[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[3589] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 3717 2019-02-05 17:21:16Z suehring $ |
---|
[3717] | 27 | ! Bugfix, do not set boundary conditions for potential temperature in neutral |
---|
| 28 | ! runs. |
---|
| 29 | ! |
---|
| 30 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 31 | ! OpenACC port for SPEC |
---|
| 32 | ! |
---|
| 33 | ! 3589 2018-11-30 15:09:51Z suehring |
---|
[3589] | 34 | ! Move the control parameter "salsa" from salsa_mod to control_parameters |
---|
| 35 | ! (M. Kurppa) |
---|
| 36 | ! |
---|
| 37 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
[3562] | 38 | ! variables documented |
---|
| 39 | ! |
---|
| 40 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
[3467] | 41 | ! Implementation of a new aerosol module salsa. |
---|
| 42 | ! |
---|
| 43 | ! 3347 2018-10-15 14:21:08Z suehring |
---|
[3347] | 44 | ! Bugfix in setting boundary conditions in offline nesting |
---|
| 45 | ! |
---|
| 46 | ! 3341 2018-10-15 10:31:27Z suehring |
---|
[3294] | 47 | ! changes concerning modularization of ocean option |
---|
| 48 | ! |
---|
| 49 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 50 | ! Modularization of all bulk cloud physics code components |
---|
| 51 | ! |
---|
| 52 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 53 | ! unused variables removed |
---|
| 54 | ! |
---|
| 55 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
[3183] | 56 | ! Rename some variables concerning LES-LES as well as offline nesting |
---|
| 57 | ! |
---|
| 58 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
[3129] | 59 | ! - Use wall function for e_p and diss_p in case of rans_tke_e |
---|
| 60 | ! - move limitation of diss_p from tcm_prognostic |
---|
| 61 | ! |
---|
| 62 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
[2938] | 63 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
| 64 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
| 65 | ! mode |
---|
| 66 | ! |
---|
| 67 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
[2766] | 68 | ! Removed preprocessor directive __chem |
---|
| 69 | ! |
---|
| 70 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 71 | ! Corrected "Former revisions" section |
---|
| 72 | ! |
---|
| 73 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 74 | ! Change in file header (GPL part) |
---|
[2696] | 75 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
| 76 | ! Implementation of chemistry module (FK) |
---|
| 77 | ! |
---|
| 78 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
[2569] | 79 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
| 80 | ! |
---|
| 81 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 82 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 83 | ! on fine grid (SadiqHuq) |
---|
| 84 | ! |
---|
| 85 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 86 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 87 | ! |
---|
| 88 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 89 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 90 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 91 | ! and cloud water content (qc). |
---|
| 92 | ! |
---|
| 93 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 94 | ! |
---|
[2233] | 95 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 96 | ! Set boundary conditions on topography top using flag method. |
---|
| 97 | ! |
---|
[2119] | 98 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 99 | ! OpenACC directives removed |
---|
| 100 | ! |
---|
[2001] | 101 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 102 | ! Forced header and separation lines into 80 columns |
---|
| 103 | ! |
---|
[1993] | 104 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 105 | ! Adjustments for top boundary condition for passive scalar |
---|
| 106 | ! |
---|
[1961] | 107 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 108 | ! Treat humidity and passive scalar separately |
---|
| 109 | ! |
---|
[1933] | 110 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 111 | ! Initial version of purely vertical nesting introduced. |
---|
| 112 | ! |
---|
[1823] | 113 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 114 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 115 | ! |
---|
[1765] | 116 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 117 | ! index bug for u_p at left outflow removed |
---|
| 118 | ! |
---|
[1763] | 119 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 120 | ! Introduction of nested domain feature |
---|
| 121 | ! |
---|
[1744] | 122 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 123 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 124 | ! |
---|
[1718] | 125 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 126 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 127 | ! |
---|
[1683] | 128 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 129 | ! Code annotations made doxygen readable |
---|
| 130 | ! |
---|
[1717] | 131 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 132 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 133 | ! top |
---|
| 134 | ! |
---|
[1410] | 135 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 136 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 137 | ! is used. |
---|
| 138 | ! |
---|
[1399] | 139 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 140 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 141 | ! for large_scale_forcing |
---|
| 142 | ! |
---|
[1381] | 143 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 144 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 145 | ! |
---|
[1362] | 146 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 147 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 148 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 149 | ! |
---|
[1354] | 150 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 151 | ! REAL constants provided with KIND-attribute |
---|
| 152 | ! |
---|
[1321] | 153 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 154 | ! ONLY-attribute added to USE-statements, |
---|
| 155 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 156 | ! kinds are defined in new module kinds, |
---|
| 157 | ! revision history before 2012 removed, |
---|
| 158 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 159 | ! all variable declaration statements |
---|
[1160] | 160 | ! |
---|
[1258] | 161 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 162 | ! loop independent clauses added |
---|
| 163 | ! |
---|
[1242] | 164 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 165 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 166 | ! |
---|
[1160] | 167 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 168 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 169 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 170 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 171 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 172 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 173 | ! u_p, v_p, w_p |
---|
[1116] | 174 | ! |
---|
| 175 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 176 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 177 | ! boundary-conditions |
---|
| 178 | ! |
---|
