[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[3589] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 4102 2019-07-17 16:00:03Z schwenkel $ |
---|
[4102] | 27 | ! - Revise setting for boundary conditions at horizontal walls, use the offset |
---|
| 28 | ! index that belongs to the data structure instead of pre-calculating |
---|
| 29 | ! the offset index for each facing. |
---|
| 30 | ! - Set boundary conditions for bulk-cloud quantities also at downward facing |
---|
| 31 | ! surfaces |
---|
| 32 | ! |
---|
| 33 | ! 4087 2019-07-11 11:35:23Z gronemeier |
---|
[4087] | 34 | ! Add comment |
---|
| 35 | ! |
---|
| 36 | ! 4086 2019-07-11 05:55:44Z gronemeier |
---|
[4086] | 37 | ! Bugfix: use constant-flux layer condition for e in all rans modes |
---|
| 38 | ! |
---|
| 39 | ! 3879 2019-04-08 20:25:23Z knoop |
---|
[3717] | 40 | ! Bugfix, do not set boundary conditions for potential temperature in neutral |
---|
| 41 | ! runs. |
---|
| 42 | ! |
---|
| 43 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 44 | ! OpenACC port for SPEC |
---|
| 45 | ! |
---|
| 46 | ! 3589 2018-11-30 15:09:51Z suehring |
---|
[3589] | 47 | ! Move the control parameter "salsa" from salsa_mod to control_parameters |
---|
| 48 | ! (M. Kurppa) |
---|
| 49 | ! |
---|
| 50 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
[3562] | 51 | ! variables documented |
---|
| 52 | ! |
---|
| 53 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
[3467] | 54 | ! Implementation of a new aerosol module salsa. |
---|
| 55 | ! |
---|
| 56 | ! 3347 2018-10-15 14:21:08Z suehring |
---|
[3347] | 57 | ! Bugfix in setting boundary conditions in offline nesting |
---|
| 58 | ! |
---|
| 59 | ! 3341 2018-10-15 10:31:27Z suehring |
---|
[3294] | 60 | ! changes concerning modularization of ocean option |
---|
| 61 | ! |
---|
| 62 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 63 | ! Modularization of all bulk cloud physics code components |
---|
| 64 | ! |
---|
| 65 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 66 | ! unused variables removed |
---|
| 67 | ! |
---|
| 68 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
[3183] | 69 | ! Rename some variables concerning LES-LES as well as offline nesting |
---|
| 70 | ! |
---|
| 71 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
[3129] | 72 | ! - Use wall function for e_p and diss_p in case of rans_tke_e |
---|
| 73 | ! - move limitation of diss_p from tcm_prognostic |
---|
| 74 | ! |
---|
| 75 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
[2938] | 76 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
| 77 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
| 78 | ! mode |
---|
| 79 | ! |
---|
| 80 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
[2766] | 81 | ! Removed preprocessor directive __chem |
---|
| 82 | ! |
---|
| 83 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 84 | ! Corrected "Former revisions" section |
---|
| 85 | ! |
---|
| 86 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 87 | ! Change in file header (GPL part) |
---|
[2696] | 88 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
| 89 | ! Implementation of chemistry module (FK) |
---|
| 90 | ! |
---|
| 91 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
[2569] | 92 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
| 93 | ! |
---|
| 94 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 95 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 96 | ! on fine grid (SadiqHuq) |
---|
| 97 | ! |
---|
| 98 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 99 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 100 | ! |
---|
| 101 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 102 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 103 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 104 | ! and cloud water content (qc). |
---|
| 105 | ! |
---|
| 106 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 107 | ! |
---|
[2233] | 108 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 109 | ! Set boundary conditions on topography top using flag method. |
---|
| 110 | ! |
---|
[2119] | 111 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 112 | ! OpenACC directives removed |
---|
| 113 | ! |
---|
[2001] | 114 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 115 | ! Forced header and separation lines into 80 columns |
---|
| 116 | ! |
---|
[1993] | 117 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 118 | ! Adjustments for top boundary condition for passive scalar |
---|
| 119 | ! |
---|
[1961] | 120 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 121 | ! Treat humidity and passive scalar separately |
---|
| 122 | ! |
---|
[1933] | 123 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 124 | ! Initial version of purely vertical nesting introduced. |
---|
| 125 | ! |
---|
[1823] | 126 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 127 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 128 | ! |
---|
[1765] | 129 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 130 | ! index bug for u_p at left outflow removed |
---|
| 131 | ! |
---|
[1763] | 132 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 133 | ! Introduction of nested domain feature |
---|
| 134 | ! |
---|
[1744] | 135 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 136 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 137 | ! |
---|
[1718] | 138 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 139 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 140 | ! |
---|
[1683] | 141 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 142 | ! Code annotations made doxygen readable |
---|
| 143 | ! |
---|
[1717] | 144 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 145 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 146 | ! top |
---|
| 147 | ! |
---|
[1410] | 148 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 149 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 150 | ! is used. |
---|
| 151 | ! |
---|
[1399] | 152 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 153 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 154 | ! for large_scale_forcing |
---|
| 155 | ! |
---|
