[1] | 1 | SUBROUTINE boundary_conds( range ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[106] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: boundary_conds.f90 484 2010-02-05 07:36:54Z heinze $ |
---|
[39] | 11 | ! |
---|
[110] | 12 | ! 107 2007-08-17 13:54:45Z raasch |
---|
| 13 | ! Boundary conditions for temperature adjusted for coupled runs, |
---|
| 14 | ! bugfixes for the radiation boundary conditions at the outflow: radiation |
---|
| 15 | ! conditions are used for every substep, phase speeds are calculated for the |
---|
| 16 | ! first Runge-Kutta substep only and then reused, several index values changed |
---|
| 17 | ! |
---|
[98] | 18 | ! 95 2007-06-02 16:48:38Z raasch |
---|
| 19 | ! Boundary conditions for salinity added |
---|
| 20 | ! |
---|
[77] | 21 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 22 | ! The "main" part sets conditions for time level t+dt instead of level t, |
---|
| 23 | ! outflow boundary conditions changed from Neumann to radiation condition, |
---|
| 24 | ! uxrp, vynp eliminated, moisture renamed humidity |
---|
| 25 | ! |
---|
[39] | 26 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 27 | ! Boundary conditions for e(nzt), pt(nzt), and q(nzt) removed because these |
---|
| 28 | ! gridpoints are now calculated by the prognostic equation, |
---|
| 29 | ! Dirichlet and zero gradient condition for pt established at top boundary |
---|
| 30 | ! |
---|
[3] | 31 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 32 | ! |
---|
[1] | 33 | ! Revision 1.15 2006/02/23 09:54:55 raasch |
---|
| 34 | ! Surface boundary conditions in case of topography: nzb replaced by |
---|
| 35 | ! 2d-k-index-arrays (nzb_w_inner, etc.). Conditions for u and v remain |
---|
| 36 | ! unchanged (still using nzb) because a non-flat topography must use a |
---|
| 37 | ! Prandtl-layer, which don't requires explicit setting of the surface values. |
---|
| 38 | ! |
---|
| 39 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 40 | ! Initial revision |
---|
| 41 | ! |
---|
| 42 | ! |
---|
| 43 | ! Description: |
---|
| 44 | ! ------------ |
---|
| 45 | ! Boundary conditions for the prognostic quantities (range='main'). |
---|
| 46 | ! In case of non-cyclic lateral boundaries the conditions for velocities at |
---|
| 47 | ! the outflow are set after the pressure solver has been called (range= |
---|
| 48 | ! 'outflow_uvw'). |
---|
| 49 | ! One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 50 | ! in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 51 | ! handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 52 | ! explicitly set in routines pres, poisfft, poismg and sor. |
---|
| 53 | !------------------------------------------------------------------------------! |
---|
| 54 | |
---|
| 55 | USE arrays_3d |
---|
| 56 | USE control_parameters |
---|
| 57 | USE grid_variables |
---|
| 58 | USE indices |
---|
| 59 | USE pegrid |
---|
| 60 | |
---|
| 61 | IMPLICIT NONE |
---|
| 62 | |
---|
| 63 | CHARACTER (LEN=*) :: range |
---|
| 64 | |
---|
| 65 | INTEGER :: i, j, k |
---|
| 66 | |
---|
[106] | 67 | REAL :: c_max, denom |
---|
[1] | 68 | |
---|
[73] | 69 | |
---|
[1] | 70 | IF ( range == 'main') THEN |
---|
| 71 | ! |
---|
| 72 | !-- Bottom boundary |
---|
| 73 | IF ( ibc_uv_b == 0 ) THEN |
---|
[73] | 74 | ! |
---|
| 75 | !-- Satisfying the Dirichlet condition with an extra layer below the |
---|
| 76 | !-- surface where the u and v component change their sign |
---|
| 77 | u_p(nzb,:,:) = -u_p(nzb+1,:,:) |
---|
| 78 | v_p(nzb,:,:) = -v_p(nzb+1,:,:) |
