[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[2233] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 2938 2018-03-27 15:52:42Z gronemeier $ |
---|
[2938] | 27 | ! Set boundary condition for TKE and TKE dissipation rate in case of nesting |
---|
| 28 | ! and if parent model operates in RANS mode but child model in LES mode. |
---|
| 29 | ! mode |
---|
| 30 | ! |
---|
| 31 | ! 2793 2018-02-07 10:54:33Z suehring |
---|
[2766] | 32 | ! Removed preprocessor directive __chem |
---|
| 33 | ! |
---|
| 34 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 35 | ! Corrected "Former revisions" section |
---|
| 36 | ! |
---|
| 37 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 38 | ! Change in file header (GPL part) |
---|
[2696] | 39 | ! Adjust boundary conditions for e and diss in case of TKE-e closure (TG) |
---|
| 40 | ! Implementation of chemistry module (FK) |
---|
| 41 | ! |
---|
| 42 | ! 2569 2017-10-20 11:54:42Z kanani |
---|
[2569] | 43 | ! Removed redundant code for ibc_s_b=1 and ibc_q_b=1 |
---|
| 44 | ! |
---|
| 45 | ! 2365 2017-08-21 14:59:59Z kanani |
---|
[2365] | 46 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 47 | ! on fine grid (SadiqHuq) |
---|
| 48 | ! |
---|
| 49 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 50 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 51 | ! |
---|
| 52 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 53 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 54 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 55 | ! and cloud water content (qc). |
---|
| 56 | ! |
---|
| 57 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 58 | ! |
---|
[2233] | 59 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 60 | ! Set boundary conditions on topography top using flag method. |
---|
| 61 | ! |
---|
[2119] | 62 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 63 | ! OpenACC directives removed |
---|
| 64 | ! |
---|
[2001] | 65 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 66 | ! Forced header and separation lines into 80 columns |
---|
| 67 | ! |
---|
[1993] | 68 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 69 | ! Adjustments for top boundary condition for passive scalar |
---|
| 70 | ! |
---|
[1961] | 71 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 72 | ! Treat humidity and passive scalar separately |
---|
| 73 | ! |
---|
[1933] | 74 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 75 | ! Initial version of purely vertical nesting introduced. |
---|
| 76 | ! |
---|
[1823] | 77 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 78 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 79 | ! |
---|
[1765] | 80 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 81 | ! index bug for u_p at left outflow removed |
---|
| 82 | ! |
---|
[1763] | 83 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 84 | ! Introduction of nested domain feature |
---|
| 85 | ! |
---|
[1744] | 86 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 87 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 88 | ! |
---|
[1718] | 89 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 90 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 91 | ! |
---|
[1683] | 92 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 93 | ! Code annotations made doxygen readable |
---|
| 94 | ! |
---|
[1717] | 95 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 96 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 97 | ! top |
---|
| 98 | ! |
---|
[1410] | 99 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 100 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 101 | ! is used. |
---|
| 102 | ! |
---|
[1399] | 103 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 104 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 105 | ! for large_scale_forcing |
---|
| 106 | ! |
---|
[1381] | 107 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 108 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 109 | ! |
---|
[1362] | 110 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 111 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 112 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 113 | ! |
---|
[1354] | 114 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 115 | ! REAL constants provided with KIND-attribute |
---|
| 116 | ! |
---|
[1321] | 117 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 118 | ! ONLY-attribute added to USE-statements, |
---|
| 119 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 120 | ! kinds are defined in new module kinds, |
---|
| 121 | ! revision history before 2012 removed, |
---|
| 122 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 123 | ! all variable declaration statements |
