[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[2233] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 3129 2018-07-16 07:45:13Z suehring $ |
---|
[3129] | 27 | ! - Use wall function for e_p and diss_p in case of rans_tke_e |
---|
| 28 | ! - move limitation of diss_p from tcm_prognostic |
---|
| 29 | ! |
---|
| 30 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
[2938] | 31 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
| 32 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
| 33 | ! mode |
---|
| 34 | ! |
---|
| 35 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
[2766] | 36 | ! Removed preprocessor directive __chem |
---|
| 37 | ! |
---|
| 38 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 39 | ! Corrected "Former revisions" section |
---|
| 40 | ! |
---|
| 41 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 42 | ! Change in file header (GPL part) |
---|
[2696] | 43 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
| 44 | ! Implementation of chemistry module (FK) |
---|
| 45 | ! |
---|
| 46 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
[2569] | 47 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
| 48 | ! |
---|
| 49 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 50 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 51 | ! on fine grid (SadiqHuq) |
---|
| 52 | ! |
---|
| 53 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 54 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 55 | ! |
---|
| 56 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 57 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 58 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 59 | ! and cloud water content (qc). |
---|
| 60 | ! |
---|
| 61 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 62 | ! |
---|
[2233] | 63 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 64 | ! Set boundary conditions on topography top using flag method. |
---|
| 65 | ! |
---|
[2119] | 66 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 67 | ! OpenACC directives removed |
---|
| 68 | ! |
---|
[2001] | 69 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 70 | ! Forced header and separation lines into 80 columns |
---|
| 71 | ! |
---|
[1993] | 72 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 73 | ! Adjustments for top boundary condition for passive scalar |
---|
| 74 | ! |
---|
[1961] | 75 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 76 | ! Treat humidity and passive scalar separately |
---|
| 77 | ! |
---|
[1933] | 78 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 79 | ! Initial version of purely vertical nesting introduced. |
---|
| 80 | ! |
---|
[1823] | 81 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 82 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 83 | ! |
---|
[1765] | 84 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 85 | ! index bug for u_p at left outflow removed |
---|
| 86 | ! |
---|
[1763] | 87 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 88 | ! Introduction of nested domain feature |
---|
| 89 | ! |
---|
[1744] | 90 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 91 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 92 | ! |
---|
[1718] | 93 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 94 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 95 | ! |
---|
[1683] | 96 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 97 | ! Code annotations made doxygen readable |
---|
| 98 | ! |
---|
[1717] | 99 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 100 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 101 | ! top |
---|
| 102 | ! |
---|
[1410] | 103 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 104 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 105 | ! is used. |
---|
| 106 | ! |
---|
[1399] | 107 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 108 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 109 | ! for large_scale_forcing |
---|
| 110 | ! |
---|
[1381] | 111 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 112 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 113 | ! |
---|
[1362] | 114 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 115 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 116 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 117 | ! |
---|
[1354] | 118 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 119 | ! REAL constants provided with KIND-attribute |
---|
| 120 | ! |
---|
[1321] | 121 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 122 | ! ONLY-attribute added to USE-statements, |
---|
| 123 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 124 | ! kinds are defined in new module kinds, |
---|
| 125 | ! revision history before 2012 removed, |
---|
| 126 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 127 | ! all variable declaration statements |
---|
[1160] | 128 | ! |
---|
[1258] | 129 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 130 | ! loop independent clauses added |
---|
| 131 | ! |
---|
[1242] | 132 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 133 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 134 | ! |
---|
[1160] | 135 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 136 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 137 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 138 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 139 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 140 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 141 | ! u_p, v_p, w_p |
---|
[1116] | 142 | ! |
---|
| 143 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 144 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 145 | ! boundary-conditions |
---|
| 146 | ! |
---|
[1114] | 147 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 148 | ! GPU-porting |
---|
| 149 | ! dummy argument "range" removed |
---|
| 150 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 151 | ! |
---|
[1054] | 152 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 153 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 154 | ! two-moment cloud scheme |
---|
| 155 | ! |
---|
[1037] | 156 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 157 | ! code put under GPL (PALM 3.9) |
---|
| 158 | ! |
---|
[997] | 159 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 160 | ! little reformatting |
---|
| 161 | ! |
---|
[979] | 162 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 163 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 164 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 165 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 166 | ! velocity. |
---|
| 167 | ! |
---|
[876] | 168 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 169 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 170 | ! |
---|
[1] | 171 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 172 | ! Initial revision |
---|
