[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[3589] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 4182 2019-08-22 15:20:23Z suehring $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 4102 2019-07-17 16:00:03Z suehring |
---|
[4102] | 30 | ! - Revise setting for boundary conditions at horizontal walls, use the offset |
---|
| 31 | ! index that belongs to the data structure instead of pre-calculating |
---|
| 32 | ! the offset index for each facing. |
---|
| 33 | ! - Set boundary conditions for bulk-cloud quantities also at downward facing |
---|
| 34 | ! surfaces |
---|
| 35 | ! |
---|
| 36 | ! 4087 2019-07-11 11:35:23Z gronemeier |
---|
[4087] | 37 | ! Add comment |
---|
| 38 | ! |
---|
| 39 | ! 4086 2019-07-11 05:55:44Z gronemeier |
---|
[4086] | 40 | ! Bugfix: use constant-flux layer condition for e in all rans modes |
---|
| 41 | ! |
---|
| 42 | ! 3879 2019-04-08 20:25:23Z knoop |
---|
[3717] | 43 | ! Bugfix, do not set boundary conditions for potential temperature in neutral |
---|
| 44 | ! runs. |
---|
| 45 | ! |
---|
| 46 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 47 | ! OpenACC port for SPEC |
---|
[1321] | 48 | ! |
---|
[4182] | 49 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 50 | ! Initial revision |
---|
| 51 | ! |
---|
| 52 | ! |
---|
[1] | 53 | ! Description: |
---|
| 54 | ! ------------ |
---|
[1682] | 55 | !> Boundary conditions for the prognostic quantities. |
---|
| 56 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 57 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 58 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 59 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 60 | !------------------------------------------------------------------------------! |
---|
[1682] | 61 | SUBROUTINE boundary_conds |
---|
| 62 | |
---|
[1] | 63 | |
---|
[1320] | 64 | USE arrays_3d, & |
---|
| 65 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[4102] | 66 | dzu, nc_p, nr_p, pt, pt_init, pt_p, q, & |
---|
[3241] | 67 | q_p, qc_p, qr_p, s, s_p, sa, sa_p, u, u_init, u_m_l, u_m_n, & |
---|
| 68 | u_m_r, u_m_s, u_p, v, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
| 69 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
[2696] | 70 | |
---|
[3294] | 71 | USE bulk_cloud_model_mod, & |
---|
| 72 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 73 | |
---|
[2696] | 74 | USE chemistry_model_mod, & |
---|
[3879] | 75 | ONLY: chem_boundary_conds |
---|
| 76 | |
---|
[1320] | 77 | USE control_parameters, & |
---|
[4102] | 78 | ONLY: air_chemistry, bc_dirichlet_l, & |
---|
[3182] | 79 | bc_dirichlet_s, bc_radiation_l, bc_radiation_n, bc_radiation_r, & |
---|
| 80 | bc_radiation_s, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
[4102] | 81 | child_domain, coupling_mode, dt_3d, & |
---|
[3582] | 82 | humidity, ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, & |
---|
| 83 | ibc_s_t, ibc_uv_b, ibc_uv_t, intermediate_timestep_count, & |
---|
[3717] | 84 | nesting_offline, neutral, nudging, ocean_mode, passive_scalar, & |
---|
[4102] | 85 | tsc, salsa, use_cmax |
---|
[1320] | 86 | |
---|
| 87 | USE grid_variables, & |
---|
| 88 | ONLY: ddx, ddy, dx, dy |
---|
| 89 | |
---|
| 90 | USE indices, & |
---|
[3294] | 91 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 92 | |
---|
| 93 | USE kinds |
---|
| 94 | |
---|
[3294] | 95 | USE ocean_mod, & |
---|
| 96 | ONLY: ibc_sa_t |
---|
[3274] | 97 | |
---|
[1] | 98 | USE pegrid |
---|
| 99 | |
---|
[1933] | 100 | USE pmc_interface, & |
---|
[4102] | 101 | ONLY : nesting_mode |
---|
[3467] | 102 | |
---|
| 103 | USE salsa_mod, & |
---|
[3582] | 104 | ONLY: salsa_boundary_conds |
---|
[1320] | 105 | |
---|
[2232] | 106 | USE surface_mod, & |
---|
[4102] | 107 | ONLY : bc_h |
---|
[1933] | 108 | |
---|
[3129] | 109 | USE turbulence_closure_mod, & |
---|
[4102] | 110 | ONLY: tcm_boundary_conds |
---|
[3129] | 111 | |
---|
[1] | 112 | IMPLICIT NONE |
---|
| 113 | |
---|
[2232] | 114 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 115 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 116 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 117 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 118 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 119 | |
---|
[3562] | 120 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
| 121 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
[1] | 122 | |
---|
[73] | 123 | |
---|
[1] | 124 | ! |
---|
[1113] | 125 | !-- Bottom boundary |
---|
| 126 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 127 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 128 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 129 | ENDIF |
---|
[2232] | 130 | ! |
---|
| 131 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 132 | !-- of downward-facing surfaces. |
---|
| 133 | DO l = 0, 1 |
---|
| 134 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 135 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 136 | !$ACC PRESENT(bc_h, w_p) |
---|
[2232] | 137 | DO m = 1, bc_h(l)%ns |
---|
| 138 | i = bc_h(l)%i(m) |
---|
| 139 | j = bc_h(l)%j(m) |
---|
| 140 | k = bc_h(l)%k(m) |
---|
[4102] | 141 | w_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