---|
| 79 | ELSE |
---|
| 80 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 81 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
[1] | 82 | ENDIF |
---|
| 83 | DO i = nxl-1, nxr+1 |
---|
| 84 | DO j = nys-1, nyn+1 |
---|
[73] | 85 | w_p(nzb_w_inner(j,i),j,i) = 0.0 |
---|
[1] | 86 | ENDDO |
---|
| 87 | ENDDO |
---|
| 88 | |
---|
| 89 | ! |
---|
| 90 | !-- Top boundary |
---|
| 91 | IF ( ibc_uv_t == 0 ) THEN |
---|
[73] | 92 | u_p(nzt+1,:,:) = ug(nzt+1) |
---|
| 93 | v_p(nzt+1,:,:) = vg(nzt+1) |
---|
[1] | 94 | ELSE |
---|
[73] | 95 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 96 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
[1] | 97 | ENDIF |
---|
[73] | 98 | w_p(nzt:nzt+1,:,:) = 0.0 ! nzt is not a prognostic level (but cf. pres) |
---|
[1] | 99 | |
---|
| 100 | ! |
---|
[102] | 101 | !-- Temperature at bottom boundary. |
---|
| 102 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 103 | !-- the sea surface temperature of the coupled ocean model. |
---|
[1] | 104 | IF ( ibc_pt_b == 0 ) THEN |
---|
[73] | 105 | DO i = nxl-1, nxr+1 |
---|
| 106 | DO j = nys-1, nyn+1 |
---|
| 107 | pt_p(nzb_s_inner(j,i),j,i) = pt(nzb_s_inner(j,i),j,i) |
---|
[1] | 108 | ENDDO |
---|
[73] | 109 | ENDDO |
---|
[102] | 110 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[1] | 111 | DO i = nxl-1, nxr+1 |
---|
| 112 | DO j = nys-1, nyn+1 |
---|
[73] | 113 | pt_p(nzb_s_inner(j,i),j,i) = pt_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 114 | ENDDO |
---|
| 115 | ENDDO |
---|
| 116 | ENDIF |
---|
| 117 | |
---|
| 118 | ! |
---|
| 119 | !-- Temperature at top boundary |
---|
[19] | 120 | IF ( ibc_pt_t == 0 ) THEN |
---|
[73] | 121 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[19] | 122 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
[73] | 123 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
[19] | 124 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[73] | 125 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 126 | ENDIF |
---|
| 127 | |
---|
| 128 | ! |
---|
| 129 | !-- Boundary conditions for TKE |
---|
| 130 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 131 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 132 | DO i = nxl-1, nxr+1 |
---|
| 133 | DO j = nys-1, nyn+1 |
---|
[73] | 134 | e_p(nzb_s_inner(j,i),j,i) = e_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 135 | ENDDO |
---|
| 136 | ENDDO |
---|
[73] | 137 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[1] | 138 | ENDIF |
---|
| 139 | |
---|
| 140 | ! |
---|
[95] | 141 | !-- Boundary conditions for salinity |
---|
| 142 | IF ( ocean ) THEN |
---|
| 143 | ! |
---|
| 144 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
| 145 | !-- given |
---|
| 146 | DO i = nxl-1, nxr+1 |
---|
| 147 | DO j = nys-1, nyn+1 |
---|
| 148 | sa_p(nzb_s_inner(j,i),j,i) = sa_p(nzb_s_inner(j,i)+1,j,i) |
---|
| 149 | ENDDO |
---|
| 150 | ENDDO |
---|
| 151 | |
---|
| 152 | ! |
---|
| 153 | !-- Top boundary: Dirichlet or Neumann |
---|
| 154 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 155 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 156 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 157 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
| 158 | ENDIF |
---|
| 159 | |
---|
| 160 | ENDIF |
---|
| 161 | |
---|
| 162 | ! |
---|
[1] | 163 | !-- Boundary conditions for total water content or scalar, |
---|
[95] | 164 | !-- bottom and top boundary (see also temperature) |
---|
[75] | 165 | IF ( humidity .OR. passive_scalar ) THEN |
---|