| 173 | ! |
---|
| 174 | ! |
---|
| 175 | ! Description: |
---|
| 176 | ! ------------ |
---|
[1682] | 177 | !> Boundary conditions for the prognostic quantities. |
---|
| 178 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 179 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 180 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 181 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 182 | !------------------------------------------------------------------------------! |
---|
[1682] | 183 | SUBROUTINE boundary_conds |
---|
| 184 | |
---|
[1] | 185 | |
---|
[1320] | 186 | USE arrays_3d, & |
---|
| 187 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[3129] | 188 | diss, diss_p, dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, & |
---|
[2696] | 189 | s_p, sa, sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
[1320] | 190 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[3129] | 191 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init, ddzu |
---|
[2696] | 192 | |
---|
| 193 | USE chemistry_model_mod, & |
---|
| 194 | ONLY: chem_boundary_conds |
---|
| 195 | |
---|
[1320] | 196 | USE control_parameters, & |
---|
[2696] | 197 | ONLY: air_chemistry, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
| 198 | constant_diffusion, cloud_physics, coupling_mode, dt_3d, & |
---|
| 199 | force_bound_l, force_bound_s, forcing, humidity, & |
---|
[1960] | 200 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
| 201 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
[3129] | 202 | inflow_s, intermediate_timestep_count, kappa, & |
---|
[2292] | 203 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
[2938] | 204 | nest_bound_l, nest_bound_n, nest_bound_r, nest_bound_s, nudging,& |
---|
| 205 | ocean, outflow_l, outflow_n, outflow_r, outflow_s, & |
---|
| 206 | passive_scalar, rans_mode, rans_tke_e, tsc, use_cmax |
---|
[1320] | 207 | |
---|
| 208 | USE grid_variables, & |
---|
| 209 | ONLY: ddx, ddy, dx, dy |
---|
| 210 | |
---|
| 211 | USE indices, & |
---|
| 212 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
[2232] | 213 | nzb, nzt, wall_flags_0 |
---|
[1320] | 214 | |
---|
| 215 | USE kinds |
---|
| 216 | |
---|
[1] | 217 | USE pegrid |
---|
| 218 | |
---|
[1933] | 219 | USE pmc_interface, & |
---|
[2938] | 220 | ONLY : nesting_mode, rans_mode_parent |
---|
[1320] | 221 | |
---|
[2232] | 222 | USE surface_mod, & |
---|
[3129] | 223 | ONLY : bc_h, surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, & |
---|
| 224 | surf_usm_h, surf_usm_v |
---|
[1933] | 225 | |
---|
[3129] | 226 | USE turbulence_closure_mod, & |
---|
| 227 | ONLY: c_0 |
---|
| 228 | |
---|
[1] | 229 | IMPLICIT NONE |
---|
| 230 | |
---|
[2232] | 231 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 232 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 233 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 234 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 235 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 236 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 237 | |
---|
[1682] | 238 | REAL(wp) :: c_max !< |
---|
| 239 | REAL(wp) :: denom !< |
---|
[1] | 240 | |
---|
[73] | 241 | |
---|
[1] | 242 | ! |
---|
[1113] | 243 | !-- Bottom boundary |
---|
| 244 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 245 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 246 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 247 | ENDIF |
---|
[2232] | 248 | ! |
---|
| 249 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 250 | !-- of downward-facing surfaces. |
---|
| 251 | DO l = 0, 1 |
---|
| 252 | ! |
---|
| 253 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 254 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 255 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 256 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 257 | DO m = 1, bc_h(l)%ns |
---|
| 258 | i = bc_h(l)%i(m) |
---|
| 259 | j = bc_h(l)%j(m) |
---|
| 260 | k = bc_h(l)%k(m) |
---|
| 261 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 262 | ENDDO |
---|
| 263 | ENDDO |
---|
| 264 | |
---|
| 265 | ! |
---|
[1762] | 266 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 267 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 268 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 269 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1762] | 270 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 271 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 272 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
[2365] | 275 | ! |
---|
| 276 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
| 277 | IF ( .NOT. nest_domain .AND. & |
---|
| 278 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
| 279 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[1762] | 280 | ENDIF |
---|
| 281 | |
---|
[1113] | 282 | ! |
---|
[2232] | 283 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 284 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 285 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 286 | !-- Dirichlet |
---|
[1113] | 287 | IF ( ibc_pt_b == 0 ) THEN |
---|
[2232] | 288 | DO l = 0, 1 |
---|
| 289 | ! |
---|
| 290 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 291 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 292 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 293 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 294 | DO m = 1, bc_h(l)%ns |
---|
| 295 | i = bc_h(l)%i(m) |
---|
| 296 | j = bc_h(l)%j(m) |
---|
| 297 | k = bc_h(l)%k(m) |
---|
| 298 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
[1] | 299 | ENDDO |
---|
| 300 | ENDDO |
---|
[2232] | 301 | ! |
---|
| 302 | !-- Neumann, zero-gradient |
---|
[1113] | 303 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 304 | DO l = 0, 1 |
---|
| 305 | ! |
---|
| 306 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 307 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 308 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 309 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 310 | DO m = 1, bc_h(l)%ns |
---|
| 311 | i = bc_h(l)%i(m) |
---|
| 312 | j = bc_h(l)%j(m) |
---|
| 313 | k = bc_h(l)%k(m) |
---|
| 314 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
[1113] | 315 | ENDDO |
---|
| 316 | ENDDO |
---|
| 317 | ENDIF |
---|
[1] | 318 | |
---|
| 319 | ! |
---|
[1113] | 320 | !-- Temperature at top boundary |
---|
| 321 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 322 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 323 | ! |
---|
| 324 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 325 | !-- read in from NUDGING-DATA |
---|
| 326 | IF ( nudging ) THEN |
---|
| 327 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 328 | ENDIF |
---|
[1113] | 329 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 330 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 331 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1992] | 332 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1113] | 333 | ENDIF |