[1113] | 142 | ENDDO |
---|
| 143 | ENDDO |
---|
| 144 | |
---|
| 145 | ! |
---|
[1762] | 146 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 147 | IF ( ibc_uv_t == 0 ) THEN |
---|
[3634] | 148 | !$ACC KERNELS PRESENT(u_p, v_p, u_init, v_init) |
---|
[1113] | 149 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 150 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[3634] | 151 | !$ACC END KERNELS |
---|
[1762] | 152 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 153 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 154 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 155 | ENDIF |
---|
| 156 | |
---|
[2365] | 157 | ! |
---|
| 158 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
[3347] | 159 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
[2365] | 160 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
[3634] | 161 | !$ACC KERNELS PRESENT(w_p) |
---|
[2365] | 162 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[3634] | 163 | !$ACC END KERNELS |
---|
[1762] | 164 | ENDIF |
---|
| 165 | |
---|
[1113] | 166 | ! |
---|
[2232] | 167 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 168 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 169 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 170 | !-- Dirichlet |
---|
[3717] | 171 | IF ( .NOT. neutral ) THEN |
---|
| 172 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 173 | DO l = 0, 1 |
---|
| 174 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 175 | DO m = 1, bc_h(l)%ns |
---|
| 176 | i = bc_h(l)%i(m) |
---|
| 177 | j = bc_h(l)%j(m) |
---|
| 178 | k = bc_h(l)%k(m) |
---|
[4102] | 179 | pt_p(k+bc_h(l)%koff,j,i) = pt(k+bc_h(l)%koff,j,i) |
---|
[3717] | 180 | ENDDO |
---|
[1] | 181 | ENDDO |
---|
[3717] | 182 | ! |
---|
| 183 | !-- Neumann, zero-gradient |
---|
| 184 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 185 | DO l = 0, 1 |
---|
| 186 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 187 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 188 | !$ACC PRESENT(bc_h, pt_p) |
---|
| 189 | DO m = 1, bc_h(l)%ns |
---|
| 190 | i = bc_h(l)%i(m) |
---|
| 191 | j = bc_h(l)%j(m) |
---|
| 192 | k = bc_h(l)%k(m) |
---|
[4102] | 193 | pt_p(k+bc_h(l)%koff,j,i) = pt_p(k,j,i) |
---|
[3717] | 194 | ENDDO |
---|
[1113] | 195 | ENDDO |
---|
[3717] | 196 | ENDIF |
---|
| 197 | |
---|
| 198 | ! |
---|
| 199 | !-- Temperature at top boundary |
---|
| 200 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 201 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 202 | ! |
---|
| 203 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 204 | !-- read in from NUDGING-DATA |
---|
| 205 | IF ( nudging ) THEN |
---|
| 206 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 207 | ENDIF |
---|
| 208 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 209 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 210 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 211 | !$ACC KERNELS PRESENT(pt_p, dzu) |
---|
| 212 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 213 | !$ACC END KERNELS |
---|
| 214 | ENDIF |
---|
[1113] | 215 | ENDIF |
---|
[1] | 216 | ! |
---|
[1113] | 217 | !-- Boundary conditions for salinity |
---|
[3294] | 218 | IF ( ocean_mode ) THEN |
---|
[1113] | 219 | ! |
---|
| 220 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 221 | !-- given. |
---|
| 222 | DO l = 0, 1 |
---|
| 223 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 224 | DO m = 1, bc_h(l)%ns |
---|
| 225 | i = bc_h(l)%i(m) |
---|
| 226 | j = bc_h(l)%j(m) |
---|
| 227 | k = bc_h(l)%k(m) |
---|
[4102] | 228 | sa_p(k+bc_h(l)%koff,j,i) = sa_p(k,j,i) |
---|
[1] | 229 | ENDDO |
---|
[1113] | 230 | ENDDO |
---|
[1] | 231 | ! |
---|
[1113] | 232 | !-- Top boundary: Dirichlet or Neumann |
---|
| 233 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 234 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 235 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 236 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 237 | ENDIF |
---|
| 238 | |
---|
[1113] | 239 | ENDIF |
---|
| 240 | |
---|
[1] | 241 | ! |
---|
[1960] | 242 | !-- Boundary conditions for total water content, |
---|
[1113] | 243 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 244 | IF ( humidity ) THEN |
---|
[1113] | 245 | ! |
---|
| 246 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 247 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 248 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 249 | !-- q_p at k-1 |
---|
[1113] | 250 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 251 | |
---|
| 252 | DO l = 0, 1 |
---|
| 253 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 254 | DO m = 1, bc_h(l)%ns |
---|
| 255 | i = bc_h(l)%i(m) |
---|
| 256 | j = bc_h(l)%j(m) |
---|
| 257 | k = bc_h(l)%k(m) |
---|
[4102] | 258 | q_p(k+bc_h(l)%koff,j,i) = q(k+bc_h(l)%koff,j,i) |
---|
[1] | 259 | ENDDO |
---|
| 260 | ENDDO |
---|
[2232] | 261 | |
---|
[1113] | 262 | ELSE |
---|
[2232] | 263 | |
---|
| 264 | DO l = 0, 1 |
---|
| 265 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 266 | DO m = 1, bc_h(l)%ns |
---|
| 267 | i = bc_h(l)%i(m) |
---|
| 268 | j = bc_h(l)%j(m) |
---|
| 269 | k = bc_h(l)%k(m) |
---|
[4102] | 270 | q_p(k+bc_h(l)%koff,j,i) = q_p(k,j,i) |