---|
[1160] | 124 | ! |
---|
[1258] | 125 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 126 | ! loop independent clauses added |
---|
| 127 | ! |
---|
[1242] | 128 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 129 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 130 | ! |
---|
[1160] | 131 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 132 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 133 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 134 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 135 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 136 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 137 | ! u_p, v_p, w_p |
---|
[1116] | 138 | ! |
---|
| 139 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 140 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 141 | ! boundary-conditions |
---|
| 142 | ! |
---|
[1114] | 143 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 144 | ! GPU-porting |
---|
| 145 | ! dummy argument "range" removed |
---|
| 146 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 147 | ! |
---|
[1054] | 148 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 149 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 150 | ! two-moment cloud scheme |
---|
| 151 | ! |
---|
[1037] | 152 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 153 | ! code put under GPL (PALM 3.9) |
---|
| 154 | ! |
---|
[997] | 155 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 156 | ! little reformatting |
---|
| 157 | ! |
---|
[979] | 158 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 159 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 160 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 161 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 162 | ! velocity. |
---|
| 163 | ! |
---|
[876] | 164 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 165 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 166 | ! |
---|
[1] | 167 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 168 | ! Initial revision |
---|
| 169 | ! |
---|
| 170 | ! |
---|
| 171 | ! Description: |
---|
| 172 | ! ------------ |
---|
[1682] | 173 | !> Boundary conditions for the prognostic quantities. |
---|
| 174 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 175 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 176 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 177 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 178 | !------------------------------------------------------------------------------! |
---|
[1682] | 179 | SUBROUTINE boundary_conds |
---|
| 180 | |
---|
[1] | 181 | |
---|
[1320] | 182 | USE arrays_3d, & |
---|
| 183 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[2696] | 184 | diss_p, dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, & |
---|
| 185 | s_p, sa, sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
[1320] | 186 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1960] | 187 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init |
---|
[2696] | 188 | |
---|
| 189 | USE chemistry_model_mod, & |
---|
| 190 | ONLY: chem_boundary_conds |
---|
| 191 | |
---|
[1320] | 192 | USE control_parameters, & |
---|
[2696] | 193 | ONLY: air_chemistry, bc_pt_t_val, bc_q_t_val, bc_s_t_val, & |
---|
| 194 | constant_diffusion, cloud_physics, coupling_mode, dt_3d, & |
---|
| 195 | force_bound_l, force_bound_s, forcing, humidity, & |
---|
[1960] | 196 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
| 197 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
[2320] | 198 | inflow_s, intermediate_timestep_count, & |
---|
[2292] | 199 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
[2938] | 200 | nest_bound_l, nest_bound_n, nest_bound_r, nest_bound_s, nudging,& |
---|
| 201 | ocean, outflow_l, outflow_n, outflow_r, outflow_s, & |
---|
| 202 | passive_scalar, rans_mode, rans_tke_e, tsc, use_cmax |
---|
[1320] | 203 | |
---|
| 204 | USE grid_variables, & |
---|
| 205 | ONLY: ddx, ddy, dx, dy |
---|
| 206 | |
---|
| 207 | USE indices, & |
---|
| 208 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
[2232] | 209 | nzb, nzt, wall_flags_0 |
---|
[1320] | 210 | |
---|
| 211 | USE kinds |
---|
| 212 | |
---|
[1] | 213 | USE pegrid |
---|
| 214 | |
---|
[1933] | 215 | USE pmc_interface, & |
---|
[2938] | 216 | ONLY : nesting_mode, rans_mode_parent |
---|
[1320] | 217 | |
---|
[2232] | 218 | USE surface_mod, & |
---|
| 219 | ONLY : bc_h |
---|
[1933] | 220 | |
---|
[1] | 221 | IMPLICIT NONE |
---|
| 222 | |
---|
