[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[95] | 6 | ! Boundary conditions for salinity added |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: boundary_conds.f90 95 2007-06-02 16:48:38Z raasch $ |
---|
[39] | 11 | ! |
---|
[77] | 12 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 13 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 14 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 15 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 16 | ! |
---|
[39] | 17 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 18 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 19 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 20 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 21 | ! |
---|
[3] | 22 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 23 | ! |
---|
[1] | 24 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 25 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 26 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 27 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 28 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 29 | ! |
---|
| 30 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 31 | ! Initial revision |
---|
| 32 | ! |
---|
| 33 | ! |
---|
| 34 | ! Description: |
---|
| 35 | ! ------------ |
---|
| 36 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 37 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 38 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 39 | ! 'outflow_uvw'). |
---|
| 40 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 41 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 42 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 43 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 44 | !------------------------------------------------------------------------------! |
---|
| 45 | |
---|
| 46 | USE arrays_3d |
---|
| 47 | USE control_parameters |
---|
| 48 | USE grid_variables |
---|
| 49 | USE indices |
---|
| 50 | USE pegrid |
---|
| 51 | |
---|
| 52 | IMPLICIT NONE |
---|
| 53 | |
---|
| 54 | CHARACTER (LEN=*) :: range |
---|
| 55 | |
---|
| 56 | INTEGER :: i, j, k |
---|
| 57 | |
---|
[73] | 58 | REAL :: c_max, c_u, c_v, c_w, denom |
---|
[1] | 59 | |
---|
[73] | 60 | |
---|
[1] | 61 | IF ( range == 'main') THEN |
---|
| 62 | ! |
---|
| 63 | !-- Bottom boundary |
---|
| 64 | IF ( ibc_uv_b == 0 ) THEN |
---|
[73] | 65 | ! |
---|
| 66 | !-- Satisfying the Dirichlet condition with an extra layer below the |
---|
| 67 | !-- surface where the u and v component change their sign |
---|
| 68 | u_p(nzb,:,:) = -u_p(nzb+1,:,:) |
---|
| 69 | v_p(nzb,:,:) = -v_p(nzb+1,:,:) |
---|
| 70 | ELSE |
---|
| 71 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 72 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 73 | ENDIF |
---|
| 74 | DO i = nxl-1, nxr+1 |
---|
| 75 | DO j = nys-1, nyn+1 |
---|
[73] | 76 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 77 | ENDDO |
---|
| 78 | ENDDO |
---|
| 79 | |
---|
| 80 | ! |
---|
| 81 | !-- Top boundary |
---|
| 82 | IF ( ibc_uv_t == 0 ) THEN |
---|
[73] | 83 | u_p(nzt+1,:,:) = ug(nzt+1) |
---|
| 84 | v_p(nzt+1,:,:) = vg(nzt+1) |
---|
[1] | 85 | ELSE |
---|
[73] | 86 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 87 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 88 | ENDIF |
---|
[73] | 89 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 90 | |
---|
| 91 | ! |
---|
| 92 | !-- Temperature at bottom boundary |
---|
| 93 | IF ( ibc_pt_b == 0 ) THEN |
---|
[73] | 94 | DO i = nxl-1, nxr+1 |
---|
| 95 | DO j = nys-1, nyn+1 |
---|
| 96 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 97 | ENDDO |
---|
[73] | 98 | ENDDO |