[1] | 166 | ! |
---|
[75] | 167 | !-- Surface conditions for constant_humidity_flux |
---|
[1] | 168 | IF ( ibc_q_b == 0 ) THEN |
---|
[73] | 169 | DO i = nxl-1, nxr+1 |
---|
| 170 | DO j = nys-1, nyn+1 |
---|
| 171 | q_p(nzb_s_inner(j,i),j,i) = q(nzb_s_inner(j,i),j,i) |
---|
[1] | 172 | ENDDO |
---|
[73] | 173 | ENDDO |
---|
[1] | 174 | ELSE |
---|
| 175 | DO i = nxl-1, nxr+1 |
---|
| 176 | DO j = nys-1, nyn+1 |
---|
[73] | 177 | q_p(nzb_s_inner(j,i),j,i) = q_p(nzb_s_inner(j,i)+1,j,i) |
---|
[1] | 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | ENDIF |
---|
| 181 | ! |
---|
| 182 | !-- Top boundary |
---|
[73] | 183 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 184 | ENDIF |
---|
| 185 | |
---|
| 186 | ! |
---|
| 187 | !-- Lateral boundary conditions at the inflow. Quasi Neumann conditions |
---|
| 188 | !-- are needed for the wall normal velocity in order to ensure zero |
---|
| 189 | !-- divergence. Dirichlet conditions are used for all other quantities. |
---|
| 190 | IF ( inflow_s ) THEN |
---|
[73] | 191 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[1] | 192 | ELSEIF ( inflow_n ) THEN |
---|
[75] | 193 | v_p(:,nyn,:) = v_p(:,nyn+1,:) |
---|
[1] | 194 | ELSEIF ( inflow_l ) THEN |
---|
[73] | 195 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
[1] | 196 | ELSEIF ( inflow_r ) THEN |
---|
[75] | 197 | u_p(:,:,nxr) = u_p(:,:,nxr+1) |
---|
[1] | 198 | ENDIF |
---|
| 199 | |
---|
| 200 | ! |
---|
| 201 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 202 | IF ( outflow_s ) THEN |
---|
[73] | 203 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
| 204 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[75] | 205 | IF ( humidity .OR. passive_scalar ) q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[1] | 206 | ELSEIF ( outflow_n ) THEN |
---|
[73] | 207 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 208 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[75] | 209 | IF ( humidity .OR. passive_scalar ) q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[1] | 210 | ELSEIF ( outflow_l ) THEN |
---|
[73] | 211 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 212 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[75] | 213 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[1] | 214 | ELSEIF ( outflow_r ) THEN |
---|
[73] | 215 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 216 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[75] | 217 | IF ( humidity .OR. passive_scalar ) q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[1] | 218 | ENDIF |
---|
| 219 | |
---|
| 220 | ENDIF |
---|
| 221 | |
---|
| 222 | ! |
---|
[75] | 223 | !-- Radiation boundary condition for the velocities at the respective outflow |
---|
[106] | 224 | IF ( outflow_s ) THEN |
---|
[75] | 225 | |
---|
| 226 | c_max = dy / dt_3d |
---|
| 227 | |
---|
| 228 | DO i = nxl-1, nxr+1 |
---|
| 229 | DO k = nzb+1, nzt+1 |
---|
| 230 | |
---|
| 231 | ! |
---|
[106] | 232 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 233 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 234 | !-- reuse this values for the further substeps. |
---|
| 235 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 236 | |
---|
[106] | 237 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 238 | |
---|
| 239 | IF ( denom /= 0.0 ) THEN |
---|
| 240 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / denom |
---|
| 241 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 242 | c_u(k,i) = 0.0 |
---|
| 243 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 244 | c_u(k,i) = c_max |