[2232] | 223 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 224 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 225 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 226 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 227 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 228 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 229 | |
---|
[1682] | 230 | REAL(wp) :: c_max !< |
---|
| 231 | REAL(wp) :: denom !< |
---|
[1] | 232 | |
---|
[73] | 233 | |
---|
[1] | 234 | ! |
---|
[1113] | 235 | !-- Bottom boundary |
---|
| 236 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 237 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 238 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 239 | ENDIF |
---|
[2232] | 240 | ! |
---|
| 241 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 242 | !-- of downward-facing surfaces. |
---|
| 243 | DO l = 0, 1 |
---|
| 244 | ! |
---|
| 245 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 246 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 247 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 248 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 249 | DO m = 1, bc_h(l)%ns |
---|
| 250 | i = bc_h(l)%i(m) |
---|
| 251 | j = bc_h(l)%j(m) |
---|
| 252 | k = bc_h(l)%k(m) |
---|
| 253 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 254 | ENDDO |
---|
| 255 | ENDDO |
---|
| 256 | |
---|
| 257 | ! |
---|
[1762] | 258 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 259 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 260 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 261 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1762] | 262 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 263 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 264 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 265 | ENDIF |
---|
| 266 | |
---|
[2365] | 267 | ! |
---|
| 268 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
| 269 | IF ( .NOT. nest_domain .AND. & |
---|
| 270 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
| 271 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[1762] | 272 | ENDIF |
---|
| 273 | |
---|
[1113] | 274 | ! |
---|
[2232] | 275 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 276 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 277 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 278 | !-- Dirichlet |
---|
[1113] | 279 | IF ( ibc_pt_b == 0 ) THEN |
---|
[2232] | 280 | DO l = 0, 1 |
---|
| 281 | ! |
---|
| 282 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 283 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 284 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 285 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 286 | DO m = 1, bc_h(l)%ns |
---|
| 287 | i = bc_h(l)%i(m) |
---|
| 288 | j = bc_h(l)%j(m) |
---|
| 289 | k = bc_h(l)%k(m) |
---|
| 290 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
[1] | 291 | ENDDO |
---|
| 292 | ENDDO |
---|
[2232] | 293 | ! |
---|
| 294 | !-- Neumann, zero-gradient |
---|
[1113] | 295 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 296 | DO l = 0, 1 |
---|
| 297 | ! |
---|
| 298 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 299 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 300 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 301 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 302 | DO m = 1, bc_h(l)%ns |
---|
| 303 | i = bc_h(l)%i(m) |
---|
| 304 | j = bc_h(l)%j(m) |
---|
| 305 | k = bc_h(l)%k(m) |
---|
| 306 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
[1113] | 307 | ENDDO |
---|
| 308 | ENDDO |
---|
| 309 | ENDIF |
---|
[1] | 310 | |
---|
| 311 | ! |
---|
[1113] | 312 | !-- Temperature at top boundary |
---|
| 313 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 314 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 315 | ! |
---|
| 316 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 317 | !-- read in from NUDGING-DATA |
---|
| 318 | IF ( nudging ) THEN |
---|
| 319 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 320 | ENDIF |
---|
[1113] | 321 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 322 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 323 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1992] | 324 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1113] | 325 | ENDIF |
---|
[1] | 326 | |
---|
| 327 | ! |
---|
[2938] | 328 | !-- Boundary conditions for TKE. |
---|
| 329 | !-- Generally Neumann conditions with de/dz=0 are assumed. |
---|
[1113] | 330 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 331 | |
---|
[2696] | 332 | IF ( .NOT. rans_tke_e ) THEN |
---|
| 333 | DO l = 0, 1 |
---|
[2232] | 334 | ! |
---|
[2696] | 335 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 336 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 337 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 338 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 339 | DO m = 1, bc_h(l)%ns |