---|
[1] | 99 | ELSE |
---|
| 100 | DO i = nxl-1, nxr+1 |
---|
| 101 | DO j = nys-1, nyn+1 |
---|
[73] | 102 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 103 | ENDDO |
---|
| 104 | ENDDO |
---|
| 105 | ENDIF |
---|
| 106 | |
---|
| 107 | ! |
---|
| 108 | !-- Temperature at top boundary |
---|
[19] | 109 | IF ( ibc_pt_t == 0 ) THEN |
---|
[73] | 110 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 111 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[73] | 112 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 113 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[73] | 114 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 115 | ENDIF |
---|
| 116 | |
---|
| 117 | ! |
---|
| 118 | !-- Boundary conditions for TKE |
---|
| 119 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 120 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 121 | DO i = nxl-1, nxr+1 |
---|
| 122 | DO j = nys-1, nyn+1 |
---|
[73] | 123 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 124 | ENDDO |
---|
| 125 | ENDDO |
---|
[73] | 126 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 127 | ENDIF |
---|
| 128 | |
---|
| 129 | ! |
---|
[95] | 130 | !-- Boundary conditions for salinity |
---|
| 131 | IF ( ocean ) THEN |
---|
| 132 | ! |
---|
| 133 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 134 | !-- given |
---|
| 135 | DO i = nxl-1, nxr+1 |
---|
| 136 | DO j = nys-1, nyn+1 |
---|
| 137 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 138 | ENDDO |
---|
| 139 | ENDDO |
---|
| 140 | |
---|
| 141 | ! |
---|
| 142 | !-- Top boundary: Dirichlet or Neumann |
---|
| 143 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 144 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 145 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 146 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
| 147 | ENDIF |
---|
| 148 | |
---|
| 149 | ENDIF |
---|
| 150 | |
---|
| 151 | ! |
---|
[1] | 152 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 153 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 154 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 155 | ! |
---|
[75] | 156 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 157 | IF ( ibc_q_b == 0 ) THEN |
---|
[73] | 158 | DO i = nxl-1, nxr+1 |
---|
| 159 | DO j = nys-1, nyn+1 |
---|
| 160 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 161 | ENDDO |
---|
[73] | 162 | ENDDO |
---|
[1] | 163 | ELSE |
---|
| 164 | DO i = nxl-1, nxr+1 |
---|
| 165 | DO j = nys-1, nyn+1 |
---|
[73] | 166 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 167 | ENDDO |
---|
| 168 | ENDDO |
---|
| 169 | ENDIF |
---|
| 170 | ! |
---|
| 171 | !-- Top boundary |
---|
[73] | 172 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 173 | ENDIF |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- Lateral boundary conditions at the inflow. Quasi Neumann conditions |
---|
| 177 | !-- are needed for the wall normal velocity in order to ensure zero |
---|
| 178 | !-- divergence. Dirichlet conditions are used for all other quantities. |
---|
| 179 | IF ( inflow_s ) THEN |
---|
[73] | 180 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[1] | 181 | ELSEIF ( inflow_n ) THEN |
---|
[75] | 182 | v_p(:,nyn,:) = v_p(:,nyn+1,:) |
---|
[1] | 183 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 184 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[1] | 185 | ELSEIF ( inflow_r ) THEN |
---|
[75] | 186 | u_p(:,:,nxr) = u_p(:,:,nxr+1) |
---|
[1] | 187 | ENDIF |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 191 | IF ( outflow_s ) THEN |
---|