---|
[95] | 271 | ENDDO |
---|
| 272 | ENDDO |
---|
[1113] | 273 | ENDIF |
---|
[95] | 274 | ! |
---|
[1113] | 275 | !-- Top boundary |
---|
[1462] | 276 | IF ( ibc_q_t == 0 ) THEN |
---|
| 277 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 278 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 279 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 280 | ENDIF |
---|
[95] | 281 | |
---|
[3274] | 282 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 283 | ! |
---|
| 284 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 285 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 286 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
[4102] | 287 | !-- qr_p and nr_p at upward (k-1) and downward-facing (k+1) walls |
---|
| 288 | DO l = 0, 1 |
---|
[2292] | 289 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4102] | 290 | DO m = 1, bc_h(l)%ns |
---|
| 291 | i = bc_h(l)%i(m) |
---|
| 292 | j = bc_h(l)%j(m) |
---|
| 293 | k = bc_h(l)%k(m) |
---|
| 294 | qc_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 295 | nc_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 296 | ENDDO |
---|
[2292] | 297 | ENDDO |
---|
| 298 | ! |
---|
| 299 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 300 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 301 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 302 | |
---|
| 303 | ENDIF |
---|
| 304 | |
---|
[3274] | 305 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1113] | 306 | ! |
---|
[1361] | 307 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 308 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 309 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
[4102] | 310 | !-- qr_p and nr_p at upward (k-1) and downward-facing (k+1) walls |
---|
| 311 | DO l = 0, 1 |
---|
[2232] | 312 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4102] | 313 | DO m = 1, bc_h(l)%ns |
---|
| 314 | i = bc_h(l)%i(m) |
---|
| 315 | j = bc_h(l)%j(m) |
---|
| 316 | k = bc_h(l)%k(m) |
---|
| 317 | qr_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 318 | nr_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 319 | ENDDO |
---|
[1115] | 320 | ENDDO |
---|
[1] | 321 | ! |
---|
[1361] | 322 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 323 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 324 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 325 | |
---|
[1] | 326 | ENDIF |
---|
[1409] | 327 | ENDIF |
---|
[1] | 328 | ! |
---|
[1960] | 329 | !-- Boundary conditions for scalar, |
---|
| 330 | !-- bottom and top boundary (see also temperature) |
---|
| 331 | IF ( passive_scalar ) THEN |
---|
| 332 | ! |
---|
| 333 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 334 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 335 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 336 | !-- s_p at k-1 |
---|
[1960] | 337 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 338 | |
---|
| 339 | DO l = 0, 1 |
---|
| 340 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 341 | DO m = 1, bc_h(l)%ns |
---|
| 342 | i = bc_h(l)%i(m) |
---|
| 343 | j = bc_h(l)%j(m) |
---|
| 344 | k = bc_h(l)%k(m) |
---|
[4102] | 345 | s_p(k+bc_h(l)%koff,j,i) = s(k+bc_h(l)%koff,j,i) |
---|
[1960] | 346 | ENDDO |
---|
| 347 | ENDDO |
---|
[2232] | 348 | |
---|
[1960] | 349 | ELSE |
---|
[2232] | 350 | |
---|
| 351 | DO l = 0, 1 |
---|
| 352 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 353 | DO m = 1, bc_h(l)%ns |
---|
| 354 | i = bc_h(l)%i(m) |
---|
| 355 | j = bc_h(l)%j(m) |
---|
| 356 | k = bc_h(l)%k(m) |
---|
[4102] | 357 | s_p(k+bc_h(l)%koff,j,i) = s_p(k,j,i) |
---|
[1960] | 358 | ENDDO |
---|
| 359 | ENDDO |
---|
| 360 | ENDIF |
---|
| 361 | ! |
---|
[1992] | 362 | !-- Top boundary condition |
---|
| 363 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 364 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 365 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 366 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 367 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 368 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 369 | ENDIF |
---|
| 370 | |
---|
[4102] | 371 | ENDIF |
---|
[1960] | 372 | ! |
---|
[4102] | 373 | !-- Set boundary conditions for subgrid TKE and dissipation (RANS mode) |
---|
| 374 | CALL tcm_boundary_conds |
---|
| 375 | ! |
---|
[2696] | 376 | !-- Top/bottom boundary conditions for chemical species |
---|
| 377 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 378 | ! |
---|
[1762] | 379 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 380 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 381 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 382 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 383 | !-- have to be restored here. |
---|
[3182] | 384 | IF ( bc_dirichlet_s ) THEN |
---|
[1409] | 385 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[3182] | 386 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
[1409] | 387 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 388 | ENDIF |
---|
[1] | 389 | |
---|
| 390 | ! |
---|
[1762] | 391 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 392 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