---|
| 340 | i = bc_h(l)%i(m) |
---|
| 341 | j = bc_h(l)%j(m) |
---|
| 342 | k = bc_h(l)%k(m) |
---|
| 343 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
| 344 | ENDDO |
---|
[73] | 345 | ENDDO |
---|
[2696] | 346 | ENDIF |
---|
[2232] | 347 | |
---|
[1762] | 348 | IF ( .NOT. nest_domain ) THEN |
---|
| 349 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
[2938] | 350 | ! |
---|
| 351 | !-- Nesting case: if parent operates in RANS mode and child in LES mode, |
---|
| 352 | !-- no TKE is transfered. This case, set Neumann conditions at lateral and |
---|
| 353 | !-- top child boundaries. |
---|
| 354 | !-- If not ( both either in RANS or in LES mode ), TKE boundary condition |
---|
| 355 | !-- is treated in the nesting. |
---|
| 356 | ELSE |
---|
| 357 | |
---|
| 358 | IF ( rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
| 359 | |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 363 | IF ( nest_bound_l ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 364 | IF ( nest_bound_r ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 365 | IF ( nest_bound_s ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 366 | IF ( nest_bound_n ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 367 | |
---|
| 368 | ENDIF |
---|
[1762] | 369 | ENDIF |
---|
[1113] | 370 | ENDIF |
---|
| 371 | |
---|
| 372 | ! |
---|
[2938] | 373 | !-- Boundary conditions for TKE dissipation rate. |
---|
[2696] | 374 | IF ( rans_tke_e .AND. .NOT. nest_domain ) THEN |
---|
| 375 | diss_p(nzt+1,:,:) = diss_p(nzt,:,:) |
---|
| 376 | ENDIF |
---|
| 377 | |
---|
| 378 | ! |
---|
[1113] | 379 | !-- Boundary conditions for salinity |
---|
| 380 | IF ( ocean ) THEN |
---|
| 381 | ! |
---|
| 382 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 383 | !-- given. |
---|
| 384 | DO l = 0, 1 |
---|
| 385 | ! |
---|
| 386 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 387 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 388 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 389 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 390 | DO m = 1, bc_h(l)%ns |
---|
| 391 | i = bc_h(l)%i(m) |
---|
| 392 | j = bc_h(l)%j(m) |
---|
| 393 | k = bc_h(l)%k(m) |
---|
| 394 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 395 | ENDDO |
---|
[1113] | 396 | ENDDO |
---|
[1] | 397 | ! |
---|
[1113] | 398 | !-- Top boundary: Dirichlet or Neumann |
---|
| 399 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 400 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 401 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 402 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 403 | ENDIF |
---|
| 404 | |
---|
[1113] | 405 | ENDIF |
---|
| 406 | |
---|
[1] | 407 | ! |
---|
[1960] | 408 | !-- Boundary conditions for total water content, |
---|
[1113] | 409 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 410 | IF ( humidity ) THEN |
---|
[1113] | 411 | ! |
---|
| 412 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 413 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 414 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 415 | !-- q_p at k-1 |
---|
[1113] | 416 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 417 | |
---|
| 418 | DO l = 0, 1 |
---|
| 419 | ! |
---|
| 420 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 421 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 422 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 423 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 424 | DO m = 1, bc_h(l)%ns |
---|
| 425 | i = bc_h(l)%i(m) |
---|
| 426 | j = bc_h(l)%j(m) |
---|
| 427 | k = bc_h(l)%k(m) |
---|
| 428 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 429 | ENDDO |
---|
| 430 | ENDDO |
---|
[2232] | 431 | |
---|
[1113] | 432 | ELSE |
---|
[2232] | 433 | |
---|
| 434 | DO l = 0, 1 |
---|
| 435 | ! |
---|
| 436 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 437 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 438 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 439 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 440 | DO m = 1, bc_h(l)%ns |
---|
| 441 | i = bc_h(l)%i(m) |
---|
| 442 | j = bc_h(l)%j(m) |
---|
| 443 | k = bc_h(l)%k(m) |
---|
| 444 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 445 | ENDDO |
---|
| 446 | ENDDO |
---|
[1113] | 447 | ENDIF |
---|
[95] | 448 | ! |
---|
[1113] | 449 | !-- Top boundary |
---|
[1462] | 450 | IF ( ibc_q_t == 0 ) THEN |
---|
| 451 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 452 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 453 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 454 | ENDIF |