[73] | 192 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 193 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[75] | 194 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1] | 195 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 196 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 197 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[75] | 198 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1] | 199 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 200 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 201 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[75] | 202 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1] | 203 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 204 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 205 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[75] | 206 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1] | 207 | ENDIF |
---|
| 208 | |
---|
| 209 | ENDIF |
---|
| 210 | |
---|
| 211 | ! |
---|
[75] | 212 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
| 213 | IF ( outflow_s .AND. & |
---|
| 214 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 215 | THEN |
---|
| 216 | |
---|
| 217 | c_max = dy / dt_3d |
---|
| 218 | |
---|
| 219 | DO i = nxl-1, nxr+1 |
---|
| 220 | DO k = nzb+1, nzt+1 |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- First calculate the phase speeds for u,v, and w |
---|
| 224 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 225 | |
---|
| 226 | IF ( denom /= 0.0 ) THEN |
---|
| 227 | c_u = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
| 228 | IF ( c_u < 0.0 ) THEN |
---|
| 229 | c_u = 0.0 |
---|
| 230 | ELSEIF ( c_u > c_max ) THEN |
---|
| 231 | c_u = c_max |
---|
| 232 | ENDIF |
---|
| 233 | ELSE |
---|
| 234 | c_u = c_max |
---|
| 235 | ENDIF |
---|
| 236 | denom = v_m_s(k,0,i) - v_m_s(k,1,i) |
---|
| 237 | |
---|
| 238 | IF ( denom /= 0.0 ) THEN |
---|
| 239 | c_v = -c_max * ( v(k,0,i) - v_m_s(k,0,i) ) / denom |
---|
| 240 | IF ( c_v < 0.0 ) THEN |
---|
| 241 | c_v = 0.0 |
---|
| 242 | ELSEIF ( c_v > c_max ) THEN |
---|
| 243 | c_v = c_max |
---|
| 244 | ENDIF |
---|
| 245 | ELSE |
---|
| 246 | c_v = c_max |
---|
| 247 | ENDIF |
---|
| 248 | |
---|
| 249 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
| 250 | |
---|
| 251 | IF ( denom /= 0.0 ) THEN |
---|
| 252 | c_w = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
| 253 | IF ( c_w < 0.0 ) THEN |
---|
| 254 | c_w = 0.0 |
---|
| 255 | ELSEIF ( c_w > c_max ) THEN |
---|
| 256 | c_w = c_max |
---|
| 257 | ENDIF |
---|
| 258 | ELSE |
---|
| 259 | c_w = c_max |
---|
| 260 | ENDIF |
---|
| 261 | |
---|
| 262 | ! |
---|
| 263 | !-- Calculate the new velocities |
---|
| 264 | u_p(k,-1,i) = u(k,-1,i) + dt_3d * c_u * & |
---|
| 265 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 266 | |
---|
| 267 | v_p(k,-1,i) = v(k,-1,i) + dt_3d * c_v * & |
---|
| 268 | ( v(k,-1,i) - v_m_s(k,0,i) ) * ddy |
---|
| 269 | |
---|
| 270 | w_p(k,-1,i) = w(k,-1,i) + dt_3d * c_w * & |
---|
| 271 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
| 272 | |
---|
| 273 | ! |
---|
| 274 | !-- Save old timelevels for the next timestep |
---|
| 275 | u_m_s(k,:,i) = u(k,-1:1,i) |
---|
| 276 | v_m_s(k,:,i) = v(k,-1:1,i) |
---|
| 277 | w_m_s(k,:,i) = w(k,-1:1,i) |
---|
| 278 | |
---|
| 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | |
---|
| 282 | ! |
---|
| 283 | !-- Bottom boundary at the outflow |
---|
| 284 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 285 | u_p(nzb,-1,:) = -u_p(nzb+1,-1,:) |
---|
| 286 | v_p(nzb,-1,:) = -v_p(nzb+1,-1,:) |
---|
| 287 | ELSE |
---|
| 288 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 289 | v_p(nzb,-1,:) = v_p(nzb+1,-1,:) |
---|