---|
| 245 | ENDIF |
---|
| 246 | ELSE |
---|
| 247 | c_u(k,i) = c_max |
---|
[75] | 248 | ENDIF |
---|
| 249 | |
---|
[106] | 250 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 251 | |
---|
| 252 | IF ( denom /= 0.0 ) THEN |
---|
| 253 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / denom |
---|
| 254 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 255 | c_v(k,i) = 0.0 |
---|
| 256 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 257 | c_v(k,i) = c_max |
---|
| 258 | ENDIF |
---|
| 259 | ELSE |
---|
| 260 | c_v(k,i) = c_max |
---|
[75] | 261 | ENDIF |
---|
| 262 | |
---|
[106] | 263 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 264 | |
---|
[106] | 265 | IF ( denom /= 0.0 ) THEN |
---|
| 266 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / denom |
---|
| 267 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 268 | c_w(k,i) = 0.0 |
---|
| 269 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 270 | c_w(k,i) = c_max |
---|
| 271 | ENDIF |
---|
| 272 | ELSE |
---|
| 273 | c_w(k,i) = c_max |
---|
[75] | 274 | ENDIF |
---|
[106] | 275 | |
---|
| 276 | ! |
---|
| 277 | !-- Save old timelevels for the next timestep |
---|
| 278 | u_m_s(k,:,i) = u(k,0:1,i) |
---|
| 279 | v_m_s(k,:,i) = v(k,1:2,i) |
---|
| 280 | w_m_s(k,:,i) = w(k,0:1,i) |
---|
| 281 | |
---|
[75] | 282 | ENDIF |
---|
| 283 | |
---|
| 284 | ! |
---|
| 285 | !-- Calculate the new velocities |
---|
[106] | 286 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
[75] | 287 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 288 | |
---|
[107] | 289 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
[106] | 290 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 291 | |
---|
[106] | 292 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
[75] | 293 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
| 294 | |
---|
| 295 | ENDDO |
---|
| 296 | ENDDO |
---|
| 297 | |
---|
| 298 | ! |
---|
| 299 | !-- Bottom boundary at the outflow |
---|
| 300 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 301 | u_p(nzb,-1,:) = -u_p(nzb+1,-1,:) |
---|
[106] | 302 | v_p(nzb,0,:) = -v_p(nzb+1,0,:) |
---|
[75] | 303 | ELSE |
---|
| 304 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
[106] | 305 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
[73] | 306 | ENDIF |
---|
[106] | 307 | w_p(nzb,-1,:) = 0.0 |
---|
[73] | 308 | |
---|
[75] | 309 | ! |
---|
| 310 | !-- Top boundary at the outflow |
---|
| 311 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 312 | u_p(nzt+1,-1,:) = ug(nzt+1) |
---|
[106] | 313 | v_p(nzt+1,0,:) = vg(nzt+1) |
---|
[75] | 314 | ELSE |
---|
| 315 | u_p(nzt+1,-1,:) = u(nzt,-1,:) |
---|
[106] | 316 | v_p(nzt+1,0,:) = v(nzt,0,:) |
---|
[75] | 317 | ENDIF |
---|
| 318 | w_p(nzt:nzt+1,-1,:) = 0.0 |
---|
[73] | 319 | |
---|
[75] | 320 | ENDIF |
---|
[73] | 321 | |
---|
[106] | 322 | IF ( outflow_n ) THEN |
---|
[73] | 323 | |
---|
[75] | 324 | c_max = dy / dt_3d |
---|
| 325 | |
---|
| 326 | DO i = nxl-1, nxr+1 |
---|
| 327 | DO k = nzb+1, nzt+1 |
---|
| 328 | |
---|
[1] | 329 | ! |
---|
[106] | 330 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 331 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 332 | !-- reuse this values for the further substeps. |
---|
| 333 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[73] | 334 | |
---|
[106] | 335 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 336 | |
---|
| 337 | IF ( denom /= 0.0 ) THEN |
---|
| 338 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / denom |