---|
[1] | 334 | |
---|
| 335 | ! |
---|
[2938] | 336 | !-- Boundary conditions for TKE. |
---|
| 337 | !-- Generally Neumann conditions with de/dz=0 are assumed. |
---|
[1113] | 338 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 339 | |
---|
[2696] | 340 | IF ( .NOT. rans_tke_e ) THEN |
---|
| 341 | DO l = 0, 1 |
---|
[2232] | 342 | ! |
---|
[2696] | 343 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 344 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 345 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 346 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 347 | DO m = 1, bc_h(l)%ns |
---|
| 348 | i = bc_h(l)%i(m) |
---|
| 349 | j = bc_h(l)%j(m) |
---|
| 350 | k = bc_h(l)%k(m) |
---|
| 351 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
| 352 | ENDDO |
---|
[73] | 353 | ENDDO |
---|
[3129] | 354 | ELSE |
---|
| 355 | ! |
---|
| 356 | !-- Use wall function within constant-flux layer |
---|
| 357 | !-- Upward-facing surfaces |
---|
| 358 | !-- Default surfaces |
---|
| 359 | DO m = 1, surf_def_h(0)%ns |
---|
| 360 | i = surf_def_h(0)%i(m) |
---|
| 361 | j = surf_def_h(0)%j(m) |
---|
| 362 | k = surf_def_h(0)%k(m) |
---|
| 363 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
| 364 | ENDDO |
---|
| 365 | ! |
---|
| 366 | !-- Natural surfaces |
---|
| 367 | DO m = 1, surf_lsm_h%ns |
---|
| 368 | i = surf_lsm_h%i(m) |
---|
| 369 | j = surf_lsm_h%j(m) |
---|
| 370 | k = surf_lsm_h%k(m) |
---|
| 371 | e_p(k,j,i) = ( surf_lsm_h%us(m) / c_0 )**2 |
---|
| 372 | ENDDO |
---|
| 373 | ! |
---|
| 374 | !-- Urban surfaces |
---|
| 375 | DO m = 1, surf_usm_h%ns |
---|
| 376 | i = surf_usm_h%i(m) |
---|
| 377 | j = surf_usm_h%j(m) |
---|
| 378 | k = surf_usm_h%k(m) |
---|
| 379 | e_p(k,j,i) = ( surf_usm_h%us(m) / c_0 )**2 |
---|
| 380 | ENDDO |
---|
| 381 | ! |
---|
| 382 | !-- Vertical surfaces |
---|
| 383 | DO l = 0, 3 |
---|
| 384 | ! |
---|
| 385 | !-- Default surfaces |
---|
| 386 | DO m = 1, surf_def_v(l)%ns |
---|
| 387 | i = surf_def_v(l)%i(m) |
---|
| 388 | j = surf_def_v(l)%j(m) |
---|
| 389 | k = surf_def_v(l)%k(m) |
---|
| 390 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
| 391 | ENDDO |
---|
| 392 | ! |
---|
| 393 | !-- Natural surfaces |
---|
| 394 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 395 | i = surf_lsm_v(l)%i(m) |
---|
| 396 | j = surf_lsm_v(l)%j(m) |
---|
| 397 | k = surf_lsm_v(l)%k(m) |
---|
| 398 | e_p(k,j,i) = ( surf_lsm_v(l)%us(m) / c_0 )**2 |
---|
| 399 | ENDDO |
---|
| 400 | ! |
---|
| 401 | !-- Urban surfaces |
---|
| 402 | DO m = 1, surf_usm_v(l)%ns |
---|
| 403 | i = surf_usm_v(l)%i(m) |
---|
| 404 | j = surf_usm_v(l)%j(m) |
---|
| 405 | k = surf_usm_v(l)%k(m) |
---|
| 406 | e_p(k,j,i) = ( surf_usm_v(l)%us(m) / c_0 )**2 |
---|
| 407 | ENDDO |
---|
| 408 | ENDDO |
---|
[2696] | 409 | ENDIF |
---|
[2232] | 410 | |
---|
[1762] | 411 | IF ( .NOT. nest_domain ) THEN |
---|
| 412 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[2938] | 413 | ! |
---|
| 414 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
| 415 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
| 416 | !-- top child boundaries. |
---|
| 417 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
| 418 | !-- is treated in the nesting. |
---|
| 419 | ELSE |
---|
| 420 | |
---|
| 421 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
| 422 | |
---|
| 423 | |
---|
| 424 | |
---|
| 425 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 426 | IF ( nest_bound_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 427 | IF ( nest_bound_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 428 | IF ( nest_bound_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 429 | IF ( nest_bound_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 430 | |
---|
| 431 | ENDIF |
---|
[1762] | 432 | ENDIF |
---|
[1113] | 433 | ENDIF |
---|
| 434 | |
---|
| 435 | ! |
---|
[2938] | 436 | !-- Boundary conditions for TKE dissipation rate. |
---|
[3129] | 437 | IF ( rans_tke_e ) THEN |
---|
| 438 | ! |
---|
| 439 | !-- Use wall function within constant-flux layer |
---|
| 440 | !-- Upward-facing surfaces |
---|
| 441 | !-- Default surfaces |
---|
| 442 | DO m = 1, surf_def_h(0)%ns |
---|
| 443 | i = surf_def_h(0)%i(m) |
---|
| 444 | j = surf_def_h(0)%j(m) |
---|
| 445 | k = surf_def_h(0)%k(m) |
---|
| 446 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 & |
---|
| 447 | / ( kappa * surf_def_h(0)%z_mo(m) ) |
---|
| 448 | ENDDO |
---|
| 449 | ! |
---|
| 450 | !-- Natural surfaces |
---|
| 451 | DO m = 1, surf_lsm_h%ns |
---|
| 452 | i = surf_lsm_h%i(m) |
---|
| 453 | j = surf_lsm_h%j(m) |
---|
| 454 | k = surf_lsm_h%k(m) |
---|
| 455 | diss_p(k,j,i) = surf_lsm_h%us(m)**3 & |
---|
| 456 | / ( kappa * surf_lsm_h%z_mo(m) ) |
---|
| 457 | ENDDO |
---|
| 458 | ! |
---|
| 459 | !-- Urban surfaces |
---|
| 460 | DO m = 1, surf_usm_h%ns |
---|
| 461 | i = surf_usm_h%i(m) |
---|
| 462 | j = surf_usm_h%j(m) |
---|
| 463 | k = surf_usm_h%k(m) |
---|
| 464 | diss_p(k,j,i) = surf_usm_h%us(m)**3 & |
---|
| 465 | / ( kappa * surf_usm_h%z_mo(m) ) |
---|
| 466 | ENDDO |
---|
| 467 | ! |
---|
| 468 | !-- Vertical surfaces |
---|
| 469 | DO l = 0, 3 |
---|
| 470 | ! |
---|
| 471 | !-- Default surfaces |
---|
| 472 | DO m = 1, surf_def_v(l)%ns |
---|
| 473 | i = surf_def_v(l)%i(m) |
---|
| 474 | j = surf_def_v(l)%j(m) |
---|
| 475 | k = surf_def_v(l)%k(m) |
---|
| 476 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 & |
---|
| 477 | / ( kappa * surf_def_v(l)%z_mo(m) ) |
---|
| 478 | ENDDO |
---|
| 479 | ! |
---|
| 480 | !-- Natural surfaces |
---|
| 481 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 482 | i = surf_lsm_v(l)%i(m) |
---|
| 483 | j = surf_lsm_v(l)%j(m) |
---|
| 484 | k = surf_lsm_v(l)%k(m) |
---|
| 485 | diss_p(k,j,i) = surf_lsm_v(l)%us(m)**3 & |
---|
| 486 | / ( kappa * surf_lsm_v(l)%z_mo(m) ) |
---|
| 487 | ENDDO |
---|
| 488 | ! |
---|
| 489 | !-- Urban surfaces |
---|
| 490 | DO m = 1, surf_usm_v(l)%ns |
---|
| 491 | i = surf_usm_v(l)%i(m) |
---|
| 492 | j = surf_usm_v(l)%j(m) |
---|
| 493 | k = surf_usm_v(l)%k(m) |
---|
| 494 | diss_p(k,j,i) = surf_usm_v(l)%us(m)**3 & |
---|
| 495 | / ( kappa * surf_usm_v(l)%z_mo(m) ) |
---|
| 496 | ENDDO |
---|
| 497 | ENDDO |
---|
| 498 | ! |
---|
| 499 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
| 500 | !-- minimum value |
---|
| 501 | DO i = nxl, nxr |
---|
| 502 | DO j = nys, nyn |
---|
| 503 | DO k = nzb, nzt+1 |
---|
| 504 | diss_p(k,j,i) = MAX( MIN( diss_p(k,j,i), & |
---|
| 505 | 2.0_wp * diss(k,j,i) ), & |
---|
| 506 | 0.1_wp * diss(k,j,i), & |
---|
| 507 | 0.0001_wp ) |
---|
| 508 | ENDDO |
---|
| 509 | ENDDO |
---|
| 510 | ENDDO |
---|
| 511 | |
---|
| 512 | IF ( .NOT. nest_domain ) THEN |
---|
| 513 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
| 514 | ENDIF |
---|
[2696] | 515 | ENDIF |
---|
| 516 | |