[1114] | 179 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 180 | ! GPU-porting |
---|
| 181 | ! dummy argument "range" removed |
---|
| 182 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 183 | ! |
---|
[1054] | 184 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 185 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 186 | ! two-moment cloud scheme |
---|
| 187 | ! |
---|
[1037] | 188 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 189 | ! code put under GPL (PALM 3.9) |
---|
| 190 | ! |
---|
[997] | 191 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 192 | ! little reformatting |
---|
| 193 | ! |
---|
[979] | 194 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 195 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 196 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 197 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 198 | ! velocity. |
---|
| 199 | ! |
---|
[876] | 200 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 201 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 202 | ! |
---|
[1] | 203 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 204 | ! Initial revision |
---|
| 205 | ! |
---|
| 206 | ! |
---|
| 207 | ! Description: |
---|
| 208 | ! ------------ |
---|
[1682] | 209 | !> Boundary conditions for the prognostic quantities. |
---|
| 210 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 211 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 212 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 213 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 214 | !------------------------------------------------------------------------------! |
---|
[1682] | 215 | SUBROUTINE boundary_conds |
---|
| 216 | |
---|
[1] | 217 | |
---|
[1320] | 218 | USE arrays_3d, & |
---|
| 219 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[3241] | 220 | diss, diss_p, dzu, e_p, nc_p, nr_p, pt, pt_init, pt_p, q, & |
---|
| 221 | q_p, qc_p, qr_p, s, s_p, sa, sa_p, u, u_init, u_m_l, u_m_n, & |
---|
| 222 | u_m_r, u_m_s, u_p, v, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
| 223 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
[2696] | 224 | |
---|
[3274] | 225 | USE basic_constants_and_equations_mod, & |
---|
| 226 | ONLY: kappa |
---|
| 227 | |
---|
[3294] | 228 | USE bulk_cloud_model_mod, & |
---|
| 229 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 230 | |
---|
[2696] | 231 | USE chemistry_model_mod, & |
---|
| 232 | ONLY: chem_boundary_conds |
---|
| 233 | |
---|
[1320] | 234 | USE control_parameters, & |
---|
[3182] | 235 | ONLY: air_chemistry, bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & |
---|
| 236 | bc_dirichlet_s, bc_radiation_l, bc_radiation_n, bc_radiation_r, & |
---|
| 237 | bc_radiation_s, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
[3582] | 238 | child_domain, constant_diffusion, coupling_mode, dt_3d, & |
---|
| 239 | humidity, ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, & |
---|
| 240 | ibc_s_t, ibc_uv_b, ibc_uv_t, intermediate_timestep_count, & |
---|
[3717] | 241 | nesting_offline, neutral, nudging, ocean_mode, passive_scalar, & |
---|
| 242 | rans_mode, rans_tke_e, tsc, salsa, use_cmax |
---|
[1320] | 243 | |
---|
| 244 | USE grid_variables, & |
---|
| 245 | ONLY: ddx, ddy, dx, dy |
---|
| 246 | |
---|
| 247 | USE indices, & |
---|
[3294] | 248 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 249 | |
---|
| 250 | USE kinds |
---|
| 251 | |
---|
[3294] | 252 | USE ocean_mod, & |
---|
| 253 | ONLY: ibc_sa_t |
---|
[3274] | 254 | |
---|
[1] | 255 | USE pegrid |
---|
| 256 | |
---|
[1933] | 257 | USE pmc_interface, & |
---|
[2938] | 258 | ONLY : nesting_mode, rans_mode_parent |
---|
[3467] | 259 | |
---|
| 260 | USE salsa_mod, & |
---|
[3582] | 261 | ONLY: salsa_boundary_conds |
---|
[1320] | 262 | |
---|
[2232] | 263 | USE surface_mod, & |
---|
[3129] | 264 | ONLY : bc_h, surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, & |
---|
| 265 | surf_usm_h, surf_usm_v |
---|
[1933] | 266 | |
---|
[3129] | 267 | USE turbulence_closure_mod, & |
---|
| 268 | ONLY: c_0 |
---|
| 269 | |
---|
[1] | 270 | IMPLICIT NONE |
---|
| 271 | |
---|
[2232] | 272 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 273 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 274 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 275 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 276 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 277 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 278 | |
---|
[3562] | 279 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
| 280 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
[1] | 281 | |
---|
[73] | 282 | |
---|
[1] | 283 | ! |
---|
[1113] | 284 | !-- Bottom boundary |
---|
| 285 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 286 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 287 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 288 | ENDIF |
---|
[2232] | 289 | ! |
---|
| 290 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 291 | !-- of downward-facing surfaces. |
---|
| 292 | DO l = 0, 1 |
---|
| 293 | ! |
---|
| 294 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 295 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 296 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 297 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 298 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 299 | !$ACC PRESENT(bc_h, w_p) |
---|
[2232] | 300 | DO m = 1, bc_h(l)%ns |
---|
| 301 | i = bc_h(l)%i(m) |
---|
| 302 | j = bc_h(l)%j(m) |
---|
| 303 | k = bc_h(l)%k(m) |
---|
| 304 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | |
---|
| 308 | ! |
---|
[1762] | 309 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 310 | IF ( ibc_uv_t == 0 ) THEN |
---|
[3634] | 311 | !$ACC KERNELS PRESENT(u_p, v_p, u_init, v_init) |
---|
[1113] | 312 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 313 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[3634] | 314 | !$ACC END KERNELS |
---|
[1762] | 315 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 316 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 317 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 318 | ENDIF |
---|
| 319 | |
---|
[2365] | 320 | ! |
---|
| 321 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
[3347] | 322 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
[2365] | 323 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
[3634] | 324 | !$ACC KERNELS PRESENT(w_p) |
---|
[2365] | 325 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[3634] | 326 | !$ACC END KERNELS |
---|
[1762] | 327 | ENDIF |
---|
| 328 | |
---|
[1113] | 329 | ! |
---|
[2232] | 330 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 331 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 332 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 333 | !-- Dirichlet |
---|
[3717] | 334 | IF ( .NOT. neutral ) THEN |
---|
| 335 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 336 | DO l = 0, 1 |
---|
| 337 | ! |
---|
| 338 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) |
---|
| 339 | !-- is set, for downward-facing surfaces at topography bottom (k+1). |
---|
| 340 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 341 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 342 | DO m = 1, bc_h(l)%ns |
---|