[1381] | 156 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 157 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 158 | ! |
---|
[1362] | 159 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 160 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 161 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 162 | ! |
---|
[1354] | 163 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 164 | ! REAL constants provided with KIND-attribute |
---|
| 165 | ! |
---|
[1321] | 166 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 167 | ! ONLY-attribute added to USE-statements, |
---|
| 168 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 169 | ! kinds are defined in new module kinds, |
---|
| 170 | ! revision history before 2012 removed, |
---|
| 171 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 172 | ! all variable declaration statements |
---|
[1160] | 173 | ! |
---|
[1258] | 174 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 175 | ! loop independent clauses added |
---|
| 176 | ! |
---|
[1242] | 177 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 178 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 179 | ! |
---|
[1160] | 180 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 181 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 182 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 183 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 184 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 185 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 186 | ! u_p, v_p, w_p |
---|
[1116] | 187 | ! |
---|
| 188 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 189 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 190 | ! boundary-conditions |
---|
| 191 | ! |
---|
[1114] | 192 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 193 | ! GPU-porting |
---|
| 194 | ! dummy argument "range" removed |
---|
| 195 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 196 | ! |
---|
[1054] | 197 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 198 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 199 | ! two-moment cloud scheme |
---|
| 200 | ! |
---|
[1037] | 201 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 202 | ! code put under GPL (PALM 3.9) |
---|
| 203 | ! |
---|
[997] | 204 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 205 | ! little reformatting |
---|
| 206 | ! |
---|
[979] | 207 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 208 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 209 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 210 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 211 | ! velocity. |
---|
| 212 | ! |
---|
[876] | 213 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 214 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 215 | ! |
---|
[1] | 216 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 217 | ! Initial revision |
---|
| 218 | ! |
---|
| 219 | ! |
---|
| 220 | ! Description: |
---|
| 221 | ! ------------ |
---|
[1682] | 222 | !> Boundary conditions for the prognostic quantities. |
---|
| 223 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 224 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 225 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 226 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 227 | !------------------------------------------------------------------------------! |
---|
[1682] | 228 | SUBROUTINE boundary_conds |
---|
| 229 | |
---|
[1] | 230 | |
---|
[1320] | 231 | USE arrays_3d, & |
---|
| 232 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[4102] | 233 | dzu, nc_p, nr_p, pt, pt_init, pt_p, q, & |
---|
[3241] | 234 | q_p, qc_p, qr_p, s, s_p, sa, sa_p, u, u_init, u_m_l, u_m_n, & |
---|
| 235 | u_m_r, u_m_s, u_p, v, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
| 236 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
[2696] | 237 | |
---|
[3294] | 238 | USE bulk_cloud_model_mod, & |
---|
| 239 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 240 | |
---|
[2696] | 241 | USE chemistry_model_mod, & |
---|
[3879] | 242 | ONLY: chem_boundary_conds |
---|
| 243 | |
---|
[1320] | 244 | USE control_parameters, & |
---|
[4102] | 245 | ONLY: air_chemistry, bc_dirichlet_l, & |
---|
[3182] | 246 | bc_dirichlet_s, bc_radiation_l, bc_radiation_n, bc_radiation_r, & |
---|
| 247 | bc_radiation_s, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
[4102] | 248 | child_domain, coupling_mode, dt_3d, & |
---|
[3582] | 249 | humidity, ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, & |
---|
| 250 | ibc_s_t, ibc_uv_b, ibc_uv_t, intermediate_timestep_count, & |
---|
[3717] | 251 | nesting_offline, neutral, nudging, ocean_mode, passive_scalar, & |
---|
[4102] | 252 | tsc, salsa, use_cmax |
---|
[1320] | 253 | |
---|
| 254 | USE grid_variables, & |
---|
| 255 | ONLY: ddx, ddy, dx, dy |
---|
| 256 | |
---|
| 257 | USE indices, & |
---|
[3294] | 258 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 259 | |
---|
| 260 | USE kinds |
---|
| 261 | |
---|
[3294] | 262 | USE ocean_mod, & |
---|
| 263 | ONLY: ibc_sa_t |
---|
[3274] | 264 | |
---|
[1] | 265 | USE pegrid |
---|
| 266 | |
---|
[1933] | 267 | USE pmc_interface, & |
---|
[4102] | 268 | ONLY : nesting_mode |
---|
[3467] | 269 | |
---|
| 270 | USE salsa_mod, & |
---|
[3582] | 271 | ONLY: salsa_boundary_conds |
---|
[1320] | 272 | |
---|
[2232] | 273 | USE surface_mod, & |
---|
[4102] | 274 | ONLY : bc_h |
---|
[1933] | 275 | |
---|
[3129] | 276 | USE turbulence_closure_mod, & |
---|
[4102] | 277 | ONLY: tcm_boundary_conds |
---|
[3129] | 278 | |
---|
[1] | 279 | IMPLICIT NONE |
---|
| 280 | |
---|
[2232] | 281 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 282 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 283 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 284 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 285 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 286 | |
---|
[3562] | 287 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
| 288 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
[1] | 289 | |
---|
[73] | 290 | |
---|
[1] | 291 | ! |
---|
[1113] | 292 | !-- Bottom boundary |
---|