[3182] | 393 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
[4102] | 394 | !-- Lateral oundary conditions for TKE and dissipation are set |
---|
| 395 | !-- in tcm_boundary_conds. |
---|
[3182] | 396 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
| 397 | IF ( bc_dirichlet_s ) THEN |
---|
[1933] | 398 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 399 | ENDIF |
---|
[3182] | 400 | IF ( bc_dirichlet_l ) THEN |
---|
[1933] | 401 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 402 | ENDIF |
---|
[1762] | 403 | ENDIF |
---|
| 404 | |
---|
| 405 | ! |
---|
[4102] | 406 | !-- Lateral boundary conditions for scalar quantities at the outflow. |
---|
| 407 | !-- Lateral oundary conditions for TKE and dissipation are set |
---|
| 408 | !-- in tcm_boundary_conds. |
---|
[3182] | 409 | IF ( bc_radiation_s ) THEN |
---|
[1409] | 410 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[1960] | 411 | IF ( humidity ) THEN |
---|
[1409] | 412 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[3274] | 413 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 414 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 415 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 416 | ENDIF |
---|
[3274] | 417 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 418 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 419 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 420 | ENDIF |
---|
[1409] | 421 | ENDIF |
---|
[1960] | 422 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[3182] | 423 | ELSEIF ( bc_radiation_n ) THEN |
---|
[1409] | 424 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[1960] | 425 | IF ( humidity ) THEN |
---|
[1409] | 426 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[3274] | 427 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 428 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 429 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 430 | ENDIF |
---|
[3274] | 431 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 432 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 433 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 434 | ENDIF |
---|
[1409] | 435 | ENDIF |
---|
[1960] | 436 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[3182] | 437 | ELSEIF ( bc_radiation_l ) THEN |
---|
[1409] | 438 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[1960] | 439 | IF ( humidity ) THEN |
---|
[1409] | 440 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[3274] | 441 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 442 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 443 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 444 | ENDIF |
---|
[3274] | 445 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 446 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 447 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 448 | ENDIF |
---|
[1409] | 449 | ENDIF |
---|
[1960] | 450 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[3182] | 451 | ELSEIF ( bc_radiation_r ) THEN |
---|
[1409] | 452 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[1960] | 453 | IF ( humidity ) THEN |
---|
[1409] | 454 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[3274] | 455 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 456 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 457 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 458 | ENDIF |
---|
[3274] | 459 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 460 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 461 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 462 | ENDIF |
---|
[1] | 463 | ENDIF |
---|
[1960] | 464 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 465 | ENDIF |
---|
| 466 | |
---|
| 467 | ! |
---|
[2696] | 468 | !-- Lateral boundary conditions for chemical species |
---|
| 469 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 470 | |
---|
| 471 | ! |
---|
[1159] | 472 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 473 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 474 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 475 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[3182] | 476 | IF ( bc_radiation_s ) THEN |
---|
[75] | 477 | |
---|
[1159] | 478 | IF ( use_cmax ) THEN |
---|
| 479 | u_p(:,-1,:) = u(:,0,:) |
---|
| 480 | v_p(:,0,:) = v(:,1,:) |
---|
| 481 | w_p(:,-1,:) = w(:,0,:) |
---|
| 482 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 483 | |
---|
[978] | 484 | c_max = dy / dt_3d |
---|
[75] | 485 | |
---|
[1353] | 486 | c_u_m_l = 0.0_wp |
---|
| 487 | c_v_m_l = 0.0_wp |
---|
| 488 | c_w_m_l = 0.0_wp |
---|
[978] | 489 | |
---|
[1353] | 490 | c_u_m = 0.0_wp |
---|
| 491 | c_v_m = 0.0_wp |
---|
| 492 | c_w_m = 0.0_wp |
---|
[978] | 493 | |
---|
[75] | 494 | ! |
---|
[996] | 495 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 496 | !-- average along the outflow boundary. |
---|
| 497 | DO k = nzb+1, nzt+1 |
---|
| 498 | DO i = nxl, nxr |
---|
[75] | 499 | |
---|
[106] | 500 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 501 | |
---|
[1353] | 502 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 503 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 504 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 505 | c_u(k,i) = 0.0_wp |