---|
| 339 | IF ( c_u(k,i) < 0.0 ) THEN |
---|
| 340 | c_u(k,i) = 0.0 |
---|
| 341 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 342 | c_u(k,i) = c_max |
---|
| 343 | ENDIF |
---|
| 344 | ELSE |
---|
| 345 | c_u(k,i) = c_max |
---|
[73] | 346 | ENDIF |
---|
| 347 | |
---|
[106] | 348 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 349 | |
---|
[106] | 350 | IF ( denom /= 0.0 ) THEN |
---|
| 351 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / denom |
---|
| 352 | IF ( c_v(k,i) < 0.0 ) THEN |
---|
| 353 | c_v(k,i) = 0.0 |
---|
| 354 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 355 | c_v(k,i) = c_max |
---|
| 356 | ENDIF |
---|
| 357 | ELSE |
---|
| 358 | c_v(k,i) = c_max |
---|
[73] | 359 | ENDIF |
---|
| 360 | |
---|
[106] | 361 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 362 | |
---|
[106] | 363 | IF ( denom /= 0.0 ) THEN |
---|
| 364 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / denom |
---|
| 365 | IF ( c_w(k,i) < 0.0 ) THEN |
---|
| 366 | c_w(k,i) = 0.0 |
---|
| 367 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 368 | c_w(k,i) = c_max |
---|
| 369 | ENDIF |
---|
| 370 | ELSE |
---|
| 371 | c_w(k,i) = c_max |
---|
[73] | 372 | ENDIF |
---|
[106] | 373 | |
---|
| 374 | ! |
---|
| 375 | !-- Swap timelevels for the next timestep |
---|
| 376 | u_m_n(k,:,i) = u(k,ny-1:ny,i) |
---|
| 377 | v_m_n(k,:,i) = v(k,ny-1:ny,i) |
---|
| 378 | w_m_n(k,:,i) = w(k,ny-1:ny,i) |
---|
| 379 | |
---|
[75] | 380 | ENDIF |
---|
[73] | 381 | |
---|
| 382 | ! |
---|
[75] | 383 | !-- Calculate the new velocities |
---|
[106] | 384 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u(k,i) * & |
---|
[75] | 385 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 386 | |
---|
[106] | 387 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v(k,i) * & |
---|
[75] | 388 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 389 | |
---|
[106] | 390 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w(k,i) * & |
---|
[75] | 391 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
[73] | 392 | |
---|
[1] | 393 | ENDDO |
---|
[75] | 394 | ENDDO |
---|
[1] | 395 | |
---|
| 396 | ! |
---|
[75] | 397 | !-- Bottom boundary at the outflow |
---|
| 398 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 399 | u_p(nzb,ny+1,:) = -u_p(nzb+1,ny+1,:) |
---|
| 400 | v_p(nzb,ny+1,:) = -v_p(nzb+1,ny+1,:) |
---|
| 401 | ELSE |
---|
| 402 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 403 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 404 | ENDIF |
---|
| 405 | w_p(nzb,ny+1,:) = 0.0 |
---|
[73] | 406 | |
---|
| 407 | ! |
---|
[75] | 408 | !-- Top boundary at the outflow |
---|
| 409 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 410 | u_p(nzt+1,ny+1,:) = ug(nzt+1) |
---|
| 411 | v_p(nzt+1,ny+1,:) = vg(nzt+1) |
---|
| 412 | ELSE |
---|
| 413 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 414 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
[1] | 415 | ENDIF |
---|
[75] | 416 | w_p(nzt:nzt+1,ny+1,:) = 0.0 |
---|
[1] | 417 | |
---|
[75] | 418 | ENDIF |
---|
| 419 | |
---|
[106] | 420 | IF ( outflow_l ) THEN |
---|
[75] | 421 | |
---|
| 422 | c_max = dx / dt_3d |
---|
| 423 | |
---|
| 424 | DO j = nys-1, nyn+1 |
---|
| 425 | DO k = nzb+1, nzt+1 |
---|
| 426 | |
---|
[1] | 427 | ! |
---|
[106] | 428 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 429 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 430 | !-- reuse this values for the further substeps. |
---|
| 431 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[75] | 432 | |