| 293 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 294 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 295 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 296 | ENDIF |
---|
[2232] | 297 | ! |
---|
| 298 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 299 | !-- of downward-facing surfaces. |
---|
| 300 | DO l = 0, 1 |
---|
| 301 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 302 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 303 | !$ACC PRESENT(bc_h, w_p) |
---|
[2232] | 304 | DO m = 1, bc_h(l)%ns |
---|
| 305 | i = bc_h(l)%i(m) |
---|
| 306 | j = bc_h(l)%j(m) |
---|
| 307 | k = bc_h(l)%k(m) |
---|
[4102] | 308 | w_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
[1113] | 309 | ENDDO |
---|
| 310 | ENDDO |
---|
| 311 | |
---|
| 312 | ! |
---|
[1762] | 313 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 314 | IF ( ibc_uv_t == 0 ) THEN |
---|
[3634] | 315 | !$ACC KERNELS PRESENT(u_p, v_p, u_init, v_init) |
---|
[1113] | 316 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 317 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[3634] | 318 | !$ACC END KERNELS |
---|
[1762] | 319 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 320 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 321 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 322 | ENDIF |
---|
| 323 | |
---|
[2365] | 324 | ! |
---|
| 325 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
[3347] | 326 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
[2365] | 327 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
[3634] | 328 | !$ACC KERNELS PRESENT(w_p) |
---|
[2365] | 329 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[3634] | 330 | !$ACC END KERNELS |
---|
[1762] | 331 | ENDIF |
---|
| 332 | |
---|
[1113] | 333 | ! |
---|
[2232] | 334 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 335 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 336 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 337 | !-- Dirichlet |
---|
[3717] | 338 | IF ( .NOT. neutral ) THEN |
---|
| 339 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 340 | DO l = 0, 1 |
---|
| 341 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 342 | DO m = 1, bc_h(l)%ns |
---|
| 343 | i = bc_h(l)%i(m) |
---|
| 344 | j = bc_h(l)%j(m) |
---|
| 345 | k = bc_h(l)%k(m) |
---|
[4102] | 346 | pt_p(k+bc_h(l)%koff,j,i) = pt(k+bc_h(l)%koff,j,i) |
---|
[3717] | 347 | ENDDO |
---|
[1] | 348 | ENDDO |
---|
[3717] | 349 | ! |
---|
| 350 | !-- Neumann, zero-gradient |
---|
| 351 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 352 | DO l = 0, 1 |
---|
| 353 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 354 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 355 | !$ACC PRESENT(bc_h, pt_p) |
---|
| 356 | DO m = 1, bc_h(l)%ns |
---|
| 357 | i = bc_h(l)%i(m) |
---|
| 358 | j = bc_h(l)%j(m) |
---|
| 359 | k = bc_h(l)%k(m) |
---|
[4102] | 360 | pt_p(k+bc_h(l)%koff,j,i) = pt_p(k,j,i) |
---|
[3717] | 361 | ENDDO |
---|
[1113] | 362 | ENDDO |
---|
[3717] | 363 | ENDIF |
---|
| 364 | |
---|
| 365 | ! |
---|
| 366 | !-- Temperature at top boundary |
---|
| 367 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 368 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 369 | ! |
---|
| 370 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 371 | !-- read in from NUDGING-DATA |
---|
| 372 | IF ( nudging ) THEN |
---|
| 373 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 374 | ENDIF |
---|
| 375 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 376 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 377 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 378 | !$ACC KERNELS PRESENT(pt_p, dzu) |
---|
| 379 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 380 | !$ACC END KERNELS |
---|
| 381 | ENDIF |
---|
[1113] | 382 | ENDIF |
---|
[1] | 383 | ! |
---|
[1113] | 384 | !-- Boundary conditions for salinity |
---|
[3294] | 385 | IF ( ocean_mode ) THEN |
---|
[1113] | 386 | ! |
---|
| 387 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 388 | !-- given. |
---|
| 389 | DO l = 0, 1 |
---|
| 390 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 391 | DO m = 1, bc_h(l)%ns |
---|
| 392 | i = bc_h(l)%i(m) |
---|
| 393 | j = bc_h(l)%j(m) |
---|
| 394 | k = bc_h(l)%k(m) |
---|
[4102] | 395 | sa_p(k+bc_h(l)%koff,j,i) = sa_p(k,j,i) |
---|
[1] | 396 | ENDDO |
---|
[1113] | 397 | ENDDO |
---|
[1] | 398 | ! |
---|
[1113] | 399 | !-- Top boundary: Dirichlet or Neumann |
---|
| 400 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 401 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 402 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 403 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 404 | ENDIF |
---|
| 405 | |
---|
[1113] | 406 | ENDIF |
---|
| 407 | |
---|
[1] | 408 | ! |
---|
[1960] | 409 | !-- Boundary conditions for total water content, |
---|
[1113] | 410 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 411 | IF ( humidity ) THEN |
---|
[1113] | 412 | ! |
---|
| 413 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 414 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 415 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 416 | !-- q_p at k-1 |
---|
[1113] | 417 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 418 | |
---|
| 419 | DO l = 0, 1 |
---|
| 420 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 421 | DO m = 1, bc_h(l)%ns |
---|
| 422 | i = bc_h(l)%i(m) |
---|
| 423 | j = bc_h(l)%j(m) |
---|
| 424 | k = bc_h(l)%k(m) |
---|
[4102] | 425 | q_p(k+bc_h(l)%koff,j,i) = q(k+bc_h(l)%koff,j,i) |
---|
[1] | 426 | ENDDO |
---|
| 427 | ENDDO |
---|
[2232] | 428 | |
---|
[1113] | 429 | ELSE |
---|
[2232] | 430 | |
---|
| 431 | DO l = 0, 1 |
---|
| 432 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 433 | DO m = 1, bc_h(l)%ns |
---|
| 434 | i = bc_h(l)%i(m) |
---|
| 435 | j = bc_h(l)%j(m) |
---|
| 436 | k = bc_h(l)%k(m) |
---|
[4102] | 437 | q_p(k+bc_h(l)%koff,j,i) = q_p(k,j,i) |
---|
[95] | 438 | ENDDO |
---|
| 439 | ENDDO |
---|
[1113] | 440 | ENDIF |
---|
[95] | 441 | ! |
---|
[1113] | 442 | !-- Top boundary |
---|
[1462] | 443 | IF ( ibc_q_t == 0 ) THEN |
---|
| 444 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 445 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 446 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 447 | ENDIF |