[73] | 290 | ENDIF |
---|
[75] | 291 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 292 | |
---|
[75] | 293 | ! |
---|
| 294 | !-- Top boundary at the outflow |
---|
| 295 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 296 | u_p(nzt+1,-1,:) = ug(nzt+1) |
---|
| 297 | v_p(nzt+1,-1,:) = vg(nzt+1) |
---|
| 298 | ELSE |
---|
| 299 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
| 300 | v_p(nzt+1,-1,:) = v(nzt,-1,:) |
---|
| 301 | ENDIF |
---|
| 302 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
[73] | 303 | |
---|
[75] | 304 | ENDIF |
---|
[73] | 305 | |
---|
[75] | 306 | IF ( outflow_n .AND. & |
---|
| 307 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 308 | THEN |
---|
[73] | 309 | |
---|
[75] | 310 | c_max = dy / dt_3d |
---|
| 311 | |
---|
| 312 | DO i = nxl-1, nxr+1 |
---|
| 313 | DO k = nzb+1, nzt+1 |
---|
| 314 | |
---|
[1] | 315 | ! |
---|
[75] | 316 | !-- First calculate the phase speeds for u,v, and w |
---|
| 317 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
[73] | 318 | |
---|
[75] | 319 | IF ( denom /= 0.0 ) THEN |
---|
| 320 | c_u = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
| 321 | IF ( c_u < 0.0 ) THEN |
---|
| 322 | c_u = 0.0 |
---|
| 323 | ELSEIF ( c_u > c_max ) THEN |
---|
[73] | 324 | c_u = c_max |
---|
| 325 | ENDIF |
---|
[75] | 326 | ELSE |
---|
| 327 | c_u = c_max |
---|
| 328 | ENDIF |
---|
[73] | 329 | |
---|
[75] | 330 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 331 | |
---|
[75] | 332 | IF ( denom /= 0.0 ) THEN |
---|
| 333 | c_v = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
| 334 | IF ( c_v < 0.0 ) THEN |
---|
| 335 | c_v = 0.0 |
---|
| 336 | ELSEIF ( c_v > c_max ) THEN |
---|
[73] | 337 | c_v = c_max |
---|
| 338 | ENDIF |
---|
[75] | 339 | ELSE |
---|
| 340 | c_v = c_max |
---|
| 341 | ENDIF |
---|
[73] | 342 | |
---|
[75] | 343 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 344 | |
---|
[75] | 345 | IF ( denom /= 0.0 ) THEN |
---|
| 346 | c_w = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
| 347 | IF ( c_w < 0.0 ) THEN |
---|
| 348 | c_w = 0.0 |
---|
| 349 | ELSEIF ( c_w > c_max ) THEN |
---|
[73] | 350 | c_w = c_max |
---|
| 351 | ENDIF |
---|
[75] | 352 | ELSE |
---|
| 353 | c_w = c_max |
---|
| 354 | ENDIF |
---|
[73] | 355 | |
---|
| 356 | ! |
---|
[75] | 357 | !-- Calculate the new velocities |
---|
| 358 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * c_u * & |
---|
| 359 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 360 | |
---|
[75] | 361 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * c_v * & |
---|
| 362 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 363 | |
---|
[75] | 364 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * c_w * & |
---|
| 365 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
[73] | 366 | |
---|
| 367 | ! |
---|
[75] | 368 | !-- Swap timelevels for the next timestep |
---|
| 369 | u_m_n(k,:,i) = u(k,ny-1:ny+1,i) |
---|
| 370 | v_m_n(k,:,i) = v(k,ny-1:ny+1,i) |
---|
| 371 | w_m_n(k,:,i) = w(k,ny-1:ny+1,i) |
---|
[73] | 372 | |
---|
[1] | 373 | ENDDO |
---|
[75] | 374 | ENDDO |
---|
[1] | 375 | |
---|
| 376 | ! |
---|
[75] | 377 | !-- Bottom boundary at the outflow |
---|
| 378 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 379 | u_p(nzb,ny+1,:) = -u_p(nzb+1,ny+1,:) |
---|
| 380 | v_p(nzb,ny+1,:) = -v_p(nzb+1,ny+1,:) |
---|
| 381 | ELSE |
---|
| 382 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 383 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 384 | ENDIF |
---|
| 385 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 386 | |
---|
| 387 | ! |
---|
[75] | 388 | !-- Top boundary at the outflow |