---|
[106] | 506 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 507 | c_u(k,i) = c_max |
---|
| 508 | ENDIF |
---|
| 509 | ELSE |
---|
| 510 | c_u(k,i) = c_max |
---|
[75] | 511 | ENDIF |
---|
| 512 | |
---|
[106] | 513 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 514 | |
---|
[1353] | 515 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 516 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 517 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 518 | c_v(k,i) = 0.0_wp |
---|
[106] | 519 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 520 | c_v(k,i) = c_max |
---|
| 521 | ENDIF |
---|
| 522 | ELSE |
---|
| 523 | c_v(k,i) = c_max |
---|
[75] | 524 | ENDIF |
---|
| 525 | |
---|
[106] | 526 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 527 | |
---|
[1353] | 528 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 529 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 530 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 531 | c_w(k,i) = 0.0_wp |
---|
[106] | 532 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 533 | c_w(k,i) = c_max |
---|
| 534 | ENDIF |
---|
| 535 | ELSE |
---|
| 536 | c_w(k,i) = c_max |
---|
[75] | 537 | ENDIF |
---|
[106] | 538 | |
---|
[978] | 539 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 540 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 541 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 542 | |
---|
[978] | 543 | ENDDO |
---|
| 544 | ENDDO |
---|
[75] | 545 | |
---|
[978] | 546 | #if defined( __parallel ) |
---|
| 547 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 548 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 549 | MPI_SUM, comm1dx, ierr ) |
---|
| 550 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 551 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 552 | MPI_SUM, comm1dx, ierr ) |
---|
| 553 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 554 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 555 | MPI_SUM, comm1dx, ierr ) |
---|
| 556 | #else |
---|
| 557 | c_u_m = c_u_m_l |
---|
| 558 | c_v_m = c_v_m_l |
---|
| 559 | c_w_m = c_w_m_l |
---|
| 560 | #endif |
---|
| 561 | |
---|
| 562 | c_u_m = c_u_m / (nx+1) |
---|
| 563 | c_v_m = c_v_m / (nx+1) |
---|
| 564 | c_w_m = c_w_m / (nx+1) |
---|
| 565 | |
---|
[75] | 566 | ! |
---|
[978] | 567 | !-- Save old timelevels for the next timestep |
---|
| 568 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 569 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 570 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 571 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 572 | ENDIF |
---|
| 573 | |
---|
| 574 | ! |
---|
| 575 | !-- Calculate the new velocities |
---|
[996] | 576 | DO k = nzb+1, nzt+1 |
---|
| 577 | DO i = nxlg, nxrg |
---|
[978] | 578 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 579 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 580 | |
---|
[978] | 581 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 582 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 583 | |
---|
[978] | 584 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 585 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 586 | ENDDO |
---|
[75] | 587 | ENDDO |
---|
| 588 | |
---|
| 589 | ! |
---|
[978] | 590 | !-- Bottom boundary at the outflow |
---|
| 591 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 592 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 593 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 594 | ELSE |
---|
| 595 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 596 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 597 | ENDIF |
---|
[1353] | 598 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 599 | |
---|
[75] | 600 | ! |
---|
[978] | 601 | !-- Top boundary at the outflow |
---|
| 602 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 603 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 604 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 605 | ELSE |
---|
[1742] | 606 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 607 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 608 | ENDIF |
---|
[1353] | 609 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 610 | |
---|
[75] | 611 | ENDIF |
---|
[73] | 612 | |
---|
[75] | 613 | ENDIF |
---|
[73] | 614 | |
---|
[3182] | 615 | IF ( bc_radiation_n ) THEN |
---|
[73] | 616 | |
---|
[1159] | 617 | IF ( use_cmax ) THEN |
---|
| 618 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 619 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 620 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 621 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 622 | |
---|
[978] | 623 | c_max = dy / dt_3d |
---|
[75] | 624 | |
---|
[1353] | 625 | c_u_m_l = 0.0_wp |
---|
| 626 | c_v_m_l = 0.0_wp |
---|
| 627 | c_w_m_l = 0.0_wp |
---|
[978] | 628 | |
---|
[1353] | 629 | c_u_m = 0.0_wp |
---|
| 630 | c_v_m = 0.0_wp |
---|
| 631 | c_w_m = 0.0_wp |
---|
[978] | 632 | |
---|
[1] | 633 | ! |
---|
[996] | 634 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 635 | !-- average along the outflow boundary. |
---|
| 636 | DO k = nzb+1, nzt+1 |
---|
| 637 | DO i = nxl, nxr |
---|
[73] | 638 | |
---|