---|
[95] | 455 | |
---|
[2292] | 456 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 457 | ! |
---|
| 458 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 459 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 460 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 461 | !-- qr_p and nr_p at k-1 |
---|
| 462 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 463 | DO m = 1, bc_h(0)%ns |
---|
| 464 | i = bc_h(0)%i(m) |
---|
| 465 | j = bc_h(0)%j(m) |
---|
| 466 | k = bc_h(0)%k(m) |
---|
| 467 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 468 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 469 | ENDDO |
---|
| 470 | ! |
---|
| 471 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 472 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 473 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 474 | |
---|
| 475 | ENDIF |
---|
| 476 | |
---|
[1822] | 477 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1113] | 478 | ! |
---|
[1361] | 479 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 480 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 481 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 482 | !-- qr_p and nr_p at k-1 |
---|
| 483 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 484 | DO m = 1, bc_h(0)%ns |
---|
| 485 | i = bc_h(0)%i(m) |
---|
| 486 | j = bc_h(0)%j(m) |
---|
| 487 | k = bc_h(0)%k(m) |
---|
| 488 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 489 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 490 | ENDDO |
---|
[1] | 491 | ! |
---|
[1361] | 492 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 493 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 494 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 495 | |
---|
[1] | 496 | ENDIF |
---|
[1409] | 497 | ENDIF |
---|
[1] | 498 | ! |
---|
[1960] | 499 | !-- Boundary conditions for scalar, |
---|
| 500 | !-- bottom and top boundary (see also temperature) |
---|
| 501 | IF ( passive_scalar ) THEN |
---|
| 502 | ! |
---|
| 503 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 504 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 505 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 506 | !-- s_p at k-1 |
---|
[1960] | 507 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 508 | |
---|
| 509 | DO l = 0, 1 |
---|
| 510 | ! |
---|
| 511 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 512 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 513 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 514 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 515 | DO m = 1, bc_h(l)%ns |
---|
| 516 | i = bc_h(l)%i(m) |
---|
| 517 | j = bc_h(l)%j(m) |
---|
| 518 | k = bc_h(l)%k(m) |
---|
| 519 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 520 | ENDDO |
---|
| 521 | ENDDO |
---|
[2232] | 522 | |
---|
[1960] | 523 | ELSE |
---|
[2232] | 524 | |
---|
| 525 | DO l = 0, 1 |
---|
| 526 | ! |
---|
| 527 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 528 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 529 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 530 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 531 | DO m = 1, bc_h(l)%ns |
---|
| 532 | i = bc_h(l)%i(m) |
---|
| 533 | j = bc_h(l)%j(m) |
---|
| 534 | k = bc_h(l)%k(m) |
---|
| 535 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | ENDIF |
---|
| 539 | ! |
---|
[1992] | 540 | !-- Top boundary condition |
---|
| 541 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 542 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 543 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 544 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 545 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 546 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 547 | ENDIF |
---|
| 548 | |
---|
| 549 | ENDIF |
---|
| 550 | ! |
---|
[2696] | 551 | !-- Top/bottom boundary conditions for chemical species |
---|
| 552 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_bottomtop' ) |
---|
| 553 | ! |
---|
[1762] | 554 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 555 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 556 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 557 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 558 | !-- have to be restored here. |
---|
[1409] | 559 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 560 | IF ( inflow_s ) THEN |
---|
| 561 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 562 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 563 | ELSEIF ( inflow_n ) THEN |
---|
| 564 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 565 | ELSEIF ( inflow_l ) THEN |
---|