---|
[95] | 448 | |
---|
[3274] | 449 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 450 | ! |
---|
| 451 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 452 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 453 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
[4102] | 454 | !-- qr_p and nr_p at upward (k-1) and downward-facing (k+1) walls |
---|
| 455 | DO l = 0, 1 |
---|
[2292] | 456 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4102] | 457 | DO m = 1, bc_h(l)%ns |
---|
| 458 | i = bc_h(l)%i(m) |
---|
| 459 | j = bc_h(l)%j(m) |
---|
| 460 | k = bc_h(l)%k(m) |
---|
| 461 | qc_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 462 | nc_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 463 | ENDDO |
---|
[2292] | 464 | ENDDO |
---|
| 465 | ! |
---|
| 466 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 467 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 468 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 469 | |
---|
| 470 | ENDIF |
---|
| 471 | |
---|
[3274] | 472 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1113] | 473 | ! |
---|
[1361] | 474 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 475 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 476 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
[4102] | 477 | !-- qr_p and nr_p at upward (k-1) and downward-facing (k+1) walls |
---|
| 478 | DO l = 0, 1 |
---|
[2232] | 479 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4102] | 480 | DO m = 1, bc_h(l)%ns |
---|
| 481 | i = bc_h(l)%i(m) |
---|
| 482 | j = bc_h(l)%j(m) |
---|
| 483 | k = bc_h(l)%k(m) |
---|
| 484 | qr_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 485 | nr_p(k+bc_h(l)%koff,j,i) = 0.0_wp |
---|
| 486 | ENDDO |
---|
[1115] | 487 | ENDDO |
---|
[1] | 488 | ! |
---|
[1361] | 489 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 490 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 491 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 492 | |
---|
[1] | 493 | ENDIF |
---|
[1409] | 494 | ENDIF |
---|
[1] | 495 | ! |
---|
[1960] | 496 | !-- Boundary conditions for scalar, |
---|
| 497 | !-- bottom and top boundary (see also temperature) |
---|
| 498 | IF ( passive_scalar ) THEN |
---|
| 499 | ! |
---|
| 500 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 501 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 502 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 503 | !-- s_p at k-1 |
---|
[1960] | 504 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 505 | |
---|
| 506 | DO l = 0, 1 |
---|
| 507 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 508 | DO m = 1, bc_h(l)%ns |
---|
| 509 | i = bc_h(l)%i(m) |
---|
| 510 | j = bc_h(l)%j(m) |
---|
| 511 | k = bc_h(l)%k(m) |
---|
[4102] | 512 | s_p(k+bc_h(l)%koff,j,i) = s(k+bc_h(l)%koff,j,i) |
---|
[1960] | 513 | ENDDO |
---|
| 514 | ENDDO |
---|
[2232] | 515 | |
---|
[1960] | 516 | ELSE |
---|
[2232] | 517 | |
---|
| 518 | DO l = 0, 1 |
---|
| 519 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 520 | DO m = 1, bc_h(l)%ns |
---|
| 521 | i = bc_h(l)%i(m) |
---|
| 522 | j = bc_h(l)%j(m) |
---|
| 523 | k = bc_h(l)%k(m) |
---|
[4102] | 524 | s_p(k+bc_h(l)%koff,j,i) = s_p(k,j,i) |
---|
[1960] | 525 | ENDDO |
---|
| 526 | ENDDO |
---|
| 527 | ENDIF |
---|
| 528 | ! |
---|
[1992] | 529 | !-- Top boundary condition |
---|
| 530 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 531 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 532 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 533 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 534 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 535 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 536 | ENDIF |
---|
| 537 | |
---|
[4102] | 538 | ENDIF |
---|
[1960] | 539 | ! |
---|
[4102] | 540 | !-- Set boundary conditions for subgrid TKE and dissipation (RANS mode) |
---|
| 541 | CALL tcm_boundary_conds |
---|
| 542 | ! |
---|
[2696] | 543 | !-- Top/bottom boundary conditions for chemical species |
---|
| 544 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 545 | ! |
---|
[1762] | 546 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 547 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 548 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 549 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 550 | !-- have to be restored here. |
---|
[3182] | 551 | IF ( bc_dirichlet_s ) THEN |
---|
[1409] | 552 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
[3182] | 553 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
[1409] | 554 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 555 | ENDIF |
---|
[1] | 556 | |
---|
| 557 | ! |
---|
[1762] | 558 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 559 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
[3182] | 560 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
[4102] | 561 | !-- Lateral oundary conditions for TKE and dissipation are set |
---|
| 562 | !-- in tcm_boundary_conds. |
---|
[3182] | 563 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
| 564 | IF ( bc_dirichlet_s ) THEN |
---|
[1933] | 565 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 566 | ENDIF |
---|
[3182] | 567 | IF ( bc_dirichlet_l ) THEN |
---|
[1933] | 568 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 569 | ENDIF |
---|
[1762] | 570 | ENDIF |
---|
| 571 | |
---|
| 572 | ! |
---|
[4102] | 573 | !-- Lateral boundary conditions for scalar quantities at the outflow. |
---|
| 574 | !-- Lateral oundary conditions for TKE and dissipation are set |
---|
| 575 | !-- in tcm_boundary_conds. |
---|
[3182] | 576 | IF ( bc_radiation_s ) THEN |
---|
[1409] | 577 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[1960] | 578 | IF ( humidity ) THEN |
---|
[1409] | 579 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[3274] | 580 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 581 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 582 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 583 | ENDIF |
---|
[3274] | 584 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 585 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 586 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 587 | ENDIF |