[106] | 639 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 640 | |
---|
[1353] | 641 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 642 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 643 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 644 | c_u(k,i) = 0.0_wp |
---|
[106] | 645 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 646 | c_u(k,i) = c_max |
---|
| 647 | ENDIF |
---|
| 648 | ELSE |
---|
| 649 | c_u(k,i) = c_max |
---|
[73] | 650 | ENDIF |
---|
| 651 | |
---|
[106] | 652 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 653 | |
---|
[1353] | 654 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 655 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 656 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 657 | c_v(k,i) = 0.0_wp |
---|
[106] | 658 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 659 | c_v(k,i) = c_max |
---|
| 660 | ENDIF |
---|
| 661 | ELSE |
---|
| 662 | c_v(k,i) = c_max |
---|
[73] | 663 | ENDIF |
---|
| 664 | |
---|
[106] | 665 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 666 | |
---|
[1353] | 667 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 668 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 669 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 670 | c_w(k,i) = 0.0_wp |
---|
[106] | 671 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 672 | c_w(k,i) = c_max |
---|
| 673 | ENDIF |
---|
| 674 | ELSE |
---|
| 675 | c_w(k,i) = c_max |
---|
[73] | 676 | ENDIF |
---|
[106] | 677 | |
---|
[978] | 678 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 679 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 680 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 681 | |
---|
[978] | 682 | ENDDO |
---|
| 683 | ENDDO |
---|
[73] | 684 | |
---|
[978] | 685 | #if defined( __parallel ) |
---|
| 686 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 687 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 688 | MPI_SUM, comm1dx, ierr ) |
---|
| 689 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 690 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 691 | MPI_SUM, comm1dx, ierr ) |
---|
| 692 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 693 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 694 | MPI_SUM, comm1dx, ierr ) |
---|
| 695 | #else |
---|
| 696 | c_u_m = c_u_m_l |
---|
| 697 | c_v_m = c_v_m_l |
---|
| 698 | c_w_m = c_w_m_l |
---|
| 699 | #endif |
---|
| 700 | |
---|
| 701 | c_u_m = c_u_m / (nx+1) |
---|
| 702 | c_v_m = c_v_m / (nx+1) |
---|
| 703 | c_w_m = c_w_m / (nx+1) |
---|
| 704 | |
---|
[73] | 705 | ! |
---|
[978] | 706 | !-- Save old timelevels for the next timestep |
---|
| 707 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 708 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 709 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 710 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 711 | ENDIF |
---|
[73] | 712 | |
---|
[978] | 713 | ! |
---|
| 714 | !-- Calculate the new velocities |
---|
[996] | 715 | DO k = nzb+1, nzt+1 |
---|
| 716 | DO i = nxlg, nxrg |
---|
[978] | 717 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 718 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 719 | |
---|
[978] | 720 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 721 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 722 | |
---|
[978] | 723 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 724 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 725 | ENDDO |
---|
[1] | 726 | ENDDO |
---|
| 727 | |
---|
| 728 | ! |
---|
[978] | 729 | !-- Bottom boundary at the outflow |
---|
| 730 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 731 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 732 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 733 | ELSE |
---|
| 734 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 735 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 736 | ENDIF |
---|
[1353] | 737 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 738 | |
---|
| 739 | ! |
---|
[978] | 740 | !-- Top boundary at the outflow |
---|
| 741 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 742 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 743 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 744 | ELSE |
---|
| 745 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 746 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 747 | ENDIF |
---|
[1353] | 748 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 749 | |
---|
[1] | 750 | ENDIF |
---|
| 751 | |
---|
[75] | 752 | ENDIF |
---|
| 753 | |
---|
[3182] | 754 | IF ( bc_radiation_l ) THEN |
---|
[75] | 755 | |
---|
[1159] | 756 | IF ( use_cmax ) THEN |
---|
[1717] | 757 | u_p(:,:,0) = u(:,:,1) |
---|
| 758 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 759 | w_p(:,:,-1) = w(:,:,0) |
---|
| 760 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 761 | |
---|
[978] | 762 | c_max = dx / dt_3d |
---|
[75] | 763 | |
---|
[1353] | 764 | c_u_m_l = 0.0_wp |
---|
| 765 | c_v_m_l = 0.0_wp |
---|
| 766 | c_w_m_l = 0.0_wp |
---|
[978] | 767 | |
---|
[1353] | 768 | c_u_m = 0.0_wp |
---|
| 769 | c_v_m = 0.0_wp |
---|
| 770 | c_w_m = 0.0_wp |
---|
[978] | 771 | |
---|
[1] | 772 | ! |
---|
