( c_u < 0.0 ) THEN |
---|
| 325 | c_u = 0.0 |
---|
| 326 | ELSEIF ( c_u > c_max ) THEN |
---|
[73] | 327 | c_u = c_max |
---|
| 328 | ENDIF |
---|
[75] | 329 | ELSE |
---|
| 330 | c_u = c_max |
---|
| 331 | ENDIF |
---|
[73] | 332 | |
---|
[75] | 333 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 334 | |
---|
[75] | 335 | IF ( denom /= 0.0 ) THEN |
---|
| 336 | c_v = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
| 337 | IF ( c_v < 0.0 ) THEN |
---|
| 338 | c_v = 0.0 |
---|
| 339 | ELSEIF ( c_v > c_max ) THEN |
---|
[73] | 340 | c_v = c_max |
---|
| 341 | ENDIF |
---|
[75] | 342 | ELSE |
---|
| 343 | c_v = c_max |
---|
| 344 | ENDIF |
---|
[73] | 345 | |
---|
[75] | 346 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 347 | |
---|
[75] | 348 | IF ( denom /= 0.0 ) THEN |
---|
| 349 | c_w = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
| 350 | IF ( c_w < 0.0 ) THEN |
---|
| 351 | c_w = 0.0 |
---|
| 352 | ELSEIF ( c_w > c_max ) THEN |
---|
[73] | 353 | c_w = c_max |
---|
| 354 | ENDIF |
---|
[75] | 355 | ELSE |
---|
| 356 | c_w = c_max |
---|
| 357 | ENDIF |
---|
[73] | 358 | |
---|
| 359 | ! |
---|
[75] | 360 | !-- Calculate the new velocities |
---|
| 361 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * c_u * & |
---|
| 362 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 363 | |
---|
[75] | 364 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * c_v * & |
---|
| 365 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 366 | |
---|
[75] | 367 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * c_w * & |
---|
| 368 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
[73] | 369 | |
---|
| 370 | ! |
---|
[75] | 371 | !-- Swap timelevels for the next timestep |
---|
| 372 | u_m_n(k,:,i) = u(k,ny-1:ny+1,i) |
---|
| 373 | v_m_n(k,:,i) = v(k,ny-1:ny+1,i) |
---|
| 374 | w_m_n(k,:,i) = w(k,ny-1:ny+1,i) |
---|
[73] | 375 | |
---|
[1] | 376 | ENDDO |
---|
[75] | 377 | ENDDO |
---|
[1] | 378 | |
---|
| 379 | ! |
---|
[75] | 380 | !-- Bottom boundary at the outflow |
---|
| 381 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 382 | u_p(nzb,ny+1,:) = -u_p(nzb+1,ny+1,:) |
---|
| 383 | v_p(nzb,ny+1,:) = -v_p(nzb+1,ny+1,:) |
---|
| 384 | ELSE |
---|
| 385 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 386 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 387 | ENDIF |
---|
| 388 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 389 | |
---|
| 390 | ! |
---|
[75] | 391 | !-- Top boundary at the outflow |
---|
| 392 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 393 | u_p(nzt+1,ny+1,:) = ug(nzt+1) |
---|
| 394 | v_p(nzt+1,ny+1,:) = vg(nzt+1) |
---|
| 395 | ELSE |
---|
| 396 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 397 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
[1] | 398 | ENDIF |
---|
[75] | 399 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
[1] | 400 | |
---|
[75] | 401 | ENDIF |
---|
| 402 | |
---|
| 403 | IF ( outflow_l .AND. & |
---|
| 404 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 405 | THEN |
---|
| 406 | |
---|
| 407 | c_max = dx / dt_3d |
---|
| 408 | |
---|
| 409 | DO j = nys-1, nyn+1 |
---|
| 410 | DO k = nzb+1, nzt+1 |
---|
| 411 | |
---|
[1] | 412 | ! |
---|
[75] | 413 | !-- First calculate the phase speeds for u,v, and w |