---|
[106] | 433 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 434 | |
---|
| 435 | IF ( denom /= 0.0 ) THEN |
---|
| 436 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / denom |
---|
[107] | 437 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
[106] | 438 | c_u(k,j) = 0.0 |
---|
[107] | 439 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 440 | c_u(k,j) = c_max |
---|
[106] | 441 | ENDIF |
---|
| 442 | ELSE |
---|
[107] | 443 | c_u(k,j) = c_max |
---|
[75] | 444 | ENDIF |
---|
| 445 | |
---|
[106] | 446 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 447 | |
---|
[106] | 448 | IF ( denom /= 0.0 ) THEN |
---|
| 449 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / denom |
---|
| 450 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 451 | c_v(k,j) = 0.0 |
---|
| 452 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 453 | c_v(k,j) = c_max |
---|
| 454 | ENDIF |
---|
| 455 | ELSE |
---|
| 456 | c_v(k,j) = c_max |
---|
[75] | 457 | ENDIF |
---|
| 458 | |
---|
[106] | 459 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 460 | |
---|
[106] | 461 | IF ( denom /= 0.0 ) THEN |
---|
| 462 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / denom |
---|
| 463 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 464 | c_w(k,j) = 0.0 |
---|
| 465 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 466 | c_w(k,j) = c_max |
---|
| 467 | ENDIF |
---|
| 468 | ELSE |
---|
| 469 | c_w(k,j) = c_max |
---|
[75] | 470 | ENDIF |
---|
[106] | 471 | |
---|
| 472 | ! |
---|
| 473 | !-- Swap timelevels for the next timestep |
---|
| 474 | u_m_l(k,j,:) = u(k,j,1:2) |
---|
| 475 | v_m_l(k,j,:) = v(k,j,0:1) |
---|
| 476 | w_m_l(k,j,:) = w(k,j,0:1) |
---|
| 477 | |
---|
[75] | 478 | ENDIF |
---|
| 479 | |
---|
[73] | 480 | ! |
---|
[75] | 481 | !-- Calculate the new velocities |
---|
[106] | 482 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
| 483 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 484 | |
---|
[106] | 485 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
[75] | 486 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 487 | |
---|
[106] | 488 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
[75] | 489 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
| 490 | |
---|
| 491 | ENDDO |
---|
| 492 | ENDDO |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- Bottom boundary at the outflow |
---|
| 496 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 497 | u_p(nzb,:,-1) = -u_p(nzb+1,:,-1) |
---|
| 498 | v_p(nzb,:,-1) = -v_p(nzb+1,:,-1) |
---|
| 499 | ELSE |
---|
| 500 | u_p(nzb,:,-1) = u_p(nzb+1,:,-1) |
---|
| 501 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
[1] | 502 | ENDIF |
---|
[75] | 503 | w_p(nzb,:,-1) = 0.0 |
---|
[1] | 504 | |
---|
[75] | 505 | ! |
---|
| 506 | !-- Top boundary at the outflow |
---|
| 507 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 508 | u_p(nzt+1,:,-1) = ug(nzt+1) |
---|
| 509 | v_p(nzt+1,:,-1) = vg(nzt+1) |
---|
| 510 | ELSE |
---|
| 511 | u_p(nzt+1,:,-1) = u_p(nzt,:,-1) |
---|
| 512 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 513 | ENDIF |
---|
| 514 | w_p(nzt:nzt+1,:,-1) = 0.0 |
---|
[73] | 515 | |
---|
[75] | 516 | ENDIF |
---|
[73] | 517 | |
---|
[106] | 518 | IF ( outflow_r ) THEN |
---|
[73] | 519 | |
---|
[75] | 520 | c_max = dx / dt_3d |
---|
| 521 | |
---|
| 522 | DO j = nys-1, nyn+1 |
---|
| 523 | DO k = nzb+1, nzt+1 |
---|
| 524 | |
---|
[1] | 525 | ! |
---|
[106] | 526 | !-- Calculate the phase speeds for u,v, and w. In case of using a |