---|
[1409] | 588 | ENDIF |
---|
[1960] | 589 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[3182] | 590 | ELSEIF ( bc_radiation_n ) THEN |
---|
[1409] | 591 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[1960] | 592 | IF ( humidity ) THEN |
---|
[1409] | 593 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[3274] | 594 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 595 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 596 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 597 | ENDIF |
---|
[3274] | 598 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 599 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 600 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 601 | ENDIF |
---|
[1409] | 602 | ENDIF |
---|
[1960] | 603 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[3182] | 604 | ELSEIF ( bc_radiation_l ) THEN |
---|
[1409] | 605 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[1960] | 606 | IF ( humidity ) THEN |
---|
[1409] | 607 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[3274] | 608 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 609 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 610 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 611 | ENDIF |
---|
[3274] | 612 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 613 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 614 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 615 | ENDIF |
---|
[1409] | 616 | ENDIF |
---|
[1960] | 617 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[3182] | 618 | ELSEIF ( bc_radiation_r ) THEN |
---|
[1409] | 619 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[1960] | 620 | IF ( humidity ) THEN |
---|
[1409] | 621 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[3274] | 622 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 623 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 624 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 625 | ENDIF |
---|
[3274] | 626 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 627 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 628 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 629 | ENDIF |
---|
[1] | 630 | ENDIF |
---|
[1960] | 631 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 632 | ENDIF |
---|
| 633 | |
---|
| 634 | ! |
---|
[2696] | 635 | !-- Lateral boundary conditions for chemical species |
---|
| 636 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 637 | |
---|
| 638 | ! |
---|
[1159] | 639 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 640 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 641 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 642 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[3182] | 643 | IF ( bc_radiation_s ) THEN |
---|
[75] | 644 | |
---|
[1159] | 645 | IF ( use_cmax ) THEN |
---|
| 646 | u_p(:,-1,:) = u(:,0,:) |
---|
| 647 | v_p(:,0,:) = v(:,1,:) |
---|
| 648 | w_p(:,-1,:) = w(:,0,:) |
---|
| 649 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 650 | |
---|
[978] | 651 | c_max = dy / dt_3d |
---|
[75] | 652 | |
---|
[1353] | 653 | c_u_m_l = 0.0_wp |
---|
| 654 | c_v_m_l = 0.0_wp |
---|
| 655 | c_w_m_l = 0.0_wp |
---|
[978] | 656 | |
---|
[1353] | 657 | c_u_m = 0.0_wp |
---|
| 658 | c_v_m = 0.0_wp |
---|
| 659 | c_w_m = 0.0_wp |
---|
[978] | 660 | |
---|
[75] | 661 | ! |
---|
[996] | 662 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 663 | !-- average along the outflow boundary. |
---|
| 664 | DO k = nzb+1, nzt+1 |
---|
| 665 | DO i = nxl, nxr |
---|
[75] | 666 | |
---|
[106] | 667 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 668 | |
---|
[1353] | 669 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 670 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 671 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 672 | c_u(k,i) = 0.0_wp |
---|
[106] | 673 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 674 | c_u(k,i) = c_max |
---|
| 675 | ENDIF |
---|
| 676 | ELSE |
---|
| 677 | c_u(k,i) = c_max |
---|
[75] | 678 | ENDIF |
---|
| 679 | |
---|
[106] | 680 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 681 | |
---|
[1353] | 682 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 683 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 684 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 685 | c_v(k,i) = 0.0_wp |
---|
[106] | 686 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 687 | c_v(k,i) = c_max |
---|
| 688 | ENDIF |
---|
| 689 | ELSE |
---|
| 690 | c_v(k,i) = c_max |
---|
[75] | 691 | ENDIF |
---|
| 692 | |
---|
[106] | 693 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 694 | |
---|
[1353] | 695 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 696 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 697 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 698 | c_w(k,i) = 0.0_wp |
---|
[106] | 699 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 700 | c_w(k,i) = c_max |
---|
| 701 | ENDIF |
---|
| 702 | ELSE |
---|
| 703 | c_w(k,i) = c_max |
---|
[75] | 704 | ENDIF |
---|
[106] | 705 | |
---|
[978] | 706 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 707 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 708 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 709 | |
---|
[978] | 710 | ENDDO |
---|
| 711 | ENDDO |
---|
[75] | 712 | |
---|
[978] | 713 | #if defined( __parallel ) |
---|
| 714 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 715 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 716 | MPI_SUM, comm1dx, ierr ) |
---|
| 717 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 718 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 719 | MPI_SUM, comm1dx, ierr ) |
---|
| 720 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 721 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 722 | MPI_SUM, comm1dx, ierr ) |
---|
| 723 | #else |
---|
| 724 | c_u_m = c_u_m_l |
---|
| 725 | c_v_m = c_v_m_l |
---|
| 726 | c_w_m = c_w_m_l |
---|
| 727 | #endif |
---|
| 728 | |
---|
| 729 | c_u_m = c_u_m / (nx+1) |
---|
| 730 | c_v_m = c_v_m / (nx+1) |
---|
| 731 | c_w_m = c_w_m / (nx+1) |
---|
| 732 | |
---|
[75] | 733 | ! |
---|
[978] | 734 | !-- Save old timelevels for the next timestep |