---|
| 389 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 390 | u_p(nzt+1,ny+1,:) = ug(nzt+1) |
---|
| 391 | v_p(nzt+1,ny+1,:) = vg(nzt+1) |
---|
| 392 | ELSE |
---|
| 393 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 394 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
[1] | 395 | ENDIF |
---|
[75] | 396 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
[1] | 397 | |
---|
[75] | 398 | ENDIF |
---|
| 399 | |
---|
| 400 | IF ( outflow_l .AND. & |
---|
| 401 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 402 | THEN |
---|
| 403 | |
---|
| 404 | c_max = dx / dt_3d |
---|
| 405 | |
---|
| 406 | DO j = nys-1, nyn+1 |
---|
| 407 | DO k = nzb+1, nzt+1 |
---|
| 408 | |
---|
[1] | 409 | ! |
---|
[75] | 410 | !-- First calculate the phase speeds for u,v, and w |
---|
| 411 | denom = u_m_l(k,j,0) - u_m_l(k,j,1) |
---|
| 412 | |
---|
| 413 | IF ( denom /= 0.0 ) THEN |
---|
| 414 | c_u = -c_max * ( u(k,j,0) - u_m_r(k,j,0) ) / denom |
---|
| 415 | IF ( c_u > 0.0 ) THEN |
---|
| 416 | c_u = 0.0 |
---|
| 417 | ELSEIF ( c_u < -c_max ) THEN |
---|
| 418 | c_u = -c_max |
---|
| 419 | ENDIF |
---|
| 420 | ELSE |
---|
| 421 | c_u = -c_max |
---|
| 422 | ENDIF |
---|
| 423 | |
---|
| 424 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
| 425 | |
---|
| 426 | IF ( denom /= 0.0 ) THEN |
---|
| 427 | c_v = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
| 428 | IF ( c_v < 0.0 ) THEN |
---|
| 429 | c_v = 0.0 |
---|
| 430 | ELSEIF ( c_v > c_max ) THEN |
---|
| 431 | c_v = c_max |
---|
| 432 | ENDIF |
---|
| 433 | ELSE |
---|
| 434 | c_v = c_max |
---|
| 435 | ENDIF |
---|
| 436 | |
---|
| 437 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
| 438 | |
---|
| 439 | IF ( denom /= 0.0 ) THEN |
---|
| 440 | c_w = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
| 441 | IF ( c_w < 0.0 ) THEN |
---|
| 442 | c_w = 0.0 |
---|
| 443 | ELSEIF ( c_w > c_max ) THEN |
---|
| 444 | c_w = c_max |
---|
| 445 | ENDIF |
---|
| 446 | ELSE |
---|
| 447 | c_w = c_max |
---|
| 448 | ENDIF |
---|
| 449 | |
---|
[73] | 450 | ! |
---|
[75] | 451 | !-- Calculate the new velocities |
---|
| 452 | u_p(k,j,-1) = u(k,j,-1) + dt_3d * c_u * & |
---|
| 453 | ( u(k,j,-1) - u(k,j,0) ) * ddx |
---|
| 454 | |
---|
| 455 | v_p(k,j,-1) = v(k,j,-1) + dt_3d * c_v * & |
---|
| 456 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 457 | |
---|
| 458 | w_p(k,j,-1) = w(k,j,-1) + dt_3d * c_w * & |
---|
| 459 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
| 460 | |
---|
| 461 | ! |
---|
| 462 | !-- Swap timelevels for the next timestep |
---|
| 463 | u_m_l(k,j,:) = u(k,j,-1:1) |
---|
| 464 | v_m_l(k,j,:) = v(k,j,-1:1) |
---|
| 465 | w_m_l(k,j,:) = w(k,j,-1:1) |
---|
| 466 | |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | |
---|
| 470 | ! |
---|
| 471 | !-- Bottom boundary at the outflow |
---|
| 472 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 473 | u_p(nzb,:,-1) = -u_p(nzb+1,:,-1) |
---|
| 474 | v_p(nzb,:,-1) = -v_p(nzb+1,:,-1) |
---|
| 475 | ELSE |
---|
| 476 | u_p(nzb,:,-1) = u_p(nzb+1,:,-1) |
---|
| 477 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
[1] | 478 | ENDIF |
---|
[75] | 479 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 480 | |
---|
[75] | 481 | ! |
---|
| 482 | !-- Top boundary at the outflow |
---|
| 483 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 484 | u_p(nzt+1,:,-1) = ug(nzt+1) |
---|
| 485 | v_p(nzt+1,:,-1) = vg(nzt+1) |
---|
| 486 | ELSE |
---|
| 487 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 488 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 489 | ENDIF |
---|
| 490 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