[996] | 773 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 774 | !-- average along the outflow boundary. |
---|
| 775 | DO k = nzb+1, nzt+1 |
---|
| 776 | DO j = nys, nyn |
---|
[75] | 777 | |
---|
[106] | 778 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 779 | |
---|
[1353] | 780 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 781 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 782 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 783 | c_u(k,j) = 0.0_wp |
---|
[107] | 784 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 785 | c_u(k,j) = c_max |
---|
[106] | 786 | ENDIF |
---|
| 787 | ELSE |
---|
[107] | 788 | c_u(k,j) = c_max |
---|
[75] | 789 | ENDIF |
---|
| 790 | |
---|
[106] | 791 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 792 | |
---|
[1353] | 793 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 794 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 795 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 796 | c_v(k,j) = 0.0_wp |
---|
[106] | 797 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 798 | c_v(k,j) = c_max |
---|
| 799 | ENDIF |
---|
| 800 | ELSE |
---|
| 801 | c_v(k,j) = c_max |
---|
[75] | 802 | ENDIF |
---|
| 803 | |
---|
[106] | 804 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 805 | |
---|
[1353] | 806 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 807 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 808 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 809 | c_w(k,j) = 0.0_wp |
---|
[106] | 810 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 811 | c_w(k,j) = c_max |
---|
| 812 | ENDIF |
---|
| 813 | ELSE |
---|
| 814 | c_w(k,j) = c_max |
---|
[75] | 815 | ENDIF |
---|
[106] | 816 | |
---|
[978] | 817 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 818 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 819 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 820 | |
---|
[978] | 821 | ENDDO |
---|
| 822 | ENDDO |
---|
[75] | 823 | |
---|
[978] | 824 | #if defined( __parallel ) |
---|
| 825 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 826 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 827 | MPI_SUM, comm1dy, ierr ) |
---|
| 828 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 829 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 830 | MPI_SUM, comm1dy, ierr ) |
---|
| 831 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 832 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 833 | MPI_SUM, comm1dy, ierr ) |
---|
| 834 | #else |
---|
| 835 | c_u_m = c_u_m_l |
---|
| 836 | c_v_m = c_v_m_l |
---|
| 837 | c_w_m = c_w_m_l |
---|
| 838 | #endif |
---|
| 839 | |
---|
| 840 | c_u_m = c_u_m / (ny+1) |
---|
| 841 | c_v_m = c_v_m / (ny+1) |
---|
| 842 | c_w_m = c_w_m / (ny+1) |
---|
| 843 | |
---|
[73] | 844 | ! |
---|
[978] | 845 | !-- Save old timelevels for the next timestep |
---|
| 846 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 847 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 848 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 849 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 850 | ENDIF |
---|
| 851 | |
---|
| 852 | ! |
---|
| 853 | !-- Calculate the new velocities |
---|
[996] | 854 | DO k = nzb+1, nzt+1 |
---|
[1113] | 855 | DO j = nysg, nyng |
---|
[978] | 856 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 857 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 858 | |
---|
[978] | 859 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 860 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 861 | |
---|
[978] | 862 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 863 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 864 | ENDDO |
---|
[75] | 865 | ENDDO |
---|
| 866 | |
---|
| 867 | ! |
---|
[978] | 868 | !-- Bottom boundary at the outflow |
---|
| 869 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 870 | u_p(nzb,:,0) = 0.0_wp |
---|
| 871 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 872 | ELSE |
---|
| 873 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 874 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 875 | ENDIF |
---|
[1353] | 876 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 877 | |
---|
[75] | 878 | ! |
---|
[978] | 879 | !-- Top boundary at the outflow |
---|
| 880 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 881 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 882 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 883 | ELSE |
---|
[1764] | 884 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 885 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 886 | ENDIF |
---|
[1353] | 887 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 888 | |
---|
[75] | 889 | ENDIF |
---|
[73] | 890 | |
---|
[75] | 891 | ENDIF |
---|
[73] | 892 | |
---|
[3182] | 893 | IF ( bc_radiation_r ) THEN |
---|
[73] | 894 | |
---|
[1159] | 895 | IF ( use_cmax ) THEN |
---|
| 896 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 897 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 898 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 899 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 900 | |
---|
[978] | 901 | c_max = dx / dt_3d |
---|
[75] | 902 | |
---|
[1353] | 903 | c_u_m_l = 0.0_wp |