---|
| 735 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 736 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 737 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 738 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
| 741 | ! |
---|
| 742 | !-- Calculate the new velocities |
---|
[996] | 743 | DO k = nzb+1, nzt+1 |
---|
| 744 | DO i = nxlg, nxrg |
---|
[978] | 745 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 746 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 747 | |
---|
[978] | 748 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 749 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 750 | |
---|
[978] | 751 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 752 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 753 | ENDDO |
---|
[75] | 754 | ENDDO |
---|
| 755 | |
---|
| 756 | ! |
---|
[978] | 757 | !-- Bottom boundary at the outflow |
---|
| 758 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 759 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 760 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 761 | ELSE |
---|
| 762 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 763 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 764 | ENDIF |
---|
[1353] | 765 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 766 | |
---|
[75] | 767 | ! |
---|
[978] | 768 | !-- Top boundary at the outflow |
---|
| 769 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 770 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 771 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 772 | ELSE |
---|
[1742] | 773 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 774 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 775 | ENDIF |
---|
[1353] | 776 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 777 | |
---|
[75] | 778 | ENDIF |
---|
[73] | 779 | |
---|
[75] | 780 | ENDIF |
---|
[73] | 781 | |
---|
[3182] | 782 | IF ( bc_radiation_n ) THEN |
---|
[73] | 783 | |
---|
[1159] | 784 | IF ( use_cmax ) THEN |
---|
| 785 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 786 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 787 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 788 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 789 | |
---|
[978] | 790 | c_max = dy / dt_3d |
---|
[75] | 791 | |
---|
[1353] | 792 | c_u_m_l = 0.0_wp |
---|
| 793 | c_v_m_l = 0.0_wp |
---|
| 794 | c_w_m_l = 0.0_wp |
---|
[978] | 795 | |
---|
[1353] | 796 | c_u_m = 0.0_wp |
---|
| 797 | c_v_m = 0.0_wp |
---|
| 798 | c_w_m = 0.0_wp |
---|
[978] | 799 | |
---|
[1] | 800 | ! |
---|
[996] | 801 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 802 | !-- average along the outflow boundary. |
---|
| 803 | DO k = nzb+1, nzt+1 |
---|
| 804 | DO i = nxl, nxr |
---|
[73] | 805 | |
---|
[106] | 806 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 807 | |
---|
[1353] | 808 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 809 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 810 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 811 | c_u(k,i) = 0.0_wp |
---|
[106] | 812 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 813 | c_u(k,i) = c_max |
---|
| 814 | ENDIF |
---|
| 815 | ELSE |
---|
| 816 | c_u(k,i) = c_max |
---|
[73] | 817 | ENDIF |
---|
| 818 | |
---|
[106] | 819 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 820 | |
---|
[1353] | 821 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 822 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 823 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 824 | c_v(k,i) = 0.0_wp |
---|
[106] | 825 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 826 | c_v(k,i) = c_max |
---|
| 827 | ENDIF |
---|
| 828 | ELSE |
---|
| 829 | c_v(k,i) = c_max |
---|
[73] | 830 | ENDIF |
---|
| 831 | |
---|
[106] | 832 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 833 | |
---|
[1353] | 834 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 835 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 836 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 837 | c_w(k,i) = 0.0_wp |
---|
[106] | 838 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 839 | c_w(k,i) = c_max |
---|
| 840 | ENDIF |
---|
| 841 | ELSE |
---|
| 842 | c_w(k,i) = c_max |
---|
[73] | 843 | ENDIF |
---|
[106] | 844 | |
---|
[978] | 845 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 846 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 847 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 848 | |
---|
[978] | 849 | ENDDO |
---|
| 850 | ENDDO |
---|
[73] | 851 | |
---|
[978] | 852 | #if defined( __parallel ) |
---|
| 853 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 854 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 855 | MPI_SUM, comm1dx, ierr ) |
---|
| 856 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 857 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 858 | MPI_SUM, comm1dx, ierr ) |
---|
| 859 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 860 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 861 | MPI_SUM, comm1dx, ierr ) |
---|
| 862 | #else |
---|
| 863 | c_u_m = c_u_m_l |
---|
| 864 | c_v_m = c_v_m_l |
---|
| 865 | c_w_m = c_w_m_l |
---|
| 866 | #endif |
---|
| 867 | |
---|
| 868 | c_u_m = c_u_m / (nx+1) |
---|
| 869 | c_v_m = c_v_m / (nx+1) |
---|
| 870 | c_w_m = c_w_m / (nx+1) |
---|
| 871 | |
---|
[73] | 872 | ! |
---|
[978] | 873 | !-- Save old timelevels for the next timestep |
---|
| 874 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 875 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 876 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 877 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 878 | ENDIF |
---|
[73] | 879 | |
---|
[978] | 880 | ! |
---|
| 881 | !-- Calculate the new velocities |
---|
[996] | 882 | DO k = nzb+1, nzt+1 |
---|
| 883 | DO i = nxlg, nxrg |
---|
[978] | 884 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 885 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 886 | |
---|
[978] | 887 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 888 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 889 | |
---|