---|
| 414 | denom = u_m_l(k,j,0) - u_m_l(k,j,1) |
---|
| 415 | |
---|
| 416 | IF ( denom /= 0.0 ) THEN |
---|
| 417 | c_u = -c_max * ( u(k,j,0) - u_m_r(k,j,0) ) / denom |
---|
| 418 | IF ( c_u > 0.0 ) THEN |
---|
| 419 | c_u = 0.0 |
---|
| 420 | ELSEIF ( c_u < -c_max ) THEN |
---|
| 421 | c_u = -c_max |
---|
| 422 | ENDIF |
---|
| 423 | ELSE |
---|
| 424 | c_u = -c_max |
---|
| 425 | ENDIF |
---|
| 426 | |
---|
| 427 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
| 428 | |
---|
| 429 | IF ( denom /= 0.0 ) THEN |
---|
| 430 | c_v = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
| 431 | IF ( c_v < 0.0 ) THEN |
---|
| 432 | c_v = 0.0 |
---|
| 433 | ELSEIF ( c_v > c_max ) THEN |
---|
| 434 | c_v = c_max |
---|
| 435 | ENDIF |
---|
| 436 | ELSE |
---|
| 437 | c_v = c_max |
---|
| 438 | ENDIF |
---|
| 439 | |
---|
| 440 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
| 441 | |
---|
| 442 | IF ( denom /= 0.0 ) THEN |
---|
| 443 | c_w = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
| 444 | IF ( c_w < 0.0 ) THEN |
---|
| 445 | c_w = 0.0 |
---|
| 446 | ELSEIF ( c_w > c_max ) THEN |
---|
| 447 | c_w = c_max |
---|
| 448 | ENDIF |
---|
| 449 | ELSE |
---|
| 450 | c_w = c_max |
---|
| 451 | ENDIF |
---|
| 452 | |
---|
[73] | 453 | ! |
---|
[75] | 454 | !-- Calculate the new velocities |
---|
| 455 | u_p(k,j,-1) = u(k,j,-1) + dt_3d * c_u * & |
---|
| 456 | ( u(k,j,-1) - u(k,j,0) ) * ddx |
---|
| 457 | |
---|
| 458 | v_p(k,j,-1) = v(k,j,-1) + dt_3d * c_v * & |
---|
| 459 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 460 | |
---|
| 461 | w_p(k,j,-1) = w(k,j,-1) + dt_3d * c_w * & |
---|
| 462 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
| 463 | |
---|
| 464 | ! |
---|
| 465 | !-- Swap timelevels for the next timestep |
---|
| 466 | u_m_l(k,j,:) = u(k,j,-1:1) |
---|
| 467 | v_m_l(k,j,:) = v(k,j,-1:1) |
---|
| 468 | w_m_l(k,j,:) = w(k,j,-1:1) |
---|
| 469 | |
---|
| 470 | ENDDO |
---|
| 471 | ENDDO |
---|
| 472 | |
---|
| 473 | ! |
---|
| 474 | !-- Bottom boundary at the outflow |
---|
| 475 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 476 | u_p(nzb,:,-1) = -u_p(nzb+1,:,-1) |
---|
| 477 | v_p(nzb,:,-1) = -v_p(nzb+1,:,-1) |
---|
| 478 | ELSE |
---|
| 479 | u_p(nzb,:,-1) = u_p(nzb+1,:,-1) |
---|
| 480 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
[1] | 481 | ENDIF |
---|
[75] | 482 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 483 | |
---|
[75] | 484 | ! |
---|
| 485 | !-- Top boundary at the outflow |
---|
| 486 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 487 | u_p(nzt+1,:,-1) = ug(nzt+1) |
---|
| 488 | v_p(nzt+1,:,-1) = vg(nzt+1) |
---|
| 489 | ELSE |
---|
| 490 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 491 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 492 | ENDIF |
---|
| 493 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
[73] | 494 | |
---|
[75] | 495 | ENDIF |
---|
[73] | 496 | |
---|
[75] | 497 | IF ( outflow_r .AND. & |
---|
| 498 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 499 | THEN |
---|
[73] | 500 | |
---|
[75] | 501 | c_max = dx / dt_3d |
---|
| 502 | |
---|
| 503 | DO j = nys-1, nyn+1 |
---|
| 504 | DO k = nzb+1, nzt+1 |
---|
| 505 | |
---|
[1] | 506 | ! |
---|