---|
| 517 | ! |
---|
[1113] | 518 | !-- Boundary conditions for salinity |
---|
| 519 | IF ( ocean ) THEN |
---|
| 520 | ! |
---|
| 521 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 522 | !-- given. |
---|
| 523 | DO l = 0, 1 |
---|
| 524 | ! |
---|
| 525 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 526 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 527 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 528 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 529 | DO m = 1, bc_h(l)%ns |
---|
| 530 | i = bc_h(l)%i(m) |
---|
| 531 | j = bc_h(l)%j(m) |
---|
| 532 | k = bc_h(l)%k(m) |
---|
| 533 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 534 | ENDDO |
---|
[1113] | 535 | ENDDO |
---|
[1] | 536 | ! |
---|
[1113] | 537 | !-- Top boundary: Dirichlet or Neumann |
---|
| 538 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 539 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 540 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 541 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 542 | ENDIF |
---|
| 543 | |
---|
[1113] | 544 | ENDIF |
---|
| 545 | |
---|
[1] | 546 | ! |
---|
[1960] | 547 | !-- Boundary conditions for total water content, |
---|
[1113] | 548 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 549 | IF ( humidity ) THEN |
---|
[1113] | 550 | ! |
---|
| 551 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 552 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 553 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 554 | !-- q_p at k-1 |
---|
[1113] | 555 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 556 | |
---|
| 557 | DO l = 0, 1 |
---|
| 558 | ! |
---|
| 559 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 560 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 561 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 562 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 563 | DO m = 1, bc_h(l)%ns |
---|
| 564 | i = bc_h(l)%i(m) |
---|
| 565 | j = bc_h(l)%j(m) |
---|
| 566 | k = bc_h(l)%k(m) |
---|
| 567 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 568 | ENDDO |
---|
| 569 | ENDDO |
---|
[2232] | 570 | |
---|
[1113] | 571 | ELSE |
---|
[2232] | 572 | |
---|
| 573 | DO l = 0, 1 |
---|
| 574 | ! |
---|
| 575 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 576 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 577 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 578 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 579 | DO m = 1, bc_h(l)%ns |
---|
| 580 | i = bc_h(l)%i(m) |
---|
| 581 | j = bc_h(l)%j(m) |
---|
| 582 | k = bc_h(l)%k(m) |
---|
| 583 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 584 | ENDDO |
---|
| 585 | ENDDO |
---|
[1113] | 586 | ENDIF |
---|
[95] | 587 | ! |
---|
[1113] | 588 | !-- Top boundary |
---|
[1462] | 589 | IF ( ibc_q_t == 0 ) THEN |
---|
| 590 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 591 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 592 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 593 | ENDIF |
---|
[95] | 594 | |
---|
[2292] | 595 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 596 | ! |
---|
| 597 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 598 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 599 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 600 | !-- qr_p and nr_p at k-1 |
---|
| 601 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 602 | DO m = 1, bc_h(0)%ns |
---|
| 603 | i = bc_h(0)%i(m) |
---|
| 604 | j = bc_h(0)%j(m) |
---|
| 605 | k = bc_h(0)%k(m) |
---|
| 606 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 607 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 608 | ENDDO |
---|
| 609 | ! |
---|
| 610 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 611 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 612 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 613 | |
---|
| 614 | ENDIF |
---|
| 615 | |
---|
[1822] | 616 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1113] | 617 | ! |
---|
[1361] | 618 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 619 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 620 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 621 | !-- qr_p and nr_p at k-1 |
---|
| 622 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 623 | DO m = 1, bc_h(0)%ns |
---|
| 624 | i = bc_h(0)%i(m) |
---|
| 625 | j = bc_h(0)%j(m) |
---|
| 626 | k = bc_h(0)%k(m) |
---|
| 627 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 628 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 629 | ENDDO |
---|
[1] | 630 | ! |
---|
[1361] | 631 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 632 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 633 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 634 | |
---|
[1] | 635 | ENDIF |
---|
[1409] | 636 | ENDIF |
---|
[1] | 637 | ! |
---|
[1960] | 638 | !-- Boundary conditions for scalar, |
---|
| 639 | !-- bottom and top boundary (see also temperature) |
---|
| 640 | IF ( passive_scalar ) THEN |
---|
| 641 | ! |
---|
| 642 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 643 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 644 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 645 | !-- s_p at k-1 |
---|
[1960] | 646 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 647 | |
---|
| 648 | DO l = 0, 1 |
---|
| 649 | ! |
---|
| 650 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 651 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 652 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 653 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 654 | DO m = 1, bc_h(l)%ns |
---|
| 655 | i = bc_h(l)%i(m) |
---|
| 656 | j = bc_h(l)%j(m) |
---|
| 657 | k = bc_h(l)%k(m) |
---|
| 658 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 659 | ENDDO |
---|
| 660 | ENDDO |
---|
[2232] | 661 | |
---|
[1960] | 662 | ELSE |
---|
[2232] | 663 | |
---|
| 664 | DO l = 0, 1 |
---|
| 665 | ! |
---|
| 666 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 667 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 668 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 669 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 670 | DO m = 1, bc_h(l)%ns |
---|
| 671 | i = bc_h(l)%i(m) |
---|
| 672 | j = bc_h(l)%j(m) |
---|
| 673 | k = bc_h(l)%k(m) |
---|
| 674 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 675 | ENDDO |
---|
| 676 | ENDDO |
---|
| 677 | ENDIF |
---|
| 678 | ! |
---|
[1992] | 679 | !-- Top boundary condition |
---|
| 680 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 681 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 682 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 683 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 684 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 685 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 686 | ENDIF |
---|
| 687 | |
---|
| 688 | ENDIF |
---|
| 689 | ! |
---|