[73] | 491 | |
---|
[75] | 492 | ENDIF |
---|
[73] | 493 | |
---|
[75] | 494 | IF ( outflow_r .AND. & |
---|
| 495 | intermediate_timestep_count == intermediate_timestep_count_max ) & |
---|
| 496 | THEN |
---|
[73] | 497 | |
---|
[75] | 498 | c_max = dx / dt_3d |
---|
| 499 | |
---|
| 500 | DO j = nys-1, nyn+1 |
---|
| 501 | DO k = nzb+1, nzt+1 |
---|
| 502 | |
---|
[1] | 503 | ! |
---|
[75] | 504 | !-- First calculate the phase speeds for u,v, and w |
---|
| 505 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
[73] | 506 | |
---|
[75] | 507 | IF ( denom /= 0.0 ) THEN |
---|
| 508 | c_u = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
| 509 | IF ( c_u < 0.0 ) THEN |
---|
| 510 | c_u = 0.0 |
---|
| 511 | ELSEIF ( c_u > c_max ) THEN |
---|
[73] | 512 | c_u = c_max |
---|
| 513 | ENDIF |
---|
[75] | 514 | ELSE |
---|
| 515 | c_u = c_max |
---|
| 516 | ENDIF |
---|
[73] | 517 | |
---|
[75] | 518 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 519 | |
---|
[75] | 520 | IF ( denom /= 0.0 ) THEN |
---|
| 521 | c_v = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
| 522 | IF ( c_v < 0.0 ) THEN |
---|
| 523 | c_v = 0.0 |
---|
| 524 | ELSEIF ( c_v > c_max ) THEN |
---|
[73] | 525 | c_v = c_max |
---|
| 526 | ENDIF |
---|
[75] | 527 | ELSE |
---|
| 528 | c_v = c_max |
---|
| 529 | ENDIF |
---|
[73] | 530 | |
---|
[75] | 531 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 532 | |
---|
[75] | 533 | IF ( denom /= 0.0 ) THEN |
---|
| 534 | c_w = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
| 535 | IF ( c_w < 0.0 ) THEN |
---|
| 536 | c_w = 0.0 |
---|
| 537 | ELSEIF ( c_w > c_max ) THEN |
---|
[73] | 538 | c_w = c_max |
---|
| 539 | ENDIF |
---|
[75] | 540 | ELSE |
---|
| 541 | c_w = c_max |
---|
| 542 | ENDIF |
---|
[73] | 543 | |
---|
| 544 | ! |
---|
[75] | 545 | !-- Calculate the new velocities |
---|
| 546 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * c_u * & |
---|
| 547 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 548 | |
---|
[75] | 549 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * c_v * & |
---|
| 550 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 551 | |
---|
[75] | 552 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * c_w * & |
---|
| 553 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
[73] | 554 | |
---|
| 555 | ! |
---|
[75] | 556 | !-- Swap timelevels for the next timestep |
---|
| 557 | u_m_r(k,j,:) = u(k,j,nx-1:nx+1) |
---|
| 558 | v_m_r(k,j,:) = v(k,j,nx-1:nx+1) |
---|
| 559 | w_m_r(k,j,:) = w(k,j,nx-1:nx+1) |
---|
[73] | 560 | |
---|
| 561 | ENDDO |
---|
[75] | 562 | ENDDO |
---|
[73] | 563 | |
---|
| 564 | ! |
---|
[75] | 565 | !-- Bottom boundary at the outflow |
---|
| 566 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 567 | u_p(nzb,:,nx+1) = -u_p(nzb+1,:,nx+1) |
---|
| 568 | v_p(nzb,:,nx+1) = -v_p(nzb+1,:,nx+1) |
---|
| 569 | ELSE |
---|
| 570 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 571 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 572 | ENDIF |
---|
| 573 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 574 | |
---|
| 575 | ! |
---|
[75] | 576 | !-- Top boundary at the outflow |
---|
| 577 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 578 | u_p(nzt+1,:,nx+1) = ug(nzt+1) |
---|
| 579 | v_p(nzt+1,:,nx+1) = vg(nzt+1) |
---|
| 580 | ELSE |
---|
| 581 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 582 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
[1] | 583 | ENDIF |
---|
[75] | 584 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
[1] | 585 | |
---|
| 586 | ENDIF |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | END SUBROUTINE boundary_conds |
---|