| 566 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 567 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 568 | ELSEIF ( inflow_r ) THEN |
---|
| 569 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 570 | ENDIF |
---|
[1] | 571 | |
---|
| 572 | ! |
---|
[1762] | 573 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 574 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
| 575 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
[2696] | 576 | IF ( nesting_mode /= 'vertical' .OR. forcing ) THEN |
---|
| 577 | IF ( nest_bound_s .OR. force_bound_s ) THEN |
---|
[1933] | 578 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 579 | ENDIF |
---|
[2696] | 580 | IF ( nest_bound_l .OR. force_bound_l ) THEN |
---|
[1933] | 581 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 582 | ENDIF |
---|
[1762] | 583 | ENDIF |
---|
| 584 | |
---|
| 585 | ! |
---|
[1409] | 586 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 587 | IF ( outflow_s ) THEN |
---|
| 588 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 589 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[2696] | 590 | IF ( rans_tke_e ) diss_p(:,nys-1,:) = diss_p(:,nys,:) |
---|
[1960] | 591 | IF ( humidity ) THEN |
---|
[1409] | 592 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[2292] | 593 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 594 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 595 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 596 | ENDIF |
---|
[1822] | 597 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 598 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 599 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 600 | ENDIF |
---|
[1409] | 601 | ENDIF |
---|
[1960] | 602 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[1409] | 603 | ELSEIF ( outflow_n ) THEN |
---|
| 604 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
[2696] | 605 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 606 | IF ( rans_tke_e ) diss_p(:,nyn+1,:) = diss_p(:,nyn,:) |
---|
[1960] | 607 | IF ( humidity ) THEN |
---|
[1409] | 608 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[2292] | 609 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 610 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 611 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 612 | ENDIF |
---|
[1822] | 613 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 614 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 615 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 616 | ENDIF |
---|
[1409] | 617 | ENDIF |
---|
[1960] | 618 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[1409] | 619 | ELSEIF ( outflow_l ) THEN |
---|
| 620 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
[2696] | 621 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 622 | IF ( rans_tke_e ) diss_p(:,:,nxl-1) = diss_p(:,:,nxl) |
---|
[1960] | 623 | IF ( humidity ) THEN |
---|
[1409] | 624 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[2292] | 625 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 626 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 627 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 628 | ENDIF |
---|
[1822] | 629 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 630 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 631 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 632 | ENDIF |
---|
[1409] | 633 | ENDIF |
---|
[1960] | 634 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[1409] | 635 | ELSEIF ( outflow_r ) THEN |
---|
| 636 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
[2696] | 637 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 638 | IF ( rans_tke_e ) diss_p(:,:,nxr+1) = diss_p(:,:,nxr) |
---|
[1960] | 639 | IF ( humidity ) THEN |
---|
[1409] | 640 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[2292] | 641 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 642 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 643 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 644 | ENDIF |
---|
[1822] | 645 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 646 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 647 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 648 | ENDIF |
---|
[1] | 649 | ENDIF |
---|
[1960] | 650 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 651 | ENDIF |
---|
| 652 | |
---|
| 653 | ! |
---|
[2696] | 654 | !-- Lateral boundary conditions for chemical species |
---|
| 655 | IF ( air_chemistry ) CALL chem_boundary_conds( 'set_bc_lateral' ) |
---|
| 656 | |
---|
| 657 | ! |
---|
[1159] | 658 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 659 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 660 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 661 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 662 | IF ( outflow_s ) THEN |
---|
[75] | 663 | |
---|
[1159] | 664 | IF ( use_cmax ) THEN |
---|
| 665 | u_p(:,-1,:) = u(:,0,:) |
---|
| 666 | v_p(:,0,:) = v(:,1,:) |
---|
| 667 | w_p(:,-1,:) = w(:,0,:) |
---|
| 668 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 669 | |
---|
[978] | 670 | c_max = dy / dt_3d |
---|
[75] | 671 | |
---|
[1353] | 672 | c_u_m_l = 0.0_wp |
---|
| 673 | c_v_m_l = 0.0_wp |
---|
| 674 | c_w_m_l = 0.0_wp |
---|
[978] | 675 | |
---|
[1353] | 676 | c_u_m = 0.0_wp |
---|
| 677 | c_v_m = 0.0_wp |
---|
| 678 | c_w_m = 0.0_wp |
---|
[978] | 679 | |
---|
[75] | 680 | ! |
---|
[996] | 681 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 682 | !-- average along the outflow boundary. |
---|
| 683 | DO k = nzb+1, nzt+1 |
---|
| 684 | DO i = nxl, nxr |
---|
[75] | 685 | |
---|
[106] | 686 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 687 | |
---|
[1353] | 688 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 689 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 690 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 691 | c_u(k,i) = 0.0_wp |
---|
[106] | 692 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 693 | c_u(k,i) = c_max |
---|
| 694 | ENDIF |
---|
| 695 | ELSE |
---|
| 696 | c_u(k,i) = c_max |
---|
[75] | 697 | ENDIF |
---|
| 698 | |
---|
[106] | 699 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 700 | |
---|
[1353] | 701 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 702 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 703 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 704 | c_v(k,i) = 0.0_wp |
---|
[106] | 705 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 706 | c_v(k,i) = c_max |
---|
| 707 | ENDIF |
---|
| 708 | ELSE |
---|
| 709 | c_v(k,i) = c_max |
---|
[75] | 710 | ENDIF |
---|
| 711 | |
---|
[106] | 712 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 713 | |
---|
[1353] | 714 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 715 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 716 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 717 | c_w(k,i) = 0.0_wp |
---|
[106] | 718 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 719 | c_w(k,i) = c_max |
---|
| 720 | ENDIF |
---|
| 721 | ELSE |
---|
| 722 | c_w(k,i) = c_max |
---|
[75] | 723 | ENDIF |
---|
[106] | 724 | |
---|
[978] | 725 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 726 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 727 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 728 | |
---|
[978] | 729 | ENDDO |
---|
| 730 | ENDDO |
---|
[75] | 731 | |
---|
[978] | 732 | #if defined( __parallel ) |
---|
| 733 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 734 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 735 | MPI_SUM, comm1dx, ierr ) |
---|
| 736 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 737 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 738 | MPI_SUM, comm1dx, ierr ) |
---|
| 739 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 740 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 741 | MPI_SUM, comm1dx, ierr ) |
---|
| 742 | #else |
---|
| 743 | c_u_m = c_u_m_l |
---|
| 744 | c_v_m = c_v_m_l |
---|
| 745 | c_w_m = c_w_m_l |
---|
| 746 | #endif |
---|
| 747 | |
---|
| 748 | c_u_m = c_u_m / (nx+1) |
---|
| 749 | c_v_m = c_v_m / (nx+1) |
---|
| 750 | c_w_m = c_w_m / (nx+1) |
---|
| 751 | |
---|
[75] | 752 | ! |
---|
[978] | 753 | !-- Save old timelevels for the next timestep |
---|
| 754 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 755 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 756 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 757 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 758 | ENDIF |
---|
| 759 | |
---|
| 760 | ! |
---|
| 761 | !-- Calculate the new velocities |
---|
[996] | 762 | DO k = nzb+1, nzt+1 |
---|
| 763 | DO i = nxlg, nxrg |
---|
[978] | 764 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 765 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 766 | |
---|
[978] | 767 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 768 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 769 | |
---|
[978] | 770 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 771 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 772 | ENDDO |
---|
[75] | 773 | ENDDO |
---|
| 774 | |
---|
| 775 | ! |
---|
[978] | 776 | !-- Bottom boundary at the outflow |
---|
| 777 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 778 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 779 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 780 | ELSE |
---|