[978] | 890 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 891 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 892 | ENDDO |
---|
[1] | 893 | ENDDO |
---|
| 894 | |
---|
| 895 | ! |
---|
[978] | 896 | !-- Bottom boundary at the outflow |
---|
| 897 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 898 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 899 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 900 | ELSE |
---|
| 901 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 902 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 903 | ENDIF |
---|
[1353] | 904 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 905 | |
---|
| 906 | ! |
---|
[978] | 907 | !-- Top boundary at the outflow |
---|
| 908 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 909 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 910 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 911 | ELSE |
---|
| 912 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 913 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 914 | ENDIF |
---|
[1353] | 915 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 916 | |
---|
[1] | 917 | ENDIF |
---|
| 918 | |
---|
[75] | 919 | ENDIF |
---|
| 920 | |
---|
[3182] | 921 | IF ( bc_radiation_l ) THEN |
---|
[75] | 922 | |
---|
[1159] | 923 | IF ( use_cmax ) THEN |
---|
[1717] | 924 | u_p(:,:,0) = u(:,:,1) |
---|
| 925 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 926 | w_p(:,:,-1) = w(:,:,0) |
---|
| 927 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 928 | |
---|
[978] | 929 | c_max = dx / dt_3d |
---|
[75] | 930 | |
---|
[1353] | 931 | c_u_m_l = 0.0_wp |
---|
| 932 | c_v_m_l = 0.0_wp |
---|
| 933 | c_w_m_l = 0.0_wp |
---|
[978] | 934 | |
---|
[1353] | 935 | c_u_m = 0.0_wp |
---|
| 936 | c_v_m = 0.0_wp |
---|
| 937 | c_w_m = 0.0_wp |
---|
[978] | 938 | |
---|
[1] | 939 | ! |
---|
[996] | 940 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 941 | !-- average along the outflow boundary. |
---|
| 942 | DO k = nzb+1, nzt+1 |
---|
| 943 | DO j = nys, nyn |
---|
[75] | 944 | |
---|
[106] | 945 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 946 | |
---|
[1353] | 947 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 948 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 949 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 950 | c_u(k,j) = 0.0_wp |
---|
[107] | 951 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 952 | c_u(k,j) = c_max |
---|
[106] | 953 | ENDIF |
---|
| 954 | ELSE |
---|
[107] | 955 | c_u(k,j) = c_max |
---|
[75] | 956 | ENDIF |
---|
| 957 | |
---|
[106] | 958 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 959 | |
---|
[1353] | 960 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 961 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 962 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 963 | c_v(k,j) = 0.0_wp |
---|
[106] | 964 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 965 | c_v(k,j) = c_max |
---|
| 966 | ENDIF |
---|
| 967 | ELSE |
---|
| 968 | c_v(k,j) = c_max |
---|
[75] | 969 | ENDIF |
---|
| 970 | |
---|
[106] | 971 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 972 | |
---|
[1353] | 973 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 974 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 975 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 976 | c_w(k,j) = 0.0_wp |
---|
[106] | 977 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 978 | c_w(k,j) = c_max |
---|
| 979 | ENDIF |
---|
| 980 | ELSE |
---|
| 981 | c_w(k,j) = c_max |
---|
[75] | 982 | ENDIF |
---|
[106] | 983 | |
---|
[978] | 984 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 985 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 986 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 987 | |
---|
[978] | 988 | ENDDO |
---|
| 989 | ENDDO |
---|
[75] | 990 | |
---|
[978] | 991 | #if defined( __parallel ) |
---|
| 992 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 993 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 994 | MPI_SUM, comm1dy, ierr ) |
---|
| 995 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 996 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 997 | MPI_SUM, comm1dy, ierr ) |
---|
| 998 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 999 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1000 | MPI_SUM, comm1dy, ierr ) |
---|
| 1001 | #else |
---|
| 1002 | c_u_m = c_u_m_l |
---|
| 1003 | c_v_m = c_v_m_l |
---|
| 1004 | c_w_m = c_w_m_l |
---|
| 1005 | #endif |
---|
| 1006 | |
---|
| 1007 | c_u_m = c_u_m / (ny+1) |
---|
| 1008 | c_v_m = c_v_m / (ny+1) |
---|
| 1009 | c_w_m = c_w_m / (ny+1) |
---|
| 1010 | |
---|
[73] | 1011 | ! |
---|
[978] | 1012 | !-- Save old timelevels for the next timestep |
---|
| 1013 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1014 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1015 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1016 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1017 | ENDIF |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- Calculate the new velocities |
---|
[996] | 1021 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1022 | DO j = nysg, nyng |
---|
[978] | 1023 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 1024 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 1025 | |
---|
[978] | 1026 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 1027 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 1028 | |
---|
[978] | 1029 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1030 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1031 | ENDDO |
---|
[75] | 1032 | ENDDO |
---|
| 1033 | |
---|
| 1034 | ! |
---|
[978] | 1035 | !-- Bottom boundary at the outflow |
---|
| 1036 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1037 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1038 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1039 | ELSE |
---|
| 1040 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1041 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1042 | ENDIF |
---|
[1353] | 1043 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1044 | |
---|
[75] | 1045 | ! |
---|
[978] | 1046 | !-- Top boundary at the outflow |
---|