---|
| 904 | c_v_m_l = 0.0_wp |
---|
| 905 | c_w_m_l = 0.0_wp |
---|
[978] | 906 | |
---|
[1353] | 907 | c_u_m = 0.0_wp |
---|
| 908 | c_v_m = 0.0_wp |
---|
| 909 | c_w_m = 0.0_wp |
---|
[978] | 910 | |
---|
[1] | 911 | ! |
---|
[996] | 912 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 913 | !-- average along the outflow boundary. |
---|
| 914 | DO k = nzb+1, nzt+1 |
---|
| 915 | DO j = nys, nyn |
---|
[73] | 916 | |
---|
[106] | 917 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 918 | |
---|
[1353] | 919 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 920 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 921 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 922 | c_u(k,j) = 0.0_wp |
---|
[106] | 923 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 924 | c_u(k,j) = c_max |
---|
| 925 | ENDIF |
---|
| 926 | ELSE |
---|
| 927 | c_u(k,j) = c_max |
---|
[73] | 928 | ENDIF |
---|
| 929 | |
---|
[106] | 930 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 931 | |
---|
[1353] | 932 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 933 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 934 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 935 | c_v(k,j) = 0.0_wp |
---|
[106] | 936 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 937 | c_v(k,j) = c_max |
---|
| 938 | ENDIF |
---|
| 939 | ELSE |
---|
| 940 | c_v(k,j) = c_max |
---|
[73] | 941 | ENDIF |
---|
| 942 | |
---|
[106] | 943 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 944 | |
---|
[1353] | 945 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 946 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 947 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 948 | c_w(k,j) = 0.0_wp |
---|
[106] | 949 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 950 | c_w(k,j) = c_max |
---|
| 951 | ENDIF |
---|
| 952 | ELSE |
---|
| 953 | c_w(k,j) = c_max |
---|
[73] | 954 | ENDIF |
---|
[106] | 955 | |
---|
[978] | 956 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 957 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 958 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 959 | |
---|
[978] | 960 | ENDDO |
---|
| 961 | ENDDO |
---|
[73] | 962 | |
---|
[978] | 963 | #if defined( __parallel ) |
---|
| 964 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 965 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 966 | MPI_SUM, comm1dy, ierr ) |
---|
| 967 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 968 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 969 | MPI_SUM, comm1dy, ierr ) |
---|
| 970 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 971 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 972 | MPI_SUM, comm1dy, ierr ) |
---|
| 973 | #else |
---|
| 974 | c_u_m = c_u_m_l |
---|
| 975 | c_v_m = c_v_m_l |
---|
| 976 | c_w_m = c_w_m_l |
---|
| 977 | #endif |
---|
| 978 | |
---|
| 979 | c_u_m = c_u_m / (ny+1) |
---|
| 980 | c_v_m = c_v_m / (ny+1) |
---|
| 981 | c_w_m = c_w_m / (ny+1) |
---|
| 982 | |
---|
[73] | 983 | ! |
---|
[978] | 984 | !-- Save old timelevels for the next timestep |
---|
| 985 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 986 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 987 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 988 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 989 | ENDIF |
---|
[73] | 990 | |
---|
[978] | 991 | ! |
---|
| 992 | !-- Calculate the new velocities |
---|
[996] | 993 | DO k = nzb+1, nzt+1 |
---|
[1113] | 994 | DO j = nysg, nyng |
---|
[978] | 995 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 996 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 997 | |
---|
[978] | 998 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 999 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1000 | |
---|
[978] | 1001 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1002 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1003 | ENDDO |
---|
[73] | 1004 | ENDDO |
---|
| 1005 | |
---|
| 1006 | ! |
---|
[978] | 1007 | !-- Bottom boundary at the outflow |
---|
| 1008 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1009 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1010 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1011 | ELSE |
---|
| 1012 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1013 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1014 | ENDIF |
---|
[1353] | 1015 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1016 | |
---|
| 1017 | ! |
---|
[978] | 1018 | !-- Top boundary at the outflow |
---|
| 1019 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1020 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1021 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1022 | ELSE |
---|
| 1023 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1024 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1025 | ENDIF |
---|
[1742] | 1026 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1027 | |
---|
[1] | 1028 | ENDIF |
---|
| 1029 | |
---|
| 1030 | ENDIF |
---|
[3864] | 1031 | |
---|
[3467] | 1032 | IF ( salsa ) THEN |
---|
| 1033 | CALL salsa_boundary_conds |
---|
[3864] | 1034 | ENDIF |
---|
[1] | 1035 | |
---|
| 1036 | END SUBROUTINE boundary_conds |
---|