[2696] | 690 | !-- Top/bottom boundary conditions for chemical species |
---|
| 691 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 692 | ! |
---|
[1762] | 693 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 694 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 695 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 696 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 697 | !-- have to be restored here. |
---|
[1409] | 698 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 699 | IF ( inflow_s ) THEN |
---|
| 700 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 701 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 702 | ELSEIF ( inflow_n ) THEN |
---|
| 703 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 704 | ELSEIF ( inflow_l ) THEN |
---|
| 705 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 706 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 707 | ELSEIF ( inflow_r ) THEN |
---|
| 708 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 709 | ENDIF |
---|
[1] | 710 | |
---|
| 711 | ! |
---|
[1762] | 712 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 713 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
| 714 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
[2696] | 715 | IF ( nesting_mode /= 'vertical' .OR. forcing ) THEN |
---|
| 716 | IF ( nest_bound_s .OR. force_bound_s ) THEN |
---|
[1933] | 717 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 718 | ENDIF |
---|
[2696] | 719 | IF ( nest_bound_l .OR. force_bound_l ) THEN |
---|
[1933] | 720 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 721 | ENDIF |
---|
[1762] | 722 | ENDIF |
---|
| 723 | |
---|
| 724 | ! |
---|
[1409] | 725 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 726 | IF ( outflow_s ) THEN |
---|
| 727 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 728 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[2696] | 729 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
[1960] | 730 | IF ( humidity ) THEN |
---|
[1409] | 731 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[2292] | 732 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 733 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 734 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 735 | ENDIF |
---|
[1822] | 736 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 737 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 738 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 739 | ENDIF |
---|
[1409] | 740 | ENDIF |
---|
[1960] | 741 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[1409] | 742 | ELSEIF ( outflow_n ) THEN |
---|
| 743 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[2696] | 744 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 745 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
[1960] | 746 | IF ( humidity ) THEN |
---|
[1409] | 747 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[2292] | 748 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 749 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 750 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 751 | ENDIF |
---|
[1822] | 752 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 753 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 754 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 755 | ENDIF |
---|
[1409] | 756 | ENDIF |
---|
[1960] | 757 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[1409] | 758 | ELSEIF ( outflow_l ) THEN |
---|
| 759 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[2696] | 760 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 761 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
[1960] | 762 | IF ( humidity ) THEN |
---|
[1409] | 763 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[2292] | 764 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 765 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 766 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 767 | ENDIF |
---|
[1822] | 768 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 769 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 770 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 771 | ENDIF |
---|
[1409] | 772 | ENDIF |
---|
[1960] | 773 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[1409] | 774 | ELSEIF ( outflow_r ) THEN |
---|
| 775 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[2696] | 776 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 777 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
[1960] | 778 | IF ( humidity ) THEN |
---|
[1409] | 779 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[2292] | 780 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 781 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 782 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 783 | ENDIF |
---|
[1822] | 784 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 785 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 786 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 787 | ENDIF |
---|
[1] | 788 | ENDIF |
---|
[1960] | 789 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 790 | ENDIF |
---|
| 791 | |
---|
| 792 | ! |
---|
[2696] | 793 | !-- Lateral boundary conditions for chemical species |
---|
| 794 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 795 | |
---|
| 796 | ! |
---|
[1159] | 797 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 798 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 799 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 800 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 801 | IF ( outflow_s ) THEN |
---|
[75] | 802 | |
---|
[1159] | 803 | IF ( use_cmax ) THEN |
---|
| 804 | u_p(:,-1,:) = u(:,0,:) |
---|
| 805 | v_p(:,0,:) = v(:,1,:) |
---|
| 806 | w_p(:,-1,:) = w(:,0,:) |
---|
| 807 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 808 | |
---|
[978] | 809 | c_max = dy / dt_3d |
---|
[75] | 810 | |
---|
[1353] | 811 | c_u_m_l = 0.0_wp |
---|
| 812 | c_v_m_l = 0.0_wp |
---|
| 813 | c_w_m_l = 0.0_wp |
---|
[978] | 814 | |
---|
[1353] | 815 | c_u_m = 0.0_wp |
---|
| 816 | c_v_m = 0.0_wp |
---|
| 817 | c_w_m = 0.0_wp |
---|
[978] | 818 | |
---|
[75] | 819 | ! |
---|
[996] | 820 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 821 | !-- average along the outflow boundary. |
---|
| 822 | DO k = nzb+1, nzt+1 |
---|
| 823 | DO i = nxl, nxr |
---|
[75] | 824 | |
---|
[106] | 825 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 826 | |
---|
[1353] | 827 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 828 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 829 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 830 | c_u(k,i) = 0.0_wp |
---|
[106] | 831 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 832 | c_u(k,i) = c_max |
---|
| 833 | ENDIF |
---|
| 834 | ELSE |
---|
| 835 | c_u(k,i) = c_max |
---|
[75] | 836 | ENDIF |
---|
| 837 | |
---|
[106] | 838 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 839 | |