---|
| 527 | !-- Runge-Kutta scheme, do this for the first substep only and then |
---|
| 528 | !-- reuse this values for the further substeps. |
---|
| 529 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[73] | 530 | |
---|
[106] | 531 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 532 | |
---|
| 533 | IF ( denom /= 0.0 ) THEN |
---|
| 534 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / denom |
---|
| 535 | IF ( c_u(k,j) < 0.0 ) THEN |
---|
| 536 | c_u(k,j) = 0.0 |
---|
| 537 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 538 | c_u(k,j) = c_max |
---|
| 539 | ENDIF |
---|
| 540 | ELSE |
---|
| 541 | c_u(k,j) = c_max |
---|
[73] | 542 | ENDIF |
---|
| 543 | |
---|
[106] | 544 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 545 | |
---|
[106] | 546 | IF ( denom /= 0.0 ) THEN |
---|
| 547 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / denom |
---|
| 548 | IF ( c_v(k,j) < 0.0 ) THEN |
---|
| 549 | c_v(k,j) = 0.0 |
---|
| 550 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 551 | c_v(k,j) = c_max |
---|
| 552 | ENDIF |
---|
| 553 | ELSE |
---|
| 554 | c_v(k,j) = c_max |
---|
[73] | 555 | ENDIF |
---|
| 556 | |
---|
[106] | 557 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 558 | |
---|
[106] | 559 | IF ( denom /= 0.0 ) THEN |
---|
| 560 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / denom |
---|
| 561 | IF ( c_w(k,j) < 0.0 ) THEN |
---|
| 562 | c_w(k,j) = 0.0 |
---|
| 563 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 564 | c_w(k,j) = c_max |
---|
| 565 | ENDIF |
---|
| 566 | ELSE |
---|
| 567 | c_w(k,j) = c_max |
---|
[73] | 568 | ENDIF |
---|
[106] | 569 | |
---|
| 570 | ! |
---|
| 571 | !-- Swap timelevels for the next timestep |
---|
| 572 | u_m_r(k,j,:) = u(k,j,nx-1:nx) |
---|
| 573 | v_m_r(k,j,:) = v(k,j,nx-1:nx) |
---|
| 574 | w_m_r(k,j,:) = w(k,j,nx-1:nx) |
---|
| 575 | |
---|
[75] | 576 | ENDIF |
---|
[73] | 577 | |
---|
| 578 | ! |
---|
[75] | 579 | !-- Calculate the new velocities |
---|
[106] | 580 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u(k,j) * & |
---|
[75] | 581 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 582 | |
---|
[106] | 583 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v(k,j) * & |
---|
[75] | 584 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 585 | |
---|
[106] | 586 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w(k,j) * & |
---|
[75] | 587 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
[73] | 588 | |
---|
| 589 | ENDDO |
---|
[75] | 590 | ENDDO |
---|
[73] | 591 | |
---|
| 592 | ! |
---|
[75] | 593 | !-- Bottom boundary at the outflow |
---|
| 594 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 595 | u_p(nzb,:,nx+1) = -u_p(nzb+1,:,nx+1) |
---|
| 596 | v_p(nzb,:,nx+1) = -v_p(nzb+1,:,nx+1) |
---|
| 597 | ELSE |
---|
| 598 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 599 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 600 | ENDIF |
---|
| 601 | w_p(nzb,:,nx+1) = 0.0 |
---|
[73] | 602 | |
---|
| 603 | ! |
---|
[75] | 604 | !-- Top boundary at the outflow |
---|
| 605 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 606 | u_p(nzt+1,:,nx+1) = ug(nzt+1) |
---|
| 607 | v_p(nzt+1,:,nx+1) = vg(nzt+1) |
---|
| 608 | ELSE |
---|
| 609 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 610 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
[1] | 611 | ENDIF |
---|
[75] | 612 | w(nzt:nzt+1,:,nx+1) = 0.0 |
---|
[1] | 613 | |
---|
| 614 | ENDIF |
---|
| 615 | |
---|
| 616 | |
---|
| 617 | END SUBROUTINE boundary_conds |
---|