[75] | 507 | !-- First calculate the phase speeds for u,v, and w |
---|
| 508 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
[73] | 509 | |
---|
[75] | 510 | IF ( denom /= 0.0 ) THEN |
---|
| 511 | c_u = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
| 512 | IF ( c_u < 0.0 ) THEN |
---|
| 513 | c_u = 0.0 |
---|
| 514 | ELSEIF ( c_u > c_max ) THEN |
---|
[73] | 515 | c_u = c_max |
---|
| 516 | ENDIF |
---|
[75] | 517 | ELSE |
---|
| 518 | c_u = c_max |
---|
| 519 | ENDIF |
---|
[73] | 520 | |
---|
[75] | 521 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 522 | |
---|
[75] | 523 | IF ( denom /= 0.0 ) THEN |
---|
| 524 | c_v = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
| 525 | IF ( c_v < 0.0 ) THEN |
---|
| 526 | c_v = 0.0 |
---|
| 527 | ELSEIF ( c_v > c_max ) THEN |
---|
[73] | 528 | c_v = c_max |
---|
| 529 | ENDIF |
---|
[75] | 530 | ELSE |
---|
| 531 | c_v = c_max |
---|
| 532 | ENDIF |
---|
[73] | 533 | |
---|
[75] | 534 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 535 | |
---|
[75] | 536 | IF ( denom /= 0.0 ) THEN |
---|
| 537 | c_w = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
| 538 | IF ( c_w < 0.0 ) THEN |
---|
| 539 | c_w = 0.0 |
---|
| 540 | ELSEIF ( c_w > c_max ) THEN |
---|
[73] | 541 | c_w = c_max |
---|
| 542 | ENDIF |
---|
[75] | 543 | ELSE |
---|
| 544 | c_w = c_max |
---|
| 545 | ENDIF |
---|
[73] | 546 | |
---|
| 547 | ! |
---|
[75] | 548 | !-- Calculate the new velocities |
---|
| 549 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * c_u * & |
---|
| 550 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 551 | |
---|
[75] | 552 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * c_v * & |
---|
| 553 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 554 | |
---|
[75] | 555 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * c_w * & |
---|
| 556 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
[73] | 557 | |
---|
| 558 | ! |
---|
[75] | 559 | !-- Swap timelevels for the next timestep |
---|
| 560 | u_m_r(k,j,:) = u(k,j,nx-1:nx+1) |
---|
| 561 | v_m_r(k,j,:) = v(k,j,nx-1:nx+1) |
---|
| 562 | w_m_r(k,j,:) = w(k,j,nx-1:nx+1) |
---|
[73] | 563 | |
---|
| 564 | ENDDO |
---|
[75] | 565 | ENDDO |
---|
[73] | 566 | |
---|
| 567 | ! |
---|
[75] | 568 | !-- Bottom boundary at the outflow |
---|
| 569 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 570 | u_p(nzb,:,nx+1) = -u_p(nzb+1,:,nx+1) |
---|
| 571 | v_p(nzb,:,nx+1) = -v_p(nzb+1,:,nx+1) |
---|
| 572 | ELSE |
---|
| 573 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 574 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 575 | ENDIF |
---|
| 576 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 577 | |
---|
| 578 | ! |
---|
[75] | 579 | !-- Top boundary at the outflow |
---|
| 580 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 581 | u_p(nzt+1,:,nx+1) = ug(nzt+1) |
---|
| 582 | v_p(nzt+1,:,nx+1) = vg(nzt+1) |
---|
| 583 | ELSE |
---|
| 584 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 585 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
[1] | 586 | ENDIF |
---|
[75] | 587 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
[1] | 588 | |
---|
| 589 | ENDIF |
---|
| 590 | |
---|
| 591 | |
---|
| 592 | END SUBROUTINE boundary_conds |
---|