| 1047 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1048 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1049 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1050 | ELSE |
---|
[1764] | 1051 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1052 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1053 | ENDIF |
---|
[1353] | 1054 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1055 | |
---|
[75] | 1056 | ENDIF |
---|
[73] | 1057 | |
---|
[75] | 1058 | ENDIF |
---|
[73] | 1059 | |
---|
[3182] | 1060 | IF ( bc_radiation_r ) THEN |
---|
[73] | 1061 | |
---|
[1159] | 1062 | IF ( use_cmax ) THEN |
---|
| 1063 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1064 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1065 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1066 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1067 | |
---|
[978] | 1068 | c_max = dx / dt_3d |
---|
[75] | 1069 | |
---|
[1353] | 1070 | c_u_m_l = 0.0_wp |
---|
| 1071 | c_v_m_l = 0.0_wp |
---|
| 1072 | c_w_m_l = 0.0_wp |
---|
[978] | 1073 | |
---|
[1353] | 1074 | c_u_m = 0.0_wp |
---|
| 1075 | c_v_m = 0.0_wp |
---|
| 1076 | c_w_m = 0.0_wp |
---|
[978] | 1077 | |
---|
[1] | 1078 | ! |
---|
[996] | 1079 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1080 | !-- average along the outflow boundary. |
---|
| 1081 | DO k = nzb+1, nzt+1 |
---|
| 1082 | DO j = nys, nyn |
---|
[73] | 1083 | |
---|
[106] | 1084 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1085 | |
---|
[1353] | 1086 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1087 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1088 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1089 | c_u(k,j) = 0.0_wp |
---|
[106] | 1090 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1091 | c_u(k,j) = c_max |
---|
| 1092 | ENDIF |
---|
| 1093 | ELSE |
---|
| 1094 | c_u(k,j) = c_max |
---|
[73] | 1095 | ENDIF |
---|
| 1096 | |
---|
[106] | 1097 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1098 | |
---|
[1353] | 1099 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1100 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1101 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1102 | c_v(k,j) = 0.0_wp |
---|
[106] | 1103 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1104 | c_v(k,j) = c_max |
---|
| 1105 | ENDIF |
---|
| 1106 | ELSE |
---|
| 1107 | c_v(k,j) = c_max |
---|
[73] | 1108 | ENDIF |
---|
| 1109 | |
---|
[106] | 1110 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1111 | |
---|
[1353] | 1112 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1113 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1114 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1115 | c_w(k,j) = 0.0_wp |
---|
[106] | 1116 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1117 | c_w(k,j) = c_max |
---|
| 1118 | ENDIF |
---|
| 1119 | ELSE |
---|
| 1120 | c_w(k,j) = c_max |
---|
[73] | 1121 | ENDIF |
---|
[106] | 1122 | |
---|
[978] | 1123 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1124 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1125 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1126 | |
---|
[978] | 1127 | ENDDO |
---|
| 1128 | ENDDO |
---|
[73] | 1129 | |
---|
[978] | 1130 | #if defined( __parallel ) |
---|
| 1131 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1132 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1133 | MPI_SUM, comm1dy, ierr ) |
---|
| 1134 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1135 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1136 | MPI_SUM, comm1dy, ierr ) |
---|
| 1137 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1138 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1139 | MPI_SUM, comm1dy, ierr ) |
---|
| 1140 | #else |
---|
| 1141 | c_u_m = c_u_m_l |
---|
| 1142 | c_v_m = c_v_m_l |
---|
| 1143 | c_w_m = c_w_m_l |
---|
| 1144 | #endif |
---|
| 1145 | |
---|
| 1146 | c_u_m = c_u_m / (ny+1) |
---|
| 1147 | c_v_m = c_v_m / (ny+1) |
---|
| 1148 | c_w_m = c_w_m / (ny+1) |
---|
| 1149 | |
---|
[73] | 1150 | ! |
---|
[978] | 1151 | !-- Save old timelevels for the next timestep |
---|
| 1152 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1153 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1154 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1155 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1156 | ENDIF |
---|
[73] | 1157 | |
---|
[978] | 1158 | ! |
---|
| 1159 | !-- Calculate the new velocities |
---|
[996] | 1160 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1161 | DO j = nysg, nyng |
---|
[978] | 1162 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1163 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1164 | |
---|
[978] | 1165 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1166 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1167 | |
---|
[978] | 1168 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1169 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1170 | ENDDO |
---|
[73] | 1171 | ENDDO |
---|
| 1172 | |
---|
| 1173 | ! |
---|
[978] | 1174 | !-- Bottom boundary at the outflow |
---|
| 1175 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1176 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1177 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1178 | ELSE |
---|
| 1179 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1180 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1181 | ENDIF |
---|
[1353] | 1182 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1183 | |
---|
| 1184 | ! |
---|
[978] | 1185 | !-- Top boundary at the outflow |
---|
| 1186 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1187 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1188 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1189 | ELSE |
---|
| 1190 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1191 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1192 | ENDIF |
---|
[1742] | 1193 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1194 | |
---|
[1] | 1195 | ENDIF |
---|
| 1196 | |
---|
| 1197 | ENDIF |
---|
[3864] | 1198 | |
---|
[3467] | 1199 | IF ( salsa ) THEN |
---|
| 1200 | CALL salsa_boundary_conds |
---|
[3864] | 1201 | ENDIF |
---|
[1] | 1202 | |
---|
| 1203 | END SUBROUTINE boundary_conds |
---|