---|
[1353] | 840 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 841 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 842 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 843 | c_v(k,i) = 0.0_wp |
---|
[106] | 844 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 845 | c_v(k,i) = c_max |
---|
| 846 | ENDIF |
---|
| 847 | ELSE |
---|
| 848 | c_v(k,i) = c_max |
---|
[75] | 849 | ENDIF |
---|
| 850 | |
---|
[106] | 851 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 852 | |
---|
[1353] | 853 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 854 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 855 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 856 | c_w(k,i) = 0.0_wp |
---|
[106] | 857 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 858 | c_w(k,i) = c_max |
---|
| 859 | ENDIF |
---|
| 860 | ELSE |
---|
| 861 | c_w(k,i) = c_max |
---|
[75] | 862 | ENDIF |
---|
[106] | 863 | |
---|
[978] | 864 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 865 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 866 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 867 | |
---|
[978] | 868 | ENDDO |
---|
| 869 | ENDDO |
---|
[75] | 870 | |
---|
[978] | 871 | #if defined( __parallel ) |
---|
| 872 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 873 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 874 | MPI_SUM, comm1dx, ierr ) |
---|
| 875 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 876 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 877 | MPI_SUM, comm1dx, ierr ) |
---|
| 878 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 879 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 880 | MPI_SUM, comm1dx, ierr ) |
---|
| 881 | #else |
---|
| 882 | c_u_m = c_u_m_l |
---|
| 883 | c_v_m = c_v_m_l |
---|
| 884 | c_w_m = c_w_m_l |
---|
| 885 | #endif |
---|
| 886 | |
---|
| 887 | c_u_m = c_u_m / (nx+1) |
---|
| 888 | c_v_m = c_v_m / (nx+1) |
---|
| 889 | c_w_m = c_w_m / (nx+1) |
---|
| 890 | |
---|
[75] | 891 | ! |
---|
[978] | 892 | !-- Save old timelevels for the next timestep |
---|
| 893 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 894 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 895 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 896 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 897 | ENDIF |
---|
| 898 | |
---|
| 899 | ! |
---|
| 900 | !-- Calculate the new velocities |
---|
[996] | 901 | DO k = nzb+1, nzt+1 |
---|
| 902 | DO i = nxlg, nxrg |
---|
[978] | 903 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 904 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 905 | |
---|
[978] | 906 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 907 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 908 | |
---|
[978] | 909 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 910 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 911 | ENDDO |
---|
[75] | 912 | ENDDO |
---|
| 913 | |
---|
| 914 | ! |
---|
[978] | 915 | !-- Bottom boundary at the outflow |
---|
| 916 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 917 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 918 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 919 | ELSE |
---|
| 920 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 921 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 922 | ENDIF |
---|
[1353] | 923 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 924 | |
---|
[75] | 925 | ! |
---|
[978] | 926 | !-- Top boundary at the outflow |
---|
| 927 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 928 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 929 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 930 | ELSE |
---|
[1742] | 931 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 932 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 933 | ENDIF |
---|
[1353] | 934 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 935 | |
---|
[75] | 936 | ENDIF |
---|
[73] | 937 | |
---|
[75] | 938 | ENDIF |
---|
[73] | 939 | |
---|
[106] | 940 | IF ( outflow_n ) THEN |
---|
[73] | 941 | |
---|
[1159] | 942 | IF ( use_cmax ) THEN |
---|
| 943 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 944 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 945 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 946 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 947 | |
---|
[978] | 948 | c_max = dy / dt_3d |
---|
[75] | 949 | |
---|
[1353] | 950 | c_u_m_l = 0.0_wp |
---|
| 951 | c_v_m_l = 0.0_wp |
---|
| 952 | c_w_m_l = 0.0_wp |
---|
[978] | 953 | |
---|
[1353] | 954 | c_u_m = 0.0_wp |
---|
| 955 | c_v_m = 0.0_wp |
---|
| 956 | c_w_m = 0.0_wp |
---|
[978] | 957 | |
---|
[1] | 958 | ! |
---|
[996] | 959 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 960 | !-- average along the outflow boundary. |
---|
| 961 | DO k = nzb+1, nzt+1 |
---|
| 962 | DO i = nxl, nxr |
---|
[73] | 963 | |
---|
[106] | 964 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 965 | |
---|
[1353] | 966 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 967 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 968 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 969 | c_u(k,i) = 0.0_wp |
---|
[106] | 970 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 971 | c_u(k,i) = c_max |
---|
| 972 | ENDIF |
---|
| 973 | ELSE |
---|
| 974 | c_u(k,i) = c_max |
---|
[73] | 975 | ENDIF |
---|
| 976 | |
---|
[106] | 977 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 978 | |
---|
[1353] | 979 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 980 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 981 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 982 | c_v(k,i) = 0.0_wp |
---|
[106] | 983 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 984 | c_v(k,i) = c_max |
---|
| 985 | ENDIF |
---|
| 986 | ELSE |
---|
| 987 | c_v(k,i) = c_max |
---|
[73] | 988 | ENDIF |
---|
| 989 | |
---|
[106] | 990 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 991 | |
---|
[1353] | 992 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 993 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 994 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 995 | c_w(k,i) = 0.0_wp |
---|
[106] | 996 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 997 | c_w(k,i) = c_max |
---|
| 998 | ENDIF |
---|
| 999 | ELSE |
---|
| 1000 | c_w(k,i) = c_max |
---|
[73] | 1001 | ENDIF |
---|
[106] | 1002 | |
---|
[978] | 1003 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 1004 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 1005 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 1006 | |
---|
[978] | 1007 | ENDDO |
---|
| 1008 | ENDDO |
---|
[73] | 1009 | |
---|
[978] | 1010 | #if defined( __parallel ) |
---|
| 1011 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1012 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1013 | MPI_SUM, comm1dx, ierr ) |
---|
| 1014 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1015 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1016 | MPI_SUM, comm1dx, ierr ) |
---|
| 1017 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 1018 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1019 | MPI_SUM, comm1dx, ierr ) |
---|
| 1020 | #else |
---|
| 1021 | c_u_m = c_u_m_l |
---|
| 1022 | c_v_m = c_v_m_l |
---|
| 1023 | c_w_m = c_w_m_l |
---|
| 1024 | #endif |
---|
| 1025 | |
---|
| 1026 | c_u_m = c_u_m / (nx+1) |
---|
| 1027 | c_v_m = c_v_m / (nx+1) |
---|
| 1028 | c_w_m = c_w_m / (nx+1) |
---|
| 1029 | |
---|
[73] | 1030 | ! |
---|
[978] | 1031 | !-- Save old timelevels for the next timestep |
---|
| 1032 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1033 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1034 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1035 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1036 | ENDIF |
---|
[73] | 1037 | |
---|
[978] | 1038 | ! |
---|
| 1039 | !-- Calculate the new velocities |
---|
[996] | 1040 | DO k = nzb+1, nzt+1 |
---|
| 1041 | DO i = nxlg, nxrg |
---|
[978] | 1042 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1043 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 1044 | |
---|
[978] | 1045 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1046 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 1047 | |
---|
[978] | 1048 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1049 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 1050 | ENDDO |
---|
[1] | 1051 | ENDDO |
---|
| 1052 | |
---|
| 1053 | ! |
---|
[978] | 1054 | !-- Bottom boundary at the outflow |
---|
| 1055 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1056 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 1057 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 1058 | ELSE |
---|
| 1059 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 1060 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 1061 | ENDIF |
---|
[1353] | 1062 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 1063 | |
---|
| 1064 | ! |
---|
[978] | 1065 | !-- Top boundary at the outflow |
---|
| 1066 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1067 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 1068 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 1069 | ELSE |
---|
| 1070 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 1071 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 1072 | ENDIF |
---|
[1353] | 1073 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 1074 | |
---|
[1] | 1075 | ENDIF |
---|
| 1076 | |
---|
[75] | 1077 | ENDIF |
---|
| 1078 | |
---|
[106] | 1079 | IF ( outflow_l ) THEN |
---|
[75] | 1080 | |
---|
[1159] | 1081 | IF ( use_cmax ) THEN |
---|
[1717] | 1082 | u_p(:,:,0) = u(:,:,1) |
---|
| 1083 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 1084 | w_p(:,:,-1) = w(:,:,0) |
---|
| 1085 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1086 | |
---|
[978] | 1087 | c_max = dx / dt_3d |
---|
[75] | 1088 | |
---|
[1353] | 1089 | c_u_m_l = 0.0_wp |
---|
| 1090 | c_v_m_l = 0.0_wp |
---|
| 1091 | c_w_m_l = 0.0_wp |
---|
[978] | 1092 | |
---|
[1353] | 1093 | c_u_m = 0.0_wp |
---|
| 1094 | c_v_m = 0.0_wp |
---|
| 1095 | c_w_m = 0.0_wp |
---|
[978] | 1096 | |
---|
[1] | 1097 | ! |
---|
[996] | 1098 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1099 | !-- average along the outflow boundary. |
---|
| 1100 | DO k = nzb+1, nzt+1 |
---|
| 1101 | DO j = nys, nyn |
---|
[75] | 1102 | |
---|
[106] | 1103 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 1104 | |
---|
[1353] | 1105 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1106 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 1107 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1108 | c_u(k,j) = 0.0_wp |
---|
[107] | 1109 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1110 | c_u(k,j) = c_max |
---|
[106] | 1111 | ENDIF |
---|
| 1112 | ELSE |
---|
[107] | 1113 | c_u(k,j) = c_max |
---|
[75] | 1114 | ENDIF |
---|
| 1115 | |
---|
[106] | 1116 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 1117 | |
---|
[1353] | 1118 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1119 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1120 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1121 | c_v(k,j) = 0.0_wp |
---|
[106] | 1122 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1123 | c_v(k,j) = c_max |
---|
| 1124 | ENDIF |
---|
| 1125 | ELSE |
---|
| 1126 | c_v(k,j) = c_max |
---|
[75] | 1127 | ENDIF |
---|
| 1128 | |
---|
[106] | 1129 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 1130 | |
---|
[1353] | 1131 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1132 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 1133 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1134 | c_w(k,j) = 0.0_wp |
---|
[106] | 1135 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1136 | c_w(k,j) = c_max |
---|
| 1137 | ENDIF |
---|
| 1138 | ELSE |
---|
| 1139 | c_w(k,j) = c_max |
---|
[75] | 1140 | ENDIF |
---|
[106] | 1141 | |
---|
[978] | 1142 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1143 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1144 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1145 | |
---|
[978] | 1146 | ENDDO |
---|
| 1147 | ENDDO |
---|
[75] | 1148 | |
---|
[978] | 1149 | #if defined( __parallel ) |
---|
| 1150 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1151 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1152 | MPI_SUM, comm1dy, ierr ) |
---|
| 1153 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1154 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1155 | MPI_SUM, comm1dy, ierr ) |
---|
| 1156 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1157 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1158 | MPI_SUM, comm1dy, ierr ) |
---|
| 1159 | #else |
---|
| 1160 | c_u_m = c_u_m_l |
---|
| 1161 | c_v_m = c_v_m_l |
---|
| 1162 | c_w_m = c_w_m_l |
---|
| 1163 | #endif |
---|
| 1164 | |
---|
| 1165 | c_u_m = c_u_m / (ny+1) |
---|
| 1166 | c_v_m = c_v_m / (ny+1) |
---|
| 1167 | c_w_m = c_w_m / (ny+1) |
---|
| 1168 | |
---|
[73] | 1169 | ! |
---|
[978] | 1170 | !-- Save old timelevels for the next timestep |
---|
| 1171 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1172 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1173 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1174 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1175 | ENDIF |
---|
| 1176 | |
---|
| 1177 | ! |
---|
| 1178 | !-- Calculate the new velocities |
---|
[996] | 1179 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1180 | DO j = nysg, nyng |
---|
[978] | 1181 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 1182 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 1183 | |
---|
[978] | 1184 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 1185 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 1186 | |
---|
[978] | 1187 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1188 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1189 | ENDDO |
---|
[75] | 1190 | ENDDO |
---|
| 1191 | |
---|
| 1192 | ! |
---|
[978] | 1193 | !-- Bottom boundary at the outflow |
---|
| 1194 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1195 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1196 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1197 | ELSE |
---|
| 1198 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1199 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1200 | ENDIF |
---|
[1353] | 1201 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1202 | |
---|
[75] | 1203 | ! |
---|
[978] | 1204 | !-- Top boundary at the outflow |
---|
| 1205 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1206 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1207 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1208 | ELSE |
---|
[1764] | 1209 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1210 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1211 | ENDIF |
---|
[1353] | 1212 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1213 | |
---|
[75] | 1214 | ENDIF |
---|
[73] | 1215 | |
---|
[75] | 1216 | ENDIF |
---|
[73] | 1217 | |
---|
[106] | 1218 | IF ( outflow_r ) THEN |
---|
[73] | 1219 | |
---|
[1159] | 1220 | IF ( use_cmax ) THEN |
---|
| 1221 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1222 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1223 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1224 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1225 | |
---|
[978] | 1226 | c_max = dx / dt_3d |
---|
[75] | 1227 | |
---|
[1353] | 1228 | c_u_m_l = 0.0_wp |
---|
| 1229 | c_v_m_l = 0.0_wp |
---|
| 1230 | c_w_m_l = 0.0_wp |
---|
[978] | 1231 | |
---|
[1353] | 1232 | c_u_m = 0.0_wp |
---|
| 1233 | c_v_m = 0.0_wp |
---|
| 1234 | c_w_m = 0.0_wp |
---|
[978] | 1235 | |
---|
[1] | 1236 | ! |
---|
[996] | 1237 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1238 | !-- average along the outflow boundary. |
---|
| 1239 | DO k = nzb+1, nzt+1 |
---|
| 1240 | DO j = nys, nyn |
---|
[73] | 1241 | |
---|
[106] | 1242 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1243 | |
---|
[1353] | 1244 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1245 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1246 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1247 | c_u(k,j) = 0.0_wp |
---|
[106] | 1248 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1249 | c_u(k,j) = c_max |
---|
| 1250 | ENDIF |
---|
| 1251 | ELSE |
---|
| 1252 | c_u(k,j) = c_max |
---|
[73] | 1253 | ENDIF |
---|
| 1254 | |
---|
[106] | 1255 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1256 | |
---|
[1353] | 1257 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1258 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1259 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1260 | c_v(k,j) = 0.0_wp |
---|
[106] | 1261 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1262 | c_v(k,j) = c_max |
---|
| 1263 | ENDIF |
---|
| 1264 | ELSE |
---|
| 1265 | c_v(k,j) = c_max |
---|
[73] | 1266 | ENDIF |
---|
| 1267 | |
---|
[106] | 1268 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1269 | |
---|
[1353] | 1270 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1271 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1272 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1273 | c_w(k,j) = 0.0_wp |
---|
[106] | 1274 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1275 | c_w(k,j) = c_max |
---|
| 1276 | ENDIF |
---|
| 1277 | ELSE |
---|
| 1278 | c_w(k,j) = c_max |
---|
[73] | 1279 | ENDIF |
---|
[106] | 1280 | |
---|
[978] | 1281 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1282 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1283 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1284 | |
---|
[978] | 1285 | ENDDO |
---|
| 1286 | ENDDO |
---|
[73] | 1287 | |
---|
[978] | 1288 | #if defined( __parallel ) |
---|
| 1289 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1290 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1291 | MPI_SUM, comm1dy, ierr ) |
---|
| 1292 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1293 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1294 | MPI_SUM, comm1dy, ierr ) |
---|
| 1295 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1296 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1297 | MPI_SUM, comm1dy, ierr ) |
---|
| 1298 | #else |
---|
| 1299 | c_u_m = c_u_m_l |
---|
| 1300 | c_v_m = c_v_m_l |
---|
| 1301 | c_w_m = c_w_m_l |
---|
| 1302 | #endif |
---|
| 1303 | |
---|
| 1304 | c_u_m = c_u_m / (ny+1) |
---|
| 1305 | c_v_m = c_v_m / (ny+1) |
---|
| 1306 | c_w_m = c_w_m / (ny+1) |
---|
| 1307 | |
---|
[73] | 1308 | ! |
---|
[978] | 1309 | !-- Save old timelevels for the next timestep |
---|
| 1310 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1311 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1312 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1313 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1314 | ENDIF |
---|
[73] | 1315 | |
---|
[978] | 1316 | ! |
---|
| 1317 | !-- Calculate the new velocities |
---|
[996] | 1318 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1319 | DO j = nysg, nyng |
---|
[978] | 1320 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1321 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1322 | |
---|
[978] | 1323 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1324 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1325 | |
---|
[978] | 1326 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1327 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1328 | ENDDO |
---|
[73] | 1329 | ENDDO |
---|
| 1330 | |
---|
| 1331 | ! |
---|
[978] | 1332 | !-- Bottom boundary at the outflow |
---|
| 1333 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1334 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1335 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1336 | ELSE |
---|
| 1337 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1338 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1339 | ENDIF |
---|
[1353] | 1340 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1341 | |
---|
| 1342 | ! |
---|
[978] | 1343 | !-- Top boundary at the outflow |
---|
| 1344 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1345 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1346 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1347 | ELSE |
---|
| 1348 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1349 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1350 | ENDIF |
---|
[1742] | 1351 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1352 | |
---|
[1] | 1353 | ENDIF |
---|
| 1354 | |
---|
| 1355 | ENDIF |
---|
| 1356 | |
---|
| 1357 | END SUBROUTINE boundary_conds |
---|