| 781 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 782 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 783 | ENDIF |
---|
[1353] | 784 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 785 | |
---|
[75] | 786 | ! |
---|
[978] | 787 | !-- Top boundary at the outflow |
---|
| 788 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 789 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 790 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 791 | ELSE |
---|
[1742] | 792 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 793 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 794 | ENDIF |
---|
[1353] | 795 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 796 | |
---|
[75] | 797 | ENDIF |
---|
[73] | 798 | |
---|
[75] | 799 | ENDIF |
---|
[73] | 800 | |
---|
[106] | 801 | IF ( outflow_n ) THEN |
---|
[73] | 802 | |
---|
[1159] | 803 | IF ( use_cmax ) THEN |
---|
| 804 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 805 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 806 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 807 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 808 | |
---|
[978] | 809 | c_max = dy / dt_3d |
---|
[75] | 810 | |
---|
[1353] | 811 | c_u_m_l = 0.0_wp |
---|
| 812 | c_v_m_l = 0.0_wp |
---|
| 813 | c_w_m_l = 0.0_wp |
---|
[978] | 814 | |
---|
[1353] | 815 | c_u_m = 0.0_wp |
---|
| 816 | c_v_m = 0.0_wp |
---|
| 817 | c_w_m = 0.0_wp |
---|
[978] | 818 | |
---|
[1] | 819 | ! |
---|
[996] | 820 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 821 | !-- average along the outflow boundary. |
---|
| 822 | DO k = nzb+1, nzt+1 |
---|
| 823 | DO i = nxl, nxr |
---|
[73] | 824 | |
---|
[106] | 825 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 826 | |
---|
[1353] | 827 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 828 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 829 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 830 | c_u(k,i) = 0.0_wp |
---|
[106] | 831 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 832 | c_u(k,i) = c_max |
---|
| 833 | ENDIF |
---|
| 834 | ELSE |
---|
| 835 | c_u(k,i) = c_max |
---|
[73] | 836 | ENDIF |
---|
| 837 | |
---|
[106] | 838 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 839 | |
---|
[1353] | 840 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 841 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 842 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 843 | c_v(k,i) = 0.0_wp |
---|
[106] | 844 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 845 | c_v(k,i) = c_max |
---|
| 846 | ENDIF |
---|
| 847 | ELSE |
---|
| 848 | c_v(k,i) = c_max |
---|
[73] | 849 | ENDIF |
---|
| 850 | |
---|
[106] | 851 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 852 | |
---|
[1353] | 853 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 854 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 855 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 856 | c_w(k,i) = 0.0_wp |
---|
[106] | 857 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 858 | c_w(k,i) = c_max |
---|
| 859 | ENDIF |
---|
| 860 | ELSE |
---|
| 861 | c_w(k,i) = c_max |
---|
[73] | 862 | ENDIF |
---|
[106] | 863 | |
---|
[978] | 864 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 865 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 866 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 867 | |
---|
[978] | 868 | ENDDO |
---|
| 869 | ENDDO |
---|
[73] | 870 | |
---|
[978] | 871 | #if defined( __parallel ) |
---|
| 872 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 873 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 874 | MPI_SUM, comm1dx, ierr ) |
---|
| 875 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 876 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 877 | MPI_SUM, comm1dx, ierr ) |
---|
| 878 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 879 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 880 | MPI_SUM, comm1dx, ierr ) |
---|
| 881 | #else |
---|
| 882 | c_u_m = c_u_m_l |
---|
| 883 | c_v_m = c_v_m_l |
---|
| 884 | c_w_m = c_w_m_l |
---|
| 885 | #endif |
---|
| 886 | |
---|
| 887 | c_u_m = c_u_m / (nx+1) |
---|
| 888 | c_v_m = c_v_m / (nx+1) |
---|
| 889 | c_w_m = c_w_m / (nx+1) |
---|
| 890 | |
---|
[73] | 891 | ! |
---|
[978] | 892 | !-- Save old timelevels for the next timestep |
---|
| 893 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 894 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 895 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 896 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 897 | ENDIF |
---|
[73] | 898 | |
---|
[978] | 899 | ! |
---|
| 900 | !-- Calculate the new velocities |
---|
[996] | 901 | DO k