| 343 | i = bc_h(l)%i(m) |
---|
| 344 | j = bc_h(l)%j(m) |
---|
| 345 | k = bc_h(l)%k(m) |
---|
| 346 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
| 347 | ENDDO |
---|
[1] | 348 | ENDDO |
---|
[3717] | 349 | ! |
---|
| 350 | !-- Neumann, zero-gradient |
---|
| 351 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
| 352 | DO l = 0, 1 |
---|
| 353 | ! |
---|
| 354 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) |
---|
| 355 | !-- is set, for downward-facing surfaces at topography bottom (k+1). |
---|
| 356 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 357 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 358 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 359 | !$ACC PRESENT(bc_h, pt_p) |
---|
| 360 | DO m = 1, bc_h(l)%ns |
---|
| 361 | i = bc_h(l)%i(m) |
---|
| 362 | j = bc_h(l)%j(m) |
---|
| 363 | k = bc_h(l)%k(m) |
---|
| 364 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
| 365 | ENDDO |
---|
[1113] | 366 | ENDDO |
---|
[3717] | 367 | ENDIF |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Temperature at top boundary |
---|
| 371 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 372 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
| 373 | ! |
---|
| 374 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 375 | !-- read in from NUDGING-DATA |
---|
| 376 | IF ( nudging ) THEN |
---|
| 377 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 378 | ENDIF |
---|
| 379 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 380 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 381 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 382 | !$ACC KERNELS PRESENT(pt_p, dzu) |
---|
| 383 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
| 384 | !$ACC END KERNELS |
---|
| 385 | ENDIF |
---|
[1113] | 386 | ENDIF |
---|
[1] | 387 | |
---|
| 388 | ! |
---|
[2938] | 389 | !-- Boundary conditions for TKE. |
---|
| 390 | !-- Generally Neumann conditions with de/dz=0 are assumed. |
---|
[1113] | 391 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 392 | |
---|
[2696] | 393 | IF ( .NOT. rans_tke_e ) THEN |
---|
| 394 | DO l = 0, 1 |
---|
[2232] | 395 | ! |
---|
[2696] | 396 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 397 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 398 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 399 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 400 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 401 | !$ACC PRESENT(bc_h, e_p) |
---|
[2696] | 402 | DO m = 1, bc_h(l)%ns |
---|
| 403 | i = bc_h(l)%i(m) |
---|
| 404 | j = bc_h(l)%j(m) |
---|
| 405 | k = bc_h(l)%k(m) |
---|
| 406 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
| 407 | ENDDO |
---|
[73] | 408 | ENDDO |
---|
[3129] | 409 | ELSE |
---|
| 410 | ! |
---|
| 411 | !-- Use wall function within constant-flux layer |
---|
| 412 | !-- Upward-facing surfaces |
---|
| 413 | !-- Default surfaces |
---|
| 414 | DO m = 1, surf_def_h(0)%ns |
---|
| 415 | i = surf_def_h(0)%i(m) |
---|
| 416 | j = surf_def_h(0)%j(m) |
---|
| 417 | k = surf_def_h(0)%k(m) |
---|
| 418 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
| 419 | ENDDO |
---|
| 420 | ! |
---|
| 421 | !-- Natural surfaces |
---|
| 422 | DO m = 1, surf_lsm_h%ns |
---|
| 423 | i = surf_lsm_h%i(m) |
---|
| 424 | j = surf_lsm_h%j(m) |
---|
| 425 | k = surf_lsm_h%k(m) |
---|
| 426 | e_p(k,j,i) = ( surf_lsm_h%us(m) / c_0 )**2 |
---|
| 427 | ENDDO |
---|
| 428 | ! |
---|
| 429 | !-- Urban surfaces |
---|
| 430 | DO m = 1, surf_usm_h%ns |
---|
| 431 | i = surf_usm_h%i(m) |
---|
| 432 | j = surf_usm_h%j(m) |
---|
| 433 | k = surf_usm_h%k(m) |
---|
| 434 | e_p(k,j,i) = ( surf_usm_h%us(m) / c_0 )**2 |
---|
| 435 | ENDDO |
---|
| 436 | ! |
---|
| 437 | !-- Vertical surfaces |
---|
| 438 | DO l = 0, 3 |
---|
| 439 | ! |
---|
| 440 | !-- Default surfaces |
---|
| 441 | DO m = 1, surf_def_v(l)%ns |
---|
| 442 | i = surf_def_v(l)%i(m) |
---|
| 443 | j = surf_def_v(l)%j(m) |
---|
| 444 | k = surf_def_v(l)%k(m) |
---|
| 445 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
| 446 | ENDDO |
---|
| 447 | ! |
---|
| 448 | !-- Natural surfaces |
---|
| 449 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 450 | i = surf_lsm_v(l)%i(m) |
---|
| 451 | j = surf_lsm_v(l)%j(m) |
---|
| 452 | k = surf_lsm_v(l)%k(m) |
---|
| 453 | e_p(k,j,i) = ( surf_lsm_v(l)%us(m) / c_0 )**2 |
---|
| 454 | ENDDO |
---|
| 455 | ! |
---|
| 456 | !-- Urban surfaces |
---|
| 457 | DO m = 1, surf_usm_v(l)%ns |
---|
| 458 | i = surf_usm_v(l)%i(m) |
---|
| 459 | j = surf_usm_v(l)%j(m) |
---|
| 460 | k = surf_usm_v(l)%k(m) |
---|
| 461 | e_p(k,j,i) = ( surf_usm_v(l)%us(m) / c_0 )**2 |
---|
| 462 | ENDDO |
---|
| 463 | ENDDO |
---|
[2696] | 464 | ENDIF |
---|
[2232] | 465 | |
---|
[3182] | 466 | IF ( .NOT. child_domain ) THEN |
---|
[3634] | 467 | !$ACC KERNELS PRESENT(e_p) |
---|
[1762] | 468 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[3634] | 469 | !$ACC END KERNELS |
---|
[2938] | 470 | ! |
---|
| 471 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
| 472 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
| 473 | !-- top child boundaries. |
---|
| 474 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
| 475 | !-- is treated in the nesting. |
---|
| 476 | ELSE |
---|
| 477 | |
---|
| 478 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
| 479 | |
---|
| 480 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[3182] | 481 | IF ( bc_dirichlet_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 482 | IF ( bc_dirichlet_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 483 | IF ( bc_dirichlet_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 484 | IF ( bc_dirichlet_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[2938] | 485 | |
---|
| 486 | ENDIF |
---|
[1762] | 487 | ENDIF |
---|
[1113] | 488 | ENDIF |
---|
| 489 | |
---|
| 490 | ! |
---|
[2938] | 491 | !-- Boundary conditions for TKE dissipation rate. |
---|
[3129] | 492 | IF ( rans_tke_e ) THEN |
---|
| 493 | ! |
---|
| 494 | !-- Use wall function within constant-flux layer |
---|
| 495 | !-- Upward-facing surfaces |
---|
| 496 | !-- Default surfaces |
---|
| 497 | DO m = 1, surf_def_h(0)%ns |
---|
| 498 | i = surf_def_h(0)%i(m) |
---|
| 499 | j = surf_def_h(0)%j(m) |
---|
| 500 | k = surf_def_h(0)%k(m) |
---|
| 501 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 & |
---|
| 502 | / ( kappa * surf_def_h(0)%z_mo(m) ) |
---|
| 503 | ENDDO |
---|
| 504 | ! |
---|
| 505 | !-- Natural surfaces |
---|
| 506 | DO m = 1, surf_lsm_h%ns |
---|
| 507 | i = surf_lsm_h%i(m) |
---|
| 508 | j = surf_lsm_h%j(m) |
---|
| 509 | k = surf_lsm_h%k(m) |
---|
| 510 | diss_p(k,j,i) = surf_lsm_h%us(m)**3 & |
---|
| 511 | / ( kappa * surf_lsm_h%z_mo(m) ) |
---|
| 512 | ENDDO |
---|
| 513 | ! |
---|
| 514 | !-- Urban surfaces |
---|
| 515 | DO m = 1, surf_usm_h%ns |
---|
| 516 | i = surf_usm_h%i(m) |
---|
| 517 | j = surf_usm_h%j(m) |
---|
| 518 | k = surf_usm_h%k(m) |
---|
| 519 | diss_p(k,j,i) = surf_usm_h%us(m)**3 & |
---|
| 520 | / ( kappa * surf_usm_h%z_mo(m) ) |
---|
| 521 | ENDDO |
---|
| 522 | ! |
---|
| 523 | !-- Vertical surfaces |
---|
| 524 | DO l = 0, 3 |
---|
| 525 | ! |
---|
| 526 | !-- Default surfaces |
---|
| 527 | DO m = 1, surf_def_v(l)%ns |
---|
| 528 | i = surf_def_v(l)%i(m) |
---|
| 529 | j = surf_def_v(l)%j(m) |
---|
| 530 | k = surf_def_v(l)%k(m) |
---|
| 531 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 & |
---|
| 532 | / ( kappa * surf_def_v(l)%z_mo(m) ) |
---|
| 533 | ENDDO |
---|
| 534 | ! |
---|
| 535 | !-- Natural surfaces |
---|
| 536 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 537 | i = surf_lsm_v(l)%i(m) |
---|
| 538 | j = surf_lsm_v(l)%j(m) |
---|
| 539 | k = surf_lsm_v(l)%k(m) |
---|
| 540 | diss_p(k,j,i) = surf_lsm_v(l)%us(m)**3 & |
---|
| 541 | / ( kappa * surf_lsm_v(l)%z_mo(m) ) |
---|
| 542 | ENDDO |
---|
| 543 | ! |
---|
| 544 | !-- Urban surfaces |
---|
| 545 | DO m = 1, surf_usm_v(l)%ns |
---|
| 546 | i = surf_usm_v(l)%i(m) |
---|
| 547 | j = surf_usm_v(l)%j(m) |
---|
| 548 | k = surf_usm_v(l)%k(m) |
---|
| 549 | diss_p(k,j,i) = surf_usm_v(l)%us(m)**3 & |
---|
| 550 | / ( kappa * surf_usm_v(l)%z_mo(m) ) |
---|
| 551 | ENDDO |
---|
| 552 | ENDDO |
---|
| 553 | ! |
---|
| 554 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
| 555 | !-- minimum value |
---|
| 556 | DO i = nxl, nxr |
---|
| 557 | DO j = nys, nyn |
---|
| 558 | DO k = nzb, nzt+1 |
---|
| 559 | diss_p(k,j,i) = MAX( MIN( diss_p(k,j,i), & |
---|
| 560 | 2.0_wp * diss(k,j,i) ), & |
---|
| 561 | 0.1_wp * diss(k,j,i), & |
---|
| 562 | 0.0001_wp ) |
---|
| 563 | ENDDO |
---|
| 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | |
---|
[3182] | 567 | IF ( .NOT. child_domain ) THEN |
---|
[3129] | 568 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
| 569 | ENDIF |
---|
[2696] | 570 | ENDIF |
---|
| 571 | |
---|
| 572 | ! |
---|
[1113] | 573 | !-- Boundary conditions for salinity |
---|
[3294] | 574 | IF ( ocean_mode ) THEN |
---|
[1113] | 575 | ! |
---|
| 576 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 577 | !-- given. |
---|
| 578 | DO l = 0, 1 |
---|
| 579 | ! |
---|
| 580 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 581 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 582 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 583 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 584 | DO m = 1, bc_h(l)%ns |
---|
| 585 | i = bc_h(l)%i(m) |
---|
| 586 | j = bc_h(l)%j(m) |
---|
| 587 | k = bc_h(l)%k(m) |
---|
| 588 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 589 | ENDDO |
---|
[1113] | 590 | ENDDO |
---|
[1] | 591 | ! |
---|
[1113] | 592 | !-- Top boundary: Dirichlet or Neumann |
---|
| 593 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 594 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 595 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 596 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 597 | ENDIF |
---|
| 598 | |
---|
[1113] | 599 | ENDIF |
---|
| 600 | |
---|
[1] | 601 | ! |
---|
[1960] | 602 | !-- Boundary conditions for total water content, |
---|
[1113] | 603 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 604 | IF ( humidity ) THEN |
---|
[1113] | 605 | ! |
---|
| 606 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 607 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 608 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 609 | !-- q_p at k-1 |
---|
[1113] | 610 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 611 | |
---|
| 612 | DO l = 0, 1 |
---|
| 613 | ! |
---|
| 614 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 615 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 616 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 617 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 618 | DO m = 1, bc_h(l)%ns |
---|
| 619 | i = bc_h(l)%i(m) |
---|
| 620 | j = bc_h(l)%j(m) |
---|
| 621 | k = bc_h(l)%k(m) |
---|
| 622 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 623 | ENDDO |
---|
| 624 | ENDDO |
---|
[2232] | 625 | |
---|
[1113] | 626 | ELSE |
---|
[2232] | 627 | |
---|
| 628 | DO l = 0, 1 |
---|
| 629 | ! |
---|
| 630 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 631 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 632 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 633 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 634 | DO m = 1, bc_h(l)%ns |
---|
| 635 | i = bc_h(l)%i(m) |
---|
| 636 | j = bc_h(l)%j(m) |
---|
| 637 | k = bc_h(l)%k(m) |
---|
| 638 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 639 | ENDDO |
---|
| 640 | ENDDO |
---|
[1113] | 641 | ENDIF |
---|
[95] | 642 | ! |
---|
[1113] | 643 | !-- Top boundary |
---|
[1462] | 644 | IF ( ibc_q_t == 0 ) THEN |
---|
| 645 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 646 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 647 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 648 | ENDIF |
---|
[95] | 649 | |
---|
[3274] | 650 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 651 | ! |
---|
| 652 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 653 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 654 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 655 | !-- qr_p and nr_p at k-1 |
---|
| 656 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 657 | DO m = 1, bc_h(0)%ns |
---|
| 658 | i = bc_h(0)%i(m) |
---|
| 659 | j = bc_h(0)%j(m) |
---|
| 660 | k = bc_h(0)%k(m) |
---|
| 661 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 662 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 663 | ENDDO |
---|
| 664 | ! |
---|
| 665 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 666 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 667 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 668 | |
---|
| 669 | ENDIF |
---|
| 670 | |
---|
[3274] | 671 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1113] | 672 | ! |
---|
[1361] | 673 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 674 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 675 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 676 | !-- qr_p and nr_p at k-1 |
---|
| 677 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 678 | DO m = 1, bc_h(0)%ns |
---|
| 679 | i = bc_h(0)%i(m) |
---|
| 680 | j = bc_h(0)%j(m) |
---|
| 681 | k = bc_h(0)%k(m) |
---|
| 682 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 683 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 684 | ENDDO |
---|
[1] | 685 | ! |
---|
[1361] | 686 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 687 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 688 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 689 | |
---|
[1] | 690 | ENDIF |
---|
[1409] | 691 | ENDIF |
---|
[1] | 692 | ! |
---|
[1960] | 693 | !-- Boundary conditions for scalar, |
---|
| 694 | !-- bottom and top boundary (see also temperature) |
---|
| 695 | IF ( passive_scalar ) THEN |
---|
| 696 | ! |
---|
| 697 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 698 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 699 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 700 | !-- s_p at k-1 |
---|
[1960] | 701 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 702 | |
---|
| 703 | DO l = 0, 1 |
---|
| 704 | ! |
---|
| 705 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 706 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 707 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 708 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 709 | DO m = 1, bc_h(l)%ns |
---|
| 710 | i = bc_h(l)%i(m) |
---|
| 711 | j = bc_h(l)%j(m) |
---|
| 712 | k = bc_h(l)%k(m) |
---|
| 713 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 714 | ENDDO |
---|
| 715 | ENDDO |
---|
[2232] | 716 | |
---|
[1960] | 717 | ELSE |
---|
[2232] | 718 | |
---|
| 719 | DO l = 0, 1 |
---|
| 720 | ! |
---|
| 721 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 722 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 723 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 724 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 725 | DO m = 1, bc_h(l)%ns |
---|
| 726 | i = bc_h(l)%i(m) |
---|
| 727 | j = bc_h(l)%j(m) |
---|
| 728 | k = bc_h(l)%k(m) |
---|
| 729 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 730 | ENDDO |
---|
| 731 | ENDDO |
---|
| 732 | ENDIF |
---|
| 733 | ! |
---|
[1992] | 734 | !-- Top boundary condition |
---|
| 735 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 736 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 737 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 738 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 739 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 740 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 741 | ENDIF |
---|
| 742 | |
---|
| 743 | ENDIF |
---|
| 744 | ! |
---|
[2696] | 745 | !-- Top/bottom boundary conditions for chemical species |
---|
| 746 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 747 | ! |
---|
[1762] | 748 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 749 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 750 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 751 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 752 | !-- have to be restored here. |
---|
[1409] | 753 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[3182] | 754 | IF ( bc_dirichlet_s ) THEN |
---|
[1409] | 755 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 756 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[3182] | 757 | ELSEIF ( bc_dirichlet_n ) THEN |
---|
[1409] | 758 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[3182] | 759 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
[1409] | 760 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 761 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[3182] | 762 | ELSEIF ( bc_dirichlet_r ) THEN |
---|
[1409] | 763 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 764 | ENDIF |
---|
[1] | 765 | |
---|
| 766 | ! |
---|
[1762] | 767 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 768 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
[3182] | 769 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
| 770 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
| 771 | IF ( bc_dirichlet_s ) THEN |
---|
[1933] | 772 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 773 | ENDIF |
---|
[3182] | 774 | IF ( bc_dirichlet_l ) THEN |
---|
[1933] | 775 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 776 | ENDIF |
---|
[1762] | 777 | ENDIF |
---|
| 778 | |
---|
| 779 | ! |
---|
[1409] | 780 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
[3182] | 781 | IF ( bc_radiation_s ) THEN |
---|
[1409] | 782 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 783 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[2696] | 784 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
[1960] | 785 | IF ( humidity ) THEN |
---|
[1409] | 786 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[3274] | 787 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 788 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 789 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 790 | ENDIF |
---|
[3274] | 791 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 792 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 793 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 794 | ENDIF |
---|
[1409] | 795 | ENDIF |
---|
[1960] | 796 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[3182] | 797 | ELSEIF ( bc_radiation_n ) THEN |
---|
[1409] | 798 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[2696] | 799 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 800 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
[1960] | 801 | IF ( humidity ) THEN |
---|
[1409] | 802 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[3274] | 803 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 804 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 805 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 806 | ENDIF |
---|
[3274] | 807 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 808 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 809 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 810 | ENDIF |
---|
[1409] | 811 | ENDIF |
---|
[1960] | 812 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[3182] | 813 | ELSEIF ( bc_radiation_l ) THEN |
---|
[1409] | 814 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[2696] | 815 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 816 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
[1960] | 817 | IF ( humidity ) THEN |
---|
[1409] | 818 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[3274] | 819 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 820 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 821 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 822 | ENDIF |
---|
[3274] | 823 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 824 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 825 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 826 | ENDIF |
---|
[1409] | 827 | ENDIF |
---|
[1960] | 828 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[3182] | 829 | ELSEIF ( bc_radiation_r ) THEN |
---|
[1409] | 830 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[2696] | 831 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 832 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
[1960] | 833 | IF ( humidity ) THEN |
---|
[1409] | 834 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[3274] | 835 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 836 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 837 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 838 | ENDIF |
---|
[3274] | 839 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 840 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 841 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 842 | ENDIF |
---|
[1] | 843 | ENDIF |
---|
[1960] | 844 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 845 | ENDIF |
---|
| 846 | |
---|
| 847 | ! |
---|
[2696] | 848 | !-- Lateral boundary conditions for chemical species |
---|
| 849 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 850 | |
---|
| 851 | ! |
---|
[1159] | 852 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 853 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 854 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 855 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[3182] | 856 | IF ( bc_radiation_s ) THEN |
---|
[75] | 857 | |
---|
[1159] | 858 | IF ( use_cmax ) THEN |
---|
| 859 | u_p(:,-1,:) = u(:,0,:) |
---|
| 860 | v_p(:,0,:) = v(:,1,:) |
---|
| 861 | w_p(:,-1,:) = w(:,0,:) |
---|
| 862 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 863 | |
---|
[978] | 864 | c_max = dy / dt_3d |
---|
[75] | 865 | |
---|
[1353] | 866 | c_u_m_l = 0.0_wp |
---|
| 867 | c_v_m_l = 0.0_wp |
---|
| 868 | c_w_m_l = 0.0_wp |
---|
[978] | 869 | |
---|
[1353] | 870 | c_u_m = 0.0_wp |
---|
| 871 | c_v_m = 0.0_wp |
---|
| 872 | c_w_m = 0.0_wp |
---|
[978] | 873 | |
---|
[75] | 874 | ! |
---|
[996] | 875 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 876 | !-- average along the outflow boundary. |
---|
| 877 | DO k = nzb+1, nzt+1 |
---|
| 878 | DO i = nxl, nxr |
---|
[75] | 879 | |
---|
[106] | 880 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 881 | |
---|
[1353] | 882 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 883 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 884 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 885 | c_u(k,i) = 0.0_wp |
---|
[106] | 886 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 887 | c_u(k,i) = c_max |
---|
| 888 | ENDIF |
---|
| 889 | ELSE |
---|
| 890 | c_u(k,i) = c_max |
---|
[75] | 891 | ENDIF |
---|
| 892 | |
---|
[106] | 893 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 894 | |
---|
[1353] | 895 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 896 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 897 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 898 | c_v(k,i) = 0.0_wp |
---|
[106] | 899 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 900 | c_v(k,i) = c_max |
---|
| 901 | ENDIF |
---|
| 902 | ELSE |
---|
| 903 | c_v(k,i) = c_max |
---|
[75] | 904 | ENDIF |
---|
| 905 | |
---|
[106] | 906 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 907 | |
---|
[1353] | 908 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 909 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 910 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 911 | c_w(k,i) = 0.0_wp |
---|
[106] | 912 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 913 | c_w(k,i) = c_max |
---|
| 914 | ENDIF |
---|
| 915 | ELSE |
---|
| 916 | c_w(k,i) = c_max |
---|
[75] | 917 | ENDIF |
---|
[106] | 918 | |
---|
[978] | 919 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 920 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 921 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 922 | |
---|
[978] | 923 | ENDDO |
---|
| 924 | ENDDO |
---|
[75] | 925 | |
---|
[978] | 926 | #if defined( __parallel ) |
---|
| 927 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 928 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 929 | MPI_SUM, comm1dx, ierr ) |
---|
| 930 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 931 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 932 | MPI_SUM, comm1dx, ierr ) |
---|
| 933 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 934 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 935 | MPI_SUM, comm1dx, ierr ) |
---|
| 936 | #else |
---|
| 937 | c_u_m = c_u_m_l |
---|
| 938 | c_v_m = c_v_m_l |
---|
| 939 | c_w_m = c_w_m_l |
---|
| 940 | #endif |
---|
| 941 | |
---|
| 942 | c_u_m = c_u_m / (nx+1) |
---|
| 943 | c_v_m = c_v_m / (nx+1) |
---|
| 944 | c_w_m = c_w_m / (nx+1) |
---|
| 945 | |
---|
[75] | 946 | ! |
---|
[978] | 947 | !-- Save old timelevels for the next timestep |
---|
| 948 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 949 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 950 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 951 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 952 | ENDIF |
---|
| 953 | |
---|
| 954 | ! |
---|
| 955 | !-- Calculate the new velocities |
---|
[996] | 956 | DO k = nzb+1, nzt+1 |
---|
| 957 | DO i = nxlg, nxrg |
---|
[978] | 958 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 959 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 960 | |
---|
[978] | 961 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 962 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 963 | |
---|
[978] | 964 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 965 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 966 | ENDDO |
---|
[75] | 967 | ENDDO |
---|
| 968 | |
---|
| 969 | ! |
---|
[978] | 970 | !-- Bottom boundary at the outflow |
---|
| 971 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 972 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 973 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 974 | ELSE |
---|
| 975 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 976 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 977 | ENDIF |
---|
[1353] | 978 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 979 | |
---|
[75] | 980 | ! |
---|
[978] | 981 | !-- Top boundary at the outflow |
---|
| 982 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 983 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 984 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 985 | ELSE |
---|
[1742] | 986 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 987 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 988 | ENDIF |
---|
[1353] | 989 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 990 | |
---|
[75] | 991 | ENDIF |
---|
[73] | 992 | |
---|
[75] | 993 | ENDIF |
---|
[73] | 994 | |
---|
[3182] | 995 | IF ( bc_radiation_n ) THEN |
---|
[73] | 996 | |
---|
[1159] | 997 | IF ( use_cmax ) THEN |
---|
| 998 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 999 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 1000 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 1001 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1002 | |
---|
[978] | 1003 | c_max = dy / dt_3d |
---|
[75] | 1004 | |
---|
[1353] | 1005 | c_u_m_l = 0.0_wp |
---|
| 1006 | c_v_m_l = 0.0_wp |
---|
| 1007 | c_w_m_l = 0.0_wp |
---|
[978] | 1008 | |
---|
[1353] | 1009 | c_u_m = 0.0_wp |
---|
| 1010 | c_v_m = 0.0_wp |
---|
| 1011 | c_w_m = 0.0_wp |
---|
[978] | 1012 | |
---|
[1] | 1013 | ! |
---|
[996] | 1014 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1015 | !-- average along the outflow boundary. |
---|
| 1016 | DO k = nzb+1, nzt+1 |
---|
| 1017 | DO i = nxl, nxr |
---|
[73] | 1018 | |
---|
[106] | 1019 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 1020 | |
---|
[1353] | 1021 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1022 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1023 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 1024 | c_u(k,i) = 0.0_wp |
---|
[106] | 1025 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 1026 | c_u(k,i) = c_max |
---|
| 1027 | ENDIF |
---|
| 1028 | ELSE |
---|
| 1029 | c_u(k,i) = c_max |
---|
[73] | 1030 | ENDIF |
---|
| 1031 | |
---|
[106] | 1032 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 1033 | |
---|
[1353] | 1034 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1035 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1036 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 1037 | c_v(k,i) = 0.0_wp |
---|
[106] | 1038 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 1039 | c_v(k,i) = c_max |
---|
| 1040 | ENDIF |
---|
| 1041 | ELSE |
---|
| 1042 | c_v(k,i) = c_max |
---|
[73] | 1043 | ENDIF |
---|
| 1044 | |
---|
[106] | 1045 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 1046 | |
---|
[1353] | 1047 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1048 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1049 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 1050 | c_w(k,i) = 0.0_wp |
---|
[106] | 1051 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 1052 | c_w(k,i) = c_max |
---|
| 1053 | ENDIF |
---|
| 1054 | ELSE |
---|
| 1055 | c_w(k,i) = c_max |
---|
[73] | 1056 | ENDIF |
---|
[106] | 1057 | |
---|
[978] | 1058 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 1059 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 1060 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 1061 | |
---|
[978] | 1062 | ENDDO |
---|
| 1063 | ENDDO |
---|
[73] | 1064 | |
---|
[978] | 1065 | #if defined( __parallel ) |
---|
| 1066 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1067 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1068 | MPI_SUM, comm1dx, ierr ) |
---|
| 1069 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1070 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1071 | MPI_SUM, comm1dx, ierr ) |
---|
| 1072 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1073 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1074 | MPI_SUM, comm1dx, ierr ) |
---|
| 1075 | #else |
---|
| 1076 | c_u_m = c_u_m_l |
---|
| 1077 | c_v_m = c_v_m_l |
---|
| 1078 | c_w_m = c_w_m_l |
---|
| 1079 | #endif |
---|
| 1080 | |
---|
| 1081 | c_u_m = c_u_m / (nx+1) |
---|
| 1082 | c_v_m = c_v_m / (nx+1) |
---|
| 1083 | c_w_m = c_w_m / (nx+1) |
---|
| 1084 | |
---|
[73] | 1085 | ! |
---|
[978] | 1086 | !-- Save old timelevels for the next timestep |
---|
| 1087 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1088 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1089 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1090 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1091 | ENDIF |
---|
[73] | 1092 | |
---|
[978] | 1093 | ! |
---|
| 1094 | !-- Calculate the new velocities |
---|
[996] | 1095 | DO k = nzb+1, nzt+1 |
---|
| 1096 | DO i = nxlg, nxrg |
---|
[978] | 1097 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1098 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 1099 | |
---|
[978] | 1100 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1101 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 1102 | |
---|
[978] | 1103 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1104 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 1105 | ENDDO |
---|
[1] | 1106 | ENDDO |
---|
| 1107 | |
---|
| 1108 | ! |
---|
[978] | 1109 | !-- Bottom boundary at the outflow |
---|
| 1110 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1111 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 1112 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 1113 | ELSE |
---|
| 1114 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 1115 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 1116 | ENDIF |
---|
[1353] | 1117 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 1118 | |
---|
| 1119 | ! |
---|
[978] | 1120 | !-- Top boundary at the outflow |
---|
| 1121 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1122 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 1123 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 1124 | ELSE |
---|
| 1125 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 1126 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 1127 | ENDIF |
---|
[1353] | 1128 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 1129 | |
---|
[1] | 1130 | ENDIF |
---|
| 1131 | |
---|
[75] | 1132 | ENDIF |
---|
| 1133 | |
---|
[3182] | 1134 | IF ( bc_radiation_l ) THEN |
---|
[75] | 1135 | |
---|
[1159] | 1136 | IF ( use_cmax ) THEN |
---|
[1717] | 1137 | u_p(:,:,0) = u(:,:,1) |
---|
| 1138 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 1139 | w_p(:,:,-1) = w(:,:,0) |
---|
| 1140 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1141 | |
---|
[978] | 1142 | c_max = dx / dt_3d |
---|
[75] | 1143 | |
---|
[1353] | 1144 | c_u_m_l = 0.0_wp |
---|
| 1145 | c_v_m_l = 0.0_wp |
---|
| 1146 | c_w_m_l = 0.0_wp |
---|
[978] | 1147 | |
---|
[1353] | 1148 | c_u_m = 0.0_wp |
---|
| 1149 | c_v_m = 0.0_wp |
---|
| 1150 | c_w_m = 0.0_wp |
---|
[978] | 1151 | |
---|
[1] | 1152 | ! |
---|
[996] | 1153 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1154 | !-- average along the outflow boundary. |
---|
| 1155 | DO k = nzb+1, nzt+1 |
---|
| 1156 | DO j = nys, nyn |
---|
[75] | 1157 | |
---|
[106] | 1158 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 1159 | |
---|
[1353] | 1160 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1161 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 1162 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1163 | c_u(k,j) = 0.0_wp |
---|
[107] | 1164 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1165 | c_u(k,j) = c_max |
---|
[106] | 1166 | ENDIF |
---|
| 1167 | ELSE |
---|
[107] | 1168 | c_u(k,j) = c_max |
---|
[75] | 1169 | ENDIF |
---|
| 1170 | |
---|
[106] | 1171 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 1172 | |
---|
[1353] | 1173 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1174 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1175 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1176 | c_v(k,j) = 0.0_wp |
---|
[106] | 1177 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1178 | c_v(k,j) = c_max |
---|
| 1179 | ENDIF |
---|
| 1180 | ELSE |
---|
| 1181 | c_v(k,j) = c_max |
---|
[75] | 1182 | ENDIF |
---|
| 1183 | |
---|
[106] | 1184 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 1185 | |
---|
[1353] | 1186 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1187 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1188 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1189 | c_w(k,j) = 0.0_wp |
---|
[106] | 1190 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1191 | c_w(k,j) = c_max |
---|
| 1192 | ENDIF |
---|
| 1193 | ELSE |
---|
| 1194 | c_w(k,j) = c_max |
---|
[75] | 1195 | ENDIF |
---|
[106] | 1196 | |
---|
[978] | 1197 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1198 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1199 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1200 | |
---|
[978] | 1201 | ENDDO |
---|
| 1202 | ENDDO |
---|
[75] | 1203 | |
---|
[978] | 1204 | #if defined( __parallel ) |
---|
| 1205 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1206 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1207 | MPI_SUM, comm1dy, ierr ) |
---|
| 1208 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1209 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1210 | MPI_SUM, comm1dy, ierr ) |
---|
| 1211 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1212 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1213 | MPI_SUM, comm1dy, ierr ) |
---|
| 1214 | #else |
---|
| 1215 | c_u_m = c_u_m_l |
---|
| 1216 | c_v_m = c_v_m_l |
---|
| 1217 | c_w_m = c_w_m_l |
---|
| 1218 | #endif |
---|
| 1219 | |
---|
| 1220 | c_u_m = c_u_m / (ny+1) |
---|
| 1221 | c_v_m = c_v_m / (ny+1) |
---|
| 1222 | c_w_m = c_w_m / (ny+1) |
---|
| 1223 | |
---|
[73] | 1224 | ! |
---|
[978] | 1225 | !-- Save old timelevels for the next timestep |
---|
| 1226 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1227 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1228 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1229 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1230 | ENDIF |
---|
| 1231 | |
---|
| 1232 | ! |
---|
| 1233 | !-- Calculate the new velocities |
---|
[996] | 1234 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1235 | DO j = nysg, nyng |
---|
[978] | 1236 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 1237 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 1238 | |
---|
[978] | 1239 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 1240 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 1241 | |
---|
[978] | 1242 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1243 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1244 | ENDDO |
---|
[75] | 1245 | ENDDO |
---|
| 1246 | |
---|
| 1247 | ! |
---|
[978] | 1248 | !-- Bottom boundary at the outflow |
---|
| 1249 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1250 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1251 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1252 | ELSE |
---|
| 1253 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1254 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1255 | ENDIF |
---|
[1353] | 1256 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1257 | |
---|
[75] | 1258 | ! |
---|
[978] | 1259 | !-- Top boundary at the outflow |
---|
| 1260 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1261 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1262 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1263 | ELSE |
---|
[1764] | 1264 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1265 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1266 | ENDIF |
---|
[1353] | 1267 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1268 | |
---|
[75] | 1269 | ENDIF |
---|
[73] | 1270 | |
---|
[75] | 1271 | ENDIF |
---|
[73] | 1272 | |
---|
[3182] | 1273 | IF ( bc_radiation_r ) THEN |
---|
[73] | 1274 | |
---|
[1159] | 1275 | IF ( use_cmax ) THEN |
---|
| 1276 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1277 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1278 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1279 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1280 | |
---|
[978] | 1281 | c_max = dx / dt_3d |
---|
[75] | 1282 | |
---|
[1353] | 1283 | c_u_m_l = 0.0_wp |
---|
| 1284 | c_v_m_l = 0.0_wp |
---|
| 1285 | c_w_m_l = 0.0_wp |
---|
[978] | 1286 | |
---|
[1353] | 1287 | c_u_m = 0.0_wp |
---|
| 1288 | c_v_m = 0.0_wp |
---|
| 1289 | c_w_m = 0.0_wp |
---|
[978] | 1290 | |
---|
[1] | 1291 | ! |
---|
[996] | 1292 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1293 | !-- average along the outflow boundary. |
---|
| 1294 | DO k = nzb+1, nzt+1 |
---|
| 1295 | DO j = nys, nyn |
---|
[73] | 1296 | |
---|
[106] | 1297 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1298 | |
---|
[1353] | 1299 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1300 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1301 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1302 | c_u(k,j) = 0.0_wp |
---|
[106] | 1303 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1304 | c_u(k,j) = c_max |
---|
| 1305 | ENDIF |
---|
| 1306 | ELSE |
---|
| 1307 | c_u(k,j) = c_max |
---|
[73] | 1308 | ENDIF |
---|
| 1309 | |
---|
[106] | 1310 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1311 | |
---|
[1353] | 1312 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1313 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1314 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1315 | c_v(k,j) = 0.0_wp |
---|
[106] | 1316 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1317 | c_v(k,j) = c_max |
---|
| 1318 | ENDIF |
---|
| 1319 | ELSE |
---|
| 1320 | c_v(k,j) = c_max |
---|
[73] | 1321 | ENDIF |
---|
| 1322 | |
---|
[106] | 1323 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1324 | |
---|
[1353] | 1325 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1326 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1327 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1328 | c_w(k,j) = 0.0_wp |
---|
[106] | 1329 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1330 | c_w(k,j) = c_max |
---|
| 1331 | ENDIF |
---|
| 1332 | ELSE |
---|
| 1333 | c_w(k,j) = c_max |
---|
[73] | 1334 | ENDIF |
---|
[106] | 1335 | |
---|
[978] | 1336 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1337 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1338 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1339 | |
---|
[978] | 1340 | ENDDO |
---|
| 1341 | ENDDO |
---|
[73] | 1342 | |
---|
[978] | 1343 | #if defined( __parallel ) |
---|
| 1344 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1345 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1346 | MPI_SUM, comm1dy, ierr ) |
---|
| 1347 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1348 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1349 | MPI_SUM, comm1dy, ierr ) |
---|
| 1350 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1351 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1352 | MPI_SUM, comm1dy, ierr ) |
---|
| 1353 | #else |
---|
| 1354 | c_u_m = c_u_m_l |
---|
| 1355 | c_v_m = c_v_m_l |
---|
| 1356 | c_w_m = c_w_m_l |
---|
| 1357 | #endif |
---|
| 1358 | |
---|
| 1359 | c_u_m = c_u_m / (ny+1) |
---|
| 1360 | c_v_m = c_v_m / (ny+1) |
---|
| 1361 | c_w_m = c_w_m / (ny+1) |
---|
| 1362 | |
---|
[73] | 1363 | ! |
---|
[978] | 1364 | !-- Save old timelevels for the next timestep |
---|
| 1365 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1366 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1367 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1368 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1369 | ENDIF |
---|
[73] | 1370 | |
---|
[978] | 1371 | ! |
---|
| 1372 | !-- Calculate the new velocities |
---|
[996] | 1373 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1374 | DO j = nysg, nyng |
---|
[978] | 1375 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1376 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1377 | |
---|
[978] | 1378 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1379 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1380 | |
---|
[978] | 1381 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1382 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1383 | ENDDO |
---|
[73] | 1384 | ENDDO |
---|
| 1385 | |
---|
| 1386 | ! |
---|
[978] | 1387 | !-- Bottom boundary at the outflow |
---|
| 1388 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1389 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1390 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1391 | ELSE |
---|
| 1392 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1393 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1394 | ENDIF |
---|
[1353] | 1395 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1396 | |
---|
| 1397 | ! |
---|
[978] | 1398 | !-- Top boundary at the outflow |
---|
| 1399 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1400 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1401 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1402 | ELSE |
---|
| 1403 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1404 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1405 | ENDIF |
---|
[1742] | 1406 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1407 | |
---|
[1] | 1408 | ENDIF |
---|
| 1409 | |
---|
| 1410 | ENDIF |
---|
[3467] | 1411 | |
---|
| 1412 | IF ( salsa ) THEN |
---|
| 1413 | CALL salsa_boundary_conds |
---|
| 1414 | ENDIF |
---|
[1] | 1415 | |
---|
| 1416 | END SUBROUTINE boundary_conds |
---|