[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[3589] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 3589 2018-11-30 15:09:51Z eckhard $ |
---|
[3589] | 27 | ! Move the control parameter "salsa" from salsa_mod to control_parameters |
---|
| 28 | ! (M. Kurppa) |
---|
| 29 | ! |
---|
| 30 | ! 3582 2018-11-29 19:16:36Z suehring |
---|
[3562] | 31 | ! variables documented |
---|
| 32 | ! |
---|
| 33 | ! 3467 2018-10-30 19:05:21Z suehring |
---|
[3467] | 34 | ! Implementation of a new aerosol module salsa. |
---|
| 35 | ! |
---|
| 36 | ! 3347 2018-10-15 14:21:08Z suehring |
---|
[3347] | 37 | ! Bugfix in setting boundary conditions in offline nesting |
---|
| 38 | ! |
---|
| 39 | ! 3341 2018-10-15 10:31:27Z suehring |
---|
[3294] | 40 | ! changes concerning modularization of ocean option |
---|
| 41 | ! |
---|
| 42 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 43 | ! Modularization of all bulk cloud physics code components |
---|
| 44 | ! |
---|
| 45 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 46 | ! unused variables removed |
---|
| 47 | ! |
---|
| 48 | ! 3183 2018-07-27 14:25:55Z suehring |
---|
[3183] | 49 | ! Rename some variables concerning LES-LES as well as offline nesting |
---|
| 50 | ! |
---|
| 51 | ! 3182 2018-07-27 13:36:03Z suehring |
---|
[3129] | 52 | ! - Use wall function for e_p and diss_p in case of rans_tke_e |
---|
| 53 | ! - move limitation of diss_p from tcm_prognostic |
---|
| 54 | ! |
---|
| 55 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
[2938] | 56 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
| 57 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
| 58 | ! mode |
---|
| 59 | ! |
---|
| 60 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
[2766] | 61 | ! Removed preprocessor directive __chem |
---|
| 62 | ! |
---|
| 63 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 64 | ! Corrected "Former revisions" section |
---|
| 65 | ! |
---|
| 66 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 67 | ! Change in file header (GPL part) |
---|
[2696] | 68 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
| 69 | ! Implementation of chemistry module (FK) |
---|
| 70 | ! |
---|
| 71 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
[2569] | 72 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
| 73 | ! |
---|
| 74 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 75 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 76 | ! on fine grid (SadiqHuq) |
---|
| 77 | ! |
---|
| 78 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 79 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 80 | ! |
---|
| 81 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 82 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 83 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 84 | ! and cloud water content (qc). |
---|
| 85 | ! |
---|
| 86 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 87 | ! |
---|
[2233] | 88 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 89 | ! Set boundary conditions on topography top using flag method. |
---|
| 90 | ! |
---|
[2119] | 91 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 92 | ! OpenACC directives removed |
---|
| 93 | ! |
---|
[2001] | 94 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 95 | ! Forced header and separation lines into 80 columns |
---|
| 96 | ! |
---|
[1993] | 97 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 98 | ! Adjustments for top boundary condition for passive scalar |
---|
| 99 | ! |
---|
[1961] | 100 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 101 | ! Treat humidity and passive scalar separately |
---|
| 102 | ! |
---|
[1933] | 103 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 104 | ! Initial version of purely vertical nesting introduced. |
---|
| 105 | ! |
---|
[1823] | 106 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 107 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 108 | ! |
---|
[1765] | 109 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 110 | ! index bug for u_p at left outflow removed |
---|
| 111 | ! |
---|
[1763] | 112 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 113 | ! Introduction of nested domain feature |
---|
| 114 | ! |
---|
[1744] | 115 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 116 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 117 | ! |
---|
[1718] | 118 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 119 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 120 | ! |
---|
[1683] | 121 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 122 | ! Code annotations made doxygen readable |
---|
| 123 | ! |
---|
[1717] | 124 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 125 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 126 | ! top |
---|
| 127 | ! |
---|
[1410] | 128 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 129 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 130 | ! is used. |
---|
| 131 | ! |
---|
[1399] | 132 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 133 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 134 | ! for large_scale_forcing |
---|
| 135 | ! |
---|
[1381] | 136 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 137 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 138 | ! |
---|
[1362] | 139 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 140 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 141 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 142 | ! |
---|
[1354] | 143 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 144 | ! REAL constants provided with KIND-attribute |
---|
| 145 | ! |
---|
[1321] | 146 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 147 | ! ONLY-attribute added to USE-statements, |
---|
| 148 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 149 | ! kinds are defined in new module kinds, |
---|
| 150 | ! revision history before 2012 removed, |
---|
| 151 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 152 | ! all variable declaration statements |
---|
[1160] | 153 | ! |
---|
[1258] | 154 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 155 | ! loop independent clauses added |
---|
| 156 | ! |
---|
[1242] | 157 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 158 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 159 | ! |
---|
[1160] | 160 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 161 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 162 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 163 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 164 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 165 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 166 | ! u_p, v_p, w_p |
---|
[1116] | 167 | ! |
---|
| 168 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 169 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 170 | ! boundary-conditions |
---|
| 171 | ! |
---|
[1114] | 172 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 173 | ! GPU-porting |
---|
| 174 | ! dummy argument "range" removed |
---|
| 175 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 176 | ! |
---|
[1054] | 177 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 178 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 179 | ! two-moment cloud scheme |
---|
| 180 | ! |
---|
[1037] | 181 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 182 | ! code put under GPL (PALM 3.9) |
---|
| 183 | ! |
---|
[997] | 184 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 185 | ! little reformatting |
---|
| 186 | ! |
---|
[979] | 187 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 188 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 189 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 190 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 191 | ! velocity. |
---|
| 192 | ! |
---|
[876] | 193 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 194 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 195 | ! |
---|
[1] | 196 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 197 | ! Initial revision |
---|
| 198 | ! |
---|
| 199 | ! |
---|
| 200 | ! Description: |
---|
| 201 | ! ------------ |
---|
[1682] | 202 | !> Boundary conditions for the prognostic quantities. |
---|
| 203 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 204 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 205 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 206 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 207 | !------------------------------------------------------------------------------! |
---|
[1682] | 208 | SUBROUTINE boundary_conds |
---|
| 209 | |
---|
[1] | 210 | |
---|
[1320] | 211 | USE arrays_3d, & |
---|
| 212 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[3241] | 213 | diss, diss_p, dzu, e_p, nc_p, nr_p, pt, pt_init, pt_p, q, & |
---|
| 214 | q_p, qc_p, qr_p, s, s_p, sa, sa_p, u, u_init, u_m_l, u_m_n, & |
---|
| 215 | u_m_r, u_m_s, u_p, v, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
| 216 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s |
---|
[2696] | 217 | |
---|
[3274] | 218 | USE basic_constants_and_equations_mod, & |
---|
| 219 | ONLY: kappa |
---|
| 220 | |
---|
[3294] | 221 | USE bulk_cloud_model_mod, & |
---|
| 222 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 223 | |
---|
[2696] | 224 | USE chemistry_model_mod, & |
---|
| 225 | ONLY: chem_boundary_conds |
---|
| 226 | |
---|
[1320] | 227 | USE control_parameters, & |
---|
[3182] | 228 | ONLY: air_chemistry, bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, & |
---|
| 229 | bc_dirichlet_s, bc_radiation_l, bc_radiation_n, bc_radiation_r, & |
---|
| 230 | bc_radiation_s, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
[3582] | 231 | child_domain, constant_diffusion, coupling_mode, dt_3d, & |
---|
| 232 | humidity, ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, & |
---|
| 233 | ibc_s_t, ibc_uv_b, ibc_uv_t, intermediate_timestep_count, & |
---|
| 234 | nesting_offline, nudging, ocean_mode, passive_scalar, rans_mode,& |
---|
| 235 | rans_tke_e, tsc, salsa, use_cmax |
---|
[1320] | 236 | |
---|
| 237 | USE grid_variables, & |
---|
| 238 | ONLY: ddx, ddy, dx, dy |
---|
| 239 | |
---|
| 240 | USE indices, & |
---|
[3294] | 241 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 242 | |
---|
| 243 | USE kinds |
---|
| 244 | |
---|
[3294] | 245 | USE ocean_mod, & |
---|
| 246 | ONLY: ibc_sa_t |
---|
[3274] | 247 | |
---|
[1] | 248 | USE pegrid |
---|
| 249 | |
---|
[1933] | 250 | USE pmc_interface, & |
---|
[2938] | 251 | ONLY : nesting_mode, rans_mode_parent |
---|
[3467] | 252 | |
---|
| 253 | USE salsa_mod, & |
---|
[3582] | 254 | ONLY: salsa_boundary_conds |
---|
[1320] | 255 | |
---|
[2232] | 256 | USE surface_mod, & |
---|
[3129] | 257 | ONLY : bc_h, surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, & |
---|
| 258 | surf_usm_h, surf_usm_v |
---|
[1933] | 259 | |
---|
[3129] | 260 | USE turbulence_closure_mod, & |
---|
| 261 | ONLY: c_0 |
---|
| 262 | |
---|
[1] | 263 | IMPLICIT NONE |
---|
| 264 | |
---|
[2232] | 265 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 266 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 267 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 268 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 269 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 270 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 271 | |
---|
[3562] | 272 | REAL(wp) :: c_max !< maximum phase velocity allowed by CFL criterion, used for outflow boundary condition |
---|
| 273 | REAL(wp) :: denom !< horizontal gradient of velocity component normal to the outflow boundary |
---|
[1] | 274 | |
---|
[73] | 275 | |
---|
[1] | 276 | ! |
---|
[1113] | 277 | !-- Bottom boundary |
---|
| 278 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 279 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 280 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 281 | ENDIF |
---|
[2232] | 282 | ! |
---|
| 283 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 284 | !-- of downward-facing surfaces. |
---|
| 285 | DO l = 0, 1 |
---|
| 286 | ! |
---|
| 287 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 288 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 289 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 290 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 291 | DO m = 1, bc_h(l)%ns |
---|
| 292 | i = bc_h(l)%i(m) |
---|
| 293 | j = bc_h(l)%j(m) |
---|
| 294 | k = bc_h(l)%k(m) |
---|
| 295 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 296 | ENDDO |
---|
| 297 | ENDDO |
---|
| 298 | |
---|
| 299 | ! |
---|
[1762] | 300 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 301 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 302 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 303 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1762] | 304 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 305 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 306 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 307 | ENDIF |
---|
| 308 | |
---|
[2365] | 309 | ! |
---|
| 310 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
[3347] | 311 | IF ( .NOT. child_domain .AND. .NOT. nesting_offline .AND. & |
---|
[2365] | 312 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
| 313 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[1762] | 314 | ENDIF |
---|
| 315 | |
---|
[1113] | 316 | ! |
---|
[2232] | 317 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 318 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 319 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 320 | !-- Dirichlet |
---|
[1113] | 321 | IF ( ibc_pt_b == 0 ) THEN |
---|
[2232] | 322 | DO l = 0, 1 |
---|
| 323 | ! |
---|
| 324 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 325 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 326 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 327 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 328 | DO m = 1, bc_h(l)%ns |
---|
| 329 | i = bc_h(l)%i(m) |
---|
| 330 | j = bc_h(l)%j(m) |
---|
| 331 | k = bc_h(l)%k(m) |
---|
| 332 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
[1] | 333 | ENDDO |
---|
| 334 | ENDDO |
---|
[2232] | 335 | ! |
---|
| 336 | !-- Neumann, zero-gradient |
---|
[1113] | 337 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 338 | DO l = 0, 1 |
---|
| 339 | ! |
---|
| 340 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 341 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 342 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 343 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 344 | DO m = 1, bc_h(l)%ns |
---|
| 345 | i = bc_h(l)%i(m) |
---|
| 346 | j = bc_h(l)%j(m) |
---|
| 347 | k = bc_h(l)%k(m) |
---|
| 348 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
[1113] | 349 | ENDDO |
---|
| 350 | ENDDO |
---|
| 351 | ENDIF |
---|
[1] | 352 | |
---|
| 353 | ! |
---|
[1113] | 354 | !-- Temperature at top boundary |
---|
| 355 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 356 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 357 | ! |
---|
| 358 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 359 | !-- read in from NUDGING-DATA |
---|
| 360 | IF ( nudging ) THEN |
---|
| 361 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 362 | ENDIF |
---|
[1113] | 363 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 364 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 365 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1992] | 366 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1113] | 367 | ENDIF |
---|
[1] | 368 | |
---|
| 369 | ! |
---|
[2938] | 370 | !-- Boundary conditions for TKE. |
---|
| 371 | !-- Generally Neumann conditions with de/dz=0 are assumed. |
---|
[1113] | 372 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 373 | |
---|
[2696] | 374 | IF ( .NOT. rans_tke_e ) THEN |
---|
| 375 | DO l = 0, 1 |
---|
[2232] | 376 | ! |
---|
[2696] | 377 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 378 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 379 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 380 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 381 | DO m = 1, bc_h(l)%ns |
---|
| 382 | i = bc_h(l)%i(m) |
---|
| 383 | j = bc_h(l)%j(m) |
---|
| 384 | k = bc_h(l)%k(m) |
---|
| 385 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
| 386 | ENDDO |
---|
[73] | 387 | ENDDO |
---|
[3129] | 388 | ELSE |
---|
| 389 | ! |
---|
| 390 | !-- Use wall function within constant-flux layer |
---|
| 391 | !-- Upward-facing surfaces |
---|
| 392 | !-- Default surfaces |
---|
| 393 | DO m = 1, surf_def_h(0)%ns |
---|
| 394 | i = surf_def_h(0)%i(m) |
---|
| 395 | j = surf_def_h(0)%j(m) |
---|
| 396 | k = surf_def_h(0)%k(m) |
---|
| 397 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
| 398 | ENDDO |
---|
| 399 | ! |
---|
| 400 | !-- Natural surfaces |
---|
| 401 | DO m = 1, surf_lsm_h%ns |
---|
| 402 | i = surf_lsm_h%i(m) |
---|
| 403 | j = surf_lsm_h%j(m) |
---|
| 404 | k = surf_lsm_h%k(m) |
---|
| 405 | e_p(k,j,i) = ( surf_lsm_h%us(m) / c_0 )**2 |
---|
| 406 | ENDDO |
---|
| 407 | ! |
---|
| 408 | !-- Urban surfaces |
---|
| 409 | DO m = 1, surf_usm_h%ns |
---|
| 410 | i = surf_usm_h%i(m) |
---|
| 411 | j = surf_usm_h%j(m) |
---|
| 412 | k = surf_usm_h%k(m) |
---|
| 413 | e_p(k,j,i) = ( surf_usm_h%us(m) / c_0 )**2 |
---|
| 414 | ENDDO |
---|
| 415 | ! |
---|
| 416 | !-- Vertical surfaces |
---|
| 417 | DO l = 0, 3 |
---|
| 418 | ! |
---|
| 419 | !-- Default surfaces |
---|
| 420 | DO m = 1, surf_def_v(l)%ns |
---|
| 421 | i = surf_def_v(l)%i(m) |
---|
| 422 | j = surf_def_v(l)%j(m) |
---|
| 423 | k = surf_def_v(l)%k(m) |
---|
| 424 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
| 425 | ENDDO |
---|
| 426 | ! |
---|
| 427 | !-- Natural surfaces |
---|
| 428 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 429 | i = surf_lsm_v(l)%i(m) |
---|
| 430 | j = surf_lsm_v(l)%j(m) |
---|
| 431 | k = surf_lsm_v(l)%k(m) |
---|
| 432 | e_p(k,j,i) = ( surf_lsm_v(l)%us(m) / c_0 )**2 |
---|
| 433 | ENDDO |
---|
| 434 | ! |
---|
| 435 | !-- Urban surfaces |
---|
| 436 | DO m = 1, surf_usm_v(l)%ns |
---|
| 437 | i = surf_usm_v(l)%i(m) |
---|
| 438 | j = surf_usm_v(l)%j(m) |
---|
| 439 | k = surf_usm_v(l)%k(m) |
---|
| 440 | e_p(k,j,i) = ( surf_usm_v(l)%us(m) / c_0 )**2 |
---|
| 441 | ENDDO |
---|
| 442 | ENDDO |
---|
[2696] | 443 | ENDIF |
---|
[2232] | 444 | |
---|
[3182] | 445 | IF ( .NOT. child_domain ) THEN |
---|
[1762] | 446 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[2938] | 447 | ! |
---|
| 448 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
| 449 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
| 450 | !-- top child boundaries. |
---|
| 451 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
| 452 | !-- is treated in the nesting. |
---|
| 453 | ELSE |
---|
| 454 | |
---|
| 455 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
| 456 | |
---|
| 457 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[3182] | 458 | IF ( bc_dirichlet_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 459 | IF ( bc_dirichlet_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 460 | IF ( bc_dirichlet_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 461 | IF ( bc_dirichlet_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[2938] | 462 | |
---|
| 463 | ENDIF |
---|
[1762] | 464 | ENDIF |
---|
[1113] | 465 | ENDIF |
---|
| 466 | |
---|
| 467 | ! |
---|
[2938] | 468 | !-- Boundary conditions for TKE dissipation rate. |
---|
[3129] | 469 | IF ( rans_tke_e ) THEN |
---|
| 470 | ! |
---|
| 471 | !-- Use wall function within constant-flux layer |
---|
| 472 | !-- Upward-facing surfaces |
---|
| 473 | !-- Default surfaces |
---|
| 474 | DO m = 1, surf_def_h(0)%ns |
---|
| 475 | i = surf_def_h(0)%i(m) |
---|
| 476 | j = surf_def_h(0)%j(m) |
---|
| 477 | k = surf_def_h(0)%k(m) |
---|
| 478 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 & |
---|
| 479 | / ( kappa * surf_def_h(0)%z_mo(m) ) |
---|
| 480 | ENDDO |
---|
| 481 | ! |
---|
| 482 | !-- Natural surfaces |
---|
| 483 | DO m = 1, surf_lsm_h%ns |
---|
| 484 | i = surf_lsm_h%i(m) |
---|
| 485 | j = surf_lsm_h%j(m) |
---|
| 486 | k = surf_lsm_h%k(m) |
---|
| 487 | diss_p(k,j,i) = surf_lsm_h%us(m)**3 & |
---|
| 488 | / ( kappa * surf_lsm_h%z_mo(m) ) |
---|
| 489 | ENDDO |
---|
| 490 | ! |
---|
| 491 | !-- Urban surfaces |
---|
| 492 | DO m = 1, surf_usm_h%ns |
---|
| 493 | i = surf_usm_h%i(m) |
---|
| 494 | j = surf_usm_h%j(m) |
---|
| 495 | k = surf_usm_h%k(m) |
---|
| 496 | diss_p(k,j,i) = surf_usm_h%us(m)**3 & |
---|
| 497 | / ( kappa * surf_usm_h%z_mo(m) ) |
---|
| 498 | ENDDO |
---|
| 499 | ! |
---|
| 500 | !-- Vertical surfaces |
---|
| 501 | DO l = 0, 3 |
---|
| 502 | ! |
---|
| 503 | !-- Default surfaces |
---|
| 504 | DO m = 1, surf_def_v(l)%ns |
---|
| 505 | i = surf_def_v(l)%i(m) |
---|
| 506 | j = surf_def_v(l)%j(m) |
---|
| 507 | k = surf_def_v(l)%k(m) |
---|
| 508 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 & |
---|
| 509 | / ( kappa * surf_def_v(l)%z_mo(m) ) |
---|
| 510 | ENDDO |
---|
| 511 | ! |
---|
| 512 | !-- Natural surfaces |
---|
| 513 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 514 | i = surf_lsm_v(l)%i(m) |
---|
| 515 | j = surf_lsm_v(l)%j(m) |
---|
| 516 | k = surf_lsm_v(l)%k(m) |
---|
| 517 | diss_p(k,j,i) = surf_lsm_v(l)%us(m)**3 & |
---|
| 518 | / ( kappa * surf_lsm_v(l)%z_mo(m) ) |
---|
| 519 | ENDDO |
---|
| 520 | ! |
---|
| 521 | !-- Urban surfaces |
---|
| 522 | DO m = 1, surf_usm_v(l)%ns |
---|
| 523 | i = surf_usm_v(l)%i(m) |
---|
| 524 | j = surf_usm_v(l)%j(m) |
---|
| 525 | k = surf_usm_v(l)%k(m) |
---|
| 526 | diss_p(k,j,i) = surf_usm_v(l)%us(m)**3 & |
---|
| 527 | / ( kappa * surf_usm_v(l)%z_mo(m) ) |
---|
| 528 | ENDDO |
---|
| 529 | ENDDO |
---|
| 530 | ! |
---|
| 531 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
| 532 | !-- minimum value |
---|
| 533 | DO i = nxl, nxr |
---|
| 534 | DO j = nys, nyn |
---|
| 535 | DO k = nzb, nzt+1 |
---|
| 536 | diss_p(k,j,i) = MAX( MIN( diss_p(k,j,i), & |
---|
| 537 | 2.0_wp * diss(k,j,i) ), & |
---|
| 538 | 0.1_wp * diss(k,j,i), & |
---|
| 539 | 0.0001_wp ) |
---|
| 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | ENDDO |
---|
| 543 | |
---|
[3182] | 544 | IF ( .NOT. child_domain ) THEN |
---|
[3129] | 545 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
| 546 | ENDIF |
---|
[2696] | 547 | ENDIF |
---|
| 548 | |
---|
| 549 | ! |
---|
[1113] | 550 | !-- Boundary conditions for salinity |
---|
[3294] | 551 | IF ( ocean_mode ) THEN |
---|
[1113] | 552 | ! |
---|
| 553 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 554 | !-- given. |
---|
| 555 | DO l = 0, 1 |
---|
| 556 | ! |
---|
| 557 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 558 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 559 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 560 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 561 | DO m = 1, bc_h(l)%ns |
---|
| 562 | i = bc_h(l)%i(m) |
---|
| 563 | j = bc_h(l)%j(m) |
---|
| 564 | k = bc_h(l)%k(m) |
---|
| 565 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 566 | ENDDO |
---|
[1113] | 567 | ENDDO |
---|
[1] | 568 | ! |
---|
[1113] | 569 | !-- Top boundary: Dirichlet or Neumann |
---|
| 570 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 571 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 572 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 573 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 574 | ENDIF |
---|
| 575 | |
---|
[1113] | 576 | ENDIF |
---|
| 577 | |
---|
[1] | 578 | ! |
---|
[1960] | 579 | !-- Boundary conditions for total water content, |
---|
[1113] | 580 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 581 | IF ( humidity ) THEN |
---|
[1113] | 582 | ! |
---|
| 583 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 584 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 585 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 586 | !-- q_p at k-1 |
---|
[1113] | 587 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 588 | |
---|
| 589 | DO l = 0, 1 |
---|
| 590 | ! |
---|
| 591 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 592 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 593 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 594 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 595 | DO m = 1, bc_h(l)%ns |
---|
| 596 | i = bc_h(l)%i(m) |
---|
| 597 | j = bc_h(l)%j(m) |
---|
| 598 | k = bc_h(l)%k(m) |
---|
| 599 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 600 | ENDDO |
---|
| 601 | ENDDO |
---|
[2232] | 602 | |
---|
[1113] | 603 | ELSE |
---|
[2232] | 604 | |
---|
| 605 | DO l = 0, 1 |
---|
| 606 | ! |
---|
| 607 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 608 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 609 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 610 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 611 | DO m = 1, bc_h(l)%ns |
---|
| 612 | i = bc_h(l)%i(m) |
---|
| 613 | j = bc_h(l)%j(m) |
---|
| 614 | k = bc_h(l)%k(m) |
---|
| 615 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 616 | ENDDO |
---|
| 617 | ENDDO |
---|
[1113] | 618 | ENDIF |
---|
[95] | 619 | ! |
---|
[1113] | 620 | !-- Top boundary |
---|
[1462] | 621 | IF ( ibc_q_t == 0 ) THEN |
---|
| 622 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 623 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 624 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 625 | ENDIF |
---|
[95] | 626 | |
---|
[3274] | 627 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 628 | ! |
---|
| 629 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 630 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 631 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 632 | !-- qr_p and nr_p at k-1 |
---|
| 633 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 634 | DO m = 1, bc_h(0)%ns |
---|
| 635 | i = bc_h(0)%i(m) |
---|
| 636 | j = bc_h(0)%j(m) |
---|
| 637 | k = bc_h(0)%k(m) |
---|
| 638 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 639 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 640 | ENDDO |
---|
| 641 | ! |
---|
| 642 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 643 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 644 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 645 | |
---|
| 646 | ENDIF |
---|
| 647 | |
---|
[3274] | 648 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1113] | 649 | ! |
---|
[1361] | 650 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 651 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 652 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 653 | !-- qr_p and nr_p at k-1 |
---|
| 654 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 655 | DO m = 1, bc_h(0)%ns |
---|
| 656 | i = bc_h(0)%i(m) |
---|
| 657 | j = bc_h(0)%j(m) |
---|
| 658 | k = bc_h(0)%k(m) |
---|
| 659 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 660 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 661 | ENDDO |
---|
[1] | 662 | ! |
---|
[1361] | 663 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 664 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 665 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 666 | |
---|
[1] | 667 | ENDIF |
---|
[1409] | 668 | ENDIF |
---|
[1] | 669 | ! |
---|
[1960] | 670 | !-- Boundary conditions for scalar, |
---|
| 671 | !-- bottom and top boundary (see also temperature) |
---|
| 672 | IF ( passive_scalar ) THEN |
---|
| 673 | ! |
---|
| 674 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 675 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 676 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 677 | !-- s_p at k-1 |
---|
[1960] | 678 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 679 | |
---|
| 680 | DO l = 0, 1 |
---|
| 681 | ! |
---|
| 682 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 683 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 684 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 685 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 686 | DO m = 1, bc_h(l)%ns |
---|
| 687 | i = bc_h(l)%i(m) |
---|
| 688 | j = bc_h(l)%j(m) |
---|
| 689 | k = bc_h(l)%k(m) |
---|
| 690 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 691 | ENDDO |
---|
| 692 | ENDDO |
---|
[2232] | 693 | |
---|
[1960] | 694 | ELSE |
---|
[2232] | 695 | |
---|
| 696 | DO l = 0, 1 |
---|
| 697 | ! |
---|
| 698 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 699 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 700 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 701 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 702 | DO m = 1, bc_h(l)%ns |
---|
| 703 | i = bc_h(l)%i(m) |
---|
| 704 | j = bc_h(l)%j(m) |
---|
| 705 | k = bc_h(l)%k(m) |
---|
| 706 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 707 | ENDDO |
---|
| 708 | ENDDO |
---|
| 709 | ENDIF |
---|
| 710 | ! |
---|
[1992] | 711 | !-- Top boundary condition |
---|
| 712 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 713 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 714 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 715 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 716 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 717 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 718 | ENDIF |
---|
| 719 | |
---|
| 720 | ENDIF |
---|
| 721 | ! |
---|
[2696] | 722 | !-- Top/bottom boundary conditions for chemical species |
---|
| 723 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 724 | ! |
---|
[1762] | 725 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 726 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 727 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 728 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 729 | !-- have to be restored here. |
---|
[1409] | 730 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
[3182] | 731 | IF ( bc_dirichlet_s ) THEN |
---|
[1409] | 732 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 733 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[3182] | 734 | ELSEIF ( bc_dirichlet_n ) THEN |
---|
[1409] | 735 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[3182] | 736 | ELSEIF ( bc_dirichlet_l ) THEN |
---|
[1409] | 737 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 738 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[3182] | 739 | ELSEIF ( bc_dirichlet_r ) THEN |
---|
[1409] | 740 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 741 | ENDIF |
---|
[1] | 742 | |
---|
| 743 | ! |
---|
[1762] | 744 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 745 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
[3182] | 746 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
| 747 | IF ( nesting_mode /= 'vertical' .OR. nesting_offline ) THEN |
---|
| 748 | IF ( bc_dirichlet_s ) THEN |
---|
[1933] | 749 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 750 | ENDIF |
---|
[3182] | 751 | IF ( bc_dirichlet_l ) THEN |
---|
[1933] | 752 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 753 | ENDIF |
---|
[1762] | 754 | ENDIF |
---|
| 755 | |
---|
| 756 | ! |
---|
[1409] | 757 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
[3182] | 758 | IF ( bc_radiation_s ) THEN |
---|
[1409] | 759 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 760 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[2696] | 761 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
[1960] | 762 | IF ( humidity ) THEN |
---|
[1409] | 763 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[3274] | 764 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 765 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 766 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 767 | ENDIF |
---|
[3274] | 768 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 769 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 770 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 771 | ENDIF |
---|
[1409] | 772 | ENDIF |
---|
[1960] | 773 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[3182] | 774 | ELSEIF ( bc_radiation_n ) THEN |
---|
[1409] | 775 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[2696] | 776 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 777 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
[1960] | 778 | IF ( humidity ) THEN |
---|
[1409] | 779 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[3274] | 780 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 781 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 782 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 783 | ENDIF |
---|
[3274] | 784 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 785 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 786 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 787 | ENDIF |
---|
[1409] | 788 | ENDIF |
---|
[1960] | 789 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[3182] | 790 | ELSEIF ( bc_radiation_l ) THEN |
---|
[1409] | 791 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[2696] | 792 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 793 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
[1960] | 794 | IF ( humidity ) THEN |
---|
[1409] | 795 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[3274] | 796 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 797 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 798 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 799 | ENDIF |
---|
[3274] | 800 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 801 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 802 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 803 | ENDIF |
---|
[1409] | 804 | ENDIF |
---|
[1960] | 805 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[3182] | 806 | ELSEIF ( bc_radiation_r ) THEN |
---|
[1409] | 807 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[2696] | 808 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 809 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
[1960] | 810 | IF ( humidity ) THEN |
---|
[1409] | 811 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[3274] | 812 | IF ( bulk_cloud_model .AND. microphysics_morrison ) THEN |
---|
[2292] | 813 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 814 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 815 | ENDIF |
---|
[3274] | 816 | IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN |
---|
[1409] | 817 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 818 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 819 | ENDIF |
---|
[1] | 820 | ENDIF |
---|
[1960] | 821 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 822 | ENDIF |
---|
| 823 | |
---|
| 824 | ! |
---|
[2696] | 825 | !-- Lateral boundary conditions for chemical species |
---|
| 826 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 827 | |
---|
| 828 | ! |
---|
[1159] | 829 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 830 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 831 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 832 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[3182] | 833 | IF ( bc_radiation_s ) THEN |
---|
[75] | 834 | |
---|
[1159] | 835 | IF ( use_cmax ) THEN |
---|
| 836 | u_p(:,-1,:) = u(:,0,:) |
---|
| 837 | v_p(:,0,:) = v(:,1,:) |
---|
| 838 | w_p(:,-1,:) = w(:,0,:) |
---|
| 839 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 840 | |
---|
[978] | 841 | c_max = dy / dt_3d |
---|
[75] | 842 | |
---|
[1353] | 843 | c_u_m_l = 0.0_wp |
---|
| 844 | c_v_m_l = 0.0_wp |
---|
| 845 | c_w_m_l = 0.0_wp |
---|
[978] | 846 | |
---|
[1353] | 847 | c_u_m = 0.0_wp |
---|
| 848 | c_v_m = 0.0_wp |
---|
| 849 | c_w_m = 0.0_wp |
---|
[978] | 850 | |
---|
[75] | 851 | ! |
---|
[996] | 852 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 853 | !-- average along the outflow boundary. |
---|
| 854 | DO k = nzb+1, nzt+1 |
---|
| 855 | DO i = nxl, nxr |
---|
[75] | 856 | |
---|
[106] | 857 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 858 | |
---|
[1353] | 859 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 860 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 861 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 862 | c_u(k,i) = 0.0_wp |
---|
[106] | 863 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 864 | c_u(k,i) = c_max |
---|
| 865 | ENDIF |
---|
| 866 | ELSE |
---|
| 867 | c_u(k,i) = c_max |
---|
[75] | 868 | ENDIF |
---|
| 869 | |
---|
[106] | 870 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 871 | |
---|
[1353] | 872 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 873 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 874 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 875 | c_v(k,i) = 0.0_wp |
---|
[106] | 876 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 877 | c_v(k,i) = c_max |
---|
| 878 | ENDIF |
---|
| 879 | ELSE |
---|
| 880 | c_v(k,i) = c_max |
---|
[75] | 881 | ENDIF |
---|
| 882 | |
---|
[106] | 883 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 884 | |
---|
[1353] | 885 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 886 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 887 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 888 | c_w(k,i) = 0.0_wp |
---|
[106] | 889 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 890 | c_w(k,i) = c_max |
---|
| 891 | ENDIF |
---|
| 892 | ELSE |
---|
| 893 | c_w(k,i) = c_max |
---|
[75] | 894 | ENDIF |
---|
[106] | 895 | |
---|
[978] | 896 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 897 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 898 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 899 | |
---|
[978] | 900 | ENDDO |
---|
| 901 | ENDDO |
---|
[75] | 902 | |
---|
[978] | 903 | #if defined( __parallel ) |
---|
| 904 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 905 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 906 | MPI_SUM, comm1dx, ierr ) |
---|
| 907 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 908 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 909 | MPI_SUM, comm1dx, ierr ) |
---|
| 910 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 911 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 912 | MPI_SUM, comm1dx, ierr ) |
---|
| 913 | #else |
---|
| 914 | c_u_m = c_u_m_l |
---|
| 915 | c_v_m = c_v_m_l |
---|
| 916 | c_w_m = c_w_m_l |
---|
| 917 | #endif |
---|
| 918 | |
---|
| 919 | c_u_m = c_u_m / (nx+1) |
---|
| 920 | c_v_m = c_v_m / (nx+1) |
---|
| 921 | c_w_m = c_w_m / (nx+1) |
---|
| 922 | |
---|
[75] | 923 | ! |
---|
[978] | 924 | !-- Save old timelevels for the next timestep |
---|
| 925 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 926 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 927 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 928 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 929 | ENDIF |
---|
| 930 | |
---|
| 931 | ! |
---|
| 932 | !-- Calculate the new velocities |
---|
[996] | 933 | DO k = nzb+1, nzt+1 |
---|
| 934 | DO i = nxlg, nxrg |
---|
[978] | 935 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 936 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 937 | |
---|
[978] | 938 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 939 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 940 | |
---|
[978] | 941 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 942 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 943 | ENDDO |
---|
[75] | 944 | ENDDO |
---|
| 945 | |
---|
| 946 | ! |
---|
[978] | 947 | !-- Bottom boundary at the outflow |
---|
| 948 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 949 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 950 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 951 | ELSE |
---|
| 952 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 953 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 954 | ENDIF |
---|
[1353] | 955 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 956 | |
---|
[75] | 957 | ! |
---|
[978] | 958 | !-- Top boundary at the outflow |
---|
| 959 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 960 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 961 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 962 | ELSE |
---|
[1742] | 963 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 964 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 965 | ENDIF |
---|
[1353] | 966 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 967 | |
---|
[75] | 968 | ENDIF |
---|
[73] | 969 | |
---|
[75] | 970 | ENDIF |
---|
[73] | 971 | |
---|
[3182] | 972 | IF ( bc_radiation_n ) THEN |
---|
[73] | 973 | |
---|
[1159] | 974 | IF ( use_cmax ) THEN |
---|
| 975 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 976 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 977 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 978 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 979 | |
---|
[978] | 980 | c_max = dy / dt_3d |
---|
[75] | 981 | |
---|
[1353] | 982 | c_u_m_l = 0.0_wp |
---|
| 983 | c_v_m_l = 0.0_wp |
---|
| 984 | c_w_m_l = 0.0_wp |
---|
[978] | 985 | |
---|
[1353] | 986 | c_u_m = 0.0_wp |
---|
| 987 | c_v_m = 0.0_wp |
---|
| 988 | c_w_m = 0.0_wp |
---|
[978] | 989 | |
---|
[1] | 990 | ! |
---|
[996] | 991 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 992 | !-- average along the outflow boundary. |
---|
| 993 | DO k = nzb+1, nzt+1 |
---|
| 994 | DO i = nxl, nxr |
---|
[73] | 995 | |
---|
[106] | 996 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 997 | |
---|
[1353] | 998 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 999 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1000 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 1001 | c_u(k,i) = 0.0_wp |
---|
[106] | 1002 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 1003 | c_u(k,i) = c_max |
---|
| 1004 | ENDIF |
---|
| 1005 | ELSE |
---|
| 1006 | c_u(k,i) = c_max |
---|
[73] | 1007 | ENDIF |
---|
| 1008 | |
---|
[106] | 1009 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 1010 | |
---|
[1353] | 1011 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1012 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1013 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 1014 | c_v(k,i) = 0.0_wp |
---|
[106] | 1015 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 1016 | c_v(k,i) = c_max |
---|
| 1017 | ENDIF |
---|
| 1018 | ELSE |
---|
| 1019 | c_v(k,i) = c_max |
---|
[73] | 1020 | ENDIF |
---|
| 1021 | |
---|
[106] | 1022 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 1023 | |
---|
[1353] | 1024 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1025 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 1026 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 1027 | c_w(k,i) = 0.0_wp |
---|
[106] | 1028 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 1029 | c_w(k,i) = c_max |
---|
| 1030 | ENDIF |
---|
| 1031 | ELSE |
---|
| 1032 | c_w(k,i) = c_max |
---|
[73] | 1033 | ENDIF |
---|
[106] | 1034 | |
---|
[978] | 1035 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 1036 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 1037 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 1038 | |
---|
[978] | 1039 | ENDDO |
---|
| 1040 | ENDDO |
---|
[73] | 1041 | |
---|
[978] | 1042 | #if defined( __parallel ) |
---|
| 1043 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1044 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1045 | MPI_SUM, comm1dx, ierr ) |
---|
| 1046 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1047 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1048 | MPI_SUM, comm1dx, ierr ) |
---|
| 1049 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1050 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1051 | MPI_SUM, comm1dx, ierr ) |
---|
| 1052 | #else |
---|
| 1053 | c_u_m = c_u_m_l |
---|
| 1054 | c_v_m = c_v_m_l |
---|
| 1055 | c_w_m = c_w_m_l |
---|
| 1056 | #endif |
---|
| 1057 | |
---|
| 1058 | c_u_m = c_u_m / (nx+1) |
---|
| 1059 | c_v_m = c_v_m / (nx+1) |
---|
| 1060 | c_w_m = c_w_m / (nx+1) |
---|
| 1061 | |
---|
[73] | 1062 | ! |
---|
[978] | 1063 | !-- Save old timelevels for the next timestep |
---|
| 1064 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1065 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1066 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1067 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1068 | ENDIF |
---|
[73] | 1069 | |
---|
[978] | 1070 | ! |
---|
| 1071 | !-- Calculate the new velocities |
---|
[996] | 1072 | DO k = nzb+1, nzt+1 |
---|
| 1073 | DO i = nxlg, nxrg |
---|
[978] | 1074 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1075 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 1076 | |
---|
[978] | 1077 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1078 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 1079 | |
---|
[978] | 1080 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1081 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 1082 | ENDDO |
---|
[1] | 1083 | ENDDO |
---|
| 1084 | |
---|
| 1085 | ! |
---|
[978] | 1086 | !-- Bottom boundary at the outflow |
---|
| 1087 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1088 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 1089 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 1090 | ELSE |
---|
| 1091 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 1092 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 1093 | ENDIF |
---|
[1353] | 1094 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 1095 | |
---|
| 1096 | ! |
---|
[978] | 1097 | !-- Top boundary at the outflow |
---|
| 1098 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1099 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 1100 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 1101 | ELSE |
---|
| 1102 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 1103 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 1104 | ENDIF |
---|
[1353] | 1105 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 1106 | |
---|
[1] | 1107 | ENDIF |
---|
| 1108 | |
---|
[75] | 1109 | ENDIF |
---|
| 1110 | |
---|
[3182] | 1111 | IF ( bc_radiation_l ) THEN |
---|
[75] | 1112 | |
---|
[1159] | 1113 | IF ( use_cmax ) THEN |
---|
[1717] | 1114 | u_p(:,:,0) = u(:,:,1) |
---|
| 1115 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 1116 | w_p(:,:,-1) = w(:,:,0) |
---|
| 1117 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1118 | |
---|
[978] | 1119 | c_max = dx / dt_3d |
---|
[75] | 1120 | |
---|
[1353] | 1121 | c_u_m_l = 0.0_wp |
---|
| 1122 | c_v_m_l = 0.0_wp |
---|
| 1123 | c_w_m_l = 0.0_wp |
---|
[978] | 1124 | |
---|
[1353] | 1125 | c_u_m = 0.0_wp |
---|
| 1126 | c_v_m = 0.0_wp |
---|
| 1127 | c_w_m = 0.0_wp |
---|
[978] | 1128 | |
---|
[1] | 1129 | ! |
---|
[996] | 1130 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1131 | !-- average along the outflow boundary. |
---|
| 1132 | DO k = nzb+1, nzt+1 |
---|
| 1133 | DO j = nys, nyn |
---|
[75] | 1134 | |
---|
[106] | 1135 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 1136 | |
---|
[1353] | 1137 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1138 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 1139 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1140 | c_u(k,j) = 0.0_wp |
---|
[107] | 1141 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1142 | c_u(k,j) = c_max |
---|
[106] | 1143 | ENDIF |
---|
| 1144 | ELSE |
---|
[107] | 1145 | c_u(k,j) = c_max |
---|
[75] | 1146 | ENDIF |
---|
| 1147 | |
---|
[106] | 1148 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 1149 | |
---|
[1353] | 1150 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1151 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1152 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1153 | c_v(k,j) = 0.0_wp |
---|
[106] | 1154 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1155 | c_v(k,j) = c_max |
---|
| 1156 | ENDIF |
---|
| 1157 | ELSE |
---|
| 1158 | c_v(k,j) = c_max |
---|
[75] | 1159 | ENDIF |
---|
| 1160 | |
---|
[106] | 1161 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 1162 | |
---|
[1353] | 1163 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1164 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1165 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1166 | c_w(k,j) = 0.0_wp |
---|
[106] | 1167 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1168 | c_w(k,j) = c_max |
---|
| 1169 | ENDIF |
---|
| 1170 | ELSE |
---|
| 1171 | c_w(k,j) = c_max |
---|
[75] | 1172 | ENDIF |
---|
[106] | 1173 | |
---|
[978] | 1174 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1175 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1176 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1177 | |
---|
[978] | 1178 | ENDDO |
---|
| 1179 | ENDDO |
---|
[75] | 1180 | |
---|
[978] | 1181 | #if defined( __parallel ) |
---|
| 1182 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1183 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1184 | MPI_SUM, comm1dy, ierr ) |
---|
| 1185 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1186 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1187 | MPI_SUM, comm1dy, ierr ) |
---|
| 1188 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1189 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1190 | MPI_SUM, comm1dy, ierr ) |
---|
| 1191 | #else |
---|
| 1192 | c_u_m = c_u_m_l |
---|
| 1193 | c_v_m = c_v_m_l |
---|
| 1194 | c_w_m = c_w_m_l |
---|
| 1195 | #endif |
---|
| 1196 | |
---|
| 1197 | c_u_m = c_u_m / (ny+1) |
---|
| 1198 | c_v_m = c_v_m / (ny+1) |
---|
| 1199 | c_w_m = c_w_m / (ny+1) |
---|
| 1200 | |
---|
[73] | 1201 | ! |
---|
[978] | 1202 | !-- Save old timelevels for the next timestep |
---|
| 1203 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1204 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1205 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1206 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1207 | ENDIF |
---|
| 1208 | |
---|
| 1209 | ! |
---|
| 1210 | !-- Calculate the new velocities |
---|
[996] | 1211 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1212 | DO j = nysg, nyng |
---|
[978] | 1213 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 1214 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 1215 | |
---|
[978] | 1216 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 1217 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 1218 | |
---|
[978] | 1219 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1220 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1221 | ENDDO |
---|
[75] | 1222 | ENDDO |
---|
| 1223 | |
---|
| 1224 | ! |
---|
[978] | 1225 | !-- Bottom boundary at the outflow |
---|
| 1226 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1227 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1228 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1229 | ELSE |
---|
| 1230 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1231 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1232 | ENDIF |
---|
[1353] | 1233 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1234 | |
---|
[75] | 1235 | ! |
---|
[978] | 1236 | !-- Top boundary at the outflow |
---|
| 1237 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1238 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1239 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1240 | ELSE |
---|
[1764] | 1241 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1242 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1243 | ENDIF |
---|
[1353] | 1244 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1245 | |
---|
[75] | 1246 | ENDIF |
---|
[73] | 1247 | |
---|
[75] | 1248 | ENDIF |
---|
[73] | 1249 | |
---|
[3182] | 1250 | IF ( bc_radiation_r ) THEN |
---|
[73] | 1251 | |
---|
[1159] | 1252 | IF ( use_cmax ) THEN |
---|
| 1253 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1254 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1255 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1256 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1257 | |
---|
[978] | 1258 | c_max = dx / dt_3d |
---|
[75] | 1259 | |
---|
[1353] | 1260 | c_u_m_l = 0.0_wp |
---|
| 1261 | c_v_m_l = 0.0_wp |
---|
| 1262 | c_w_m_l = 0.0_wp |
---|
[978] | 1263 | |
---|
[1353] | 1264 | c_u_m = 0.0_wp |
---|
| 1265 | c_v_m = 0.0_wp |
---|
| 1266 | c_w_m = 0.0_wp |
---|
[978] | 1267 | |
---|
[1] | 1268 | ! |
---|
[996] | 1269 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1270 | !-- average along the outflow boundary. |
---|
| 1271 | DO k = nzb+1, nzt+1 |
---|
| 1272 | DO j = nys, nyn |
---|
[73] | 1273 | |
---|
[106] | 1274 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1275 | |
---|
[1353] | 1276 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1277 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1278 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1279 | c_u(k,j) = 0.0_wp |
---|
[106] | 1280 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1281 | c_u(k,j) = c_max |
---|
| 1282 | ENDIF |
---|
| 1283 | ELSE |
---|
| 1284 | c_u(k,j) = c_max |
---|
[73] | 1285 | ENDIF |
---|
| 1286 | |
---|
[106] | 1287 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1288 | |
---|
[1353] | 1289 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1290 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1291 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1292 | c_v(k,j) = 0.0_wp |
---|
[106] | 1293 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1294 | c_v(k,j) = c_max |
---|
| 1295 | ENDIF |
---|
| 1296 | ELSE |
---|
| 1297 | c_v(k,j) = c_max |
---|
[73] | 1298 | ENDIF |
---|
| 1299 | |
---|
[106] | 1300 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1301 | |
---|
[1353] | 1302 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1303 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1304 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1305 | c_w(k,j) = 0.0_wp |
---|
[106] | 1306 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1307 | c_w(k,j) = c_max |
---|
| 1308 | ENDIF |
---|
| 1309 | ELSE |
---|
| 1310 | c_w(k,j) = c_max |
---|
[73] | 1311 | ENDIF |
---|
[106] | 1312 | |
---|
[978] | 1313 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1314 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1315 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1316 | |
---|
[978] | 1317 | ENDDO |
---|
| 1318 | ENDDO |
---|
[73] | 1319 | |
---|
[978] | 1320 | #if defined( __parallel ) |
---|
| 1321 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1322 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1323 | MPI_SUM, comm1dy, ierr ) |
---|
| 1324 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1325 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1326 | MPI_SUM, comm1dy, ierr ) |
---|
| 1327 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1328 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1329 | MPI_SUM, comm1dy, ierr ) |
---|
| 1330 | #else |
---|
| 1331 | c_u_m = c_u_m_l |
---|
| 1332 | c_v_m = c_v_m_l |
---|
| 1333 | c_w_m = c_w_m_l |
---|
| 1334 | #endif |
---|
| 1335 | |
---|
| 1336 | c_u_m = c_u_m / (ny+1) |
---|
| 1337 | c_v_m = c_v_m / (ny+1) |
---|
| 1338 | c_w_m = c_w_m / (ny+1) |
---|
| 1339 | |
---|
[73] | 1340 | ! |
---|
[978] | 1341 | !-- Save old timelevels for the next timestep |
---|
| 1342 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1343 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1344 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1345 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1346 | ENDIF |
---|
[73] | 1347 | |
---|
[978] | 1348 | ! |
---|
| 1349 | !-- Calculate the new velocities |
---|
[996] | 1350 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1351 | DO j = nysg, nyng |
---|
[978] | 1352 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1353 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1354 | |
---|
[978] | 1355 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1356 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1357 | |
---|
[978] | 1358 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1359 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1360 | ENDDO |
---|
[73] | 1361 | ENDDO |
---|
| 1362 | |
---|
| 1363 | ! |
---|
[978] | 1364 | !-- Bottom boundary at the outflow |
---|
| 1365 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1366 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1367 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1368 | ELSE |
---|
| 1369 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1370 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1371 | ENDIF |
---|
[1353] | 1372 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1373 | |
---|
| 1374 | ! |
---|
[978] | 1375 | !-- Top boundary at the outflow |
---|
| 1376 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1377 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1378 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1379 | ELSE |
---|
| 1380 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1381 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1382 | ENDIF |
---|
[1742] | 1383 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1384 | |
---|
[1] | 1385 | ENDIF |
---|
| 1386 | |
---|
| 1387 | ENDIF |
---|
[3467] | 1388 | |
---|
| 1389 | IF ( salsa ) THEN |
---|
| 1390 | CALL salsa_boundary_conds |
---|
| 1391 | ENDIF |
---|
[1] | 1392 | |
---|
| 1393 | END SUBROUTINE boundary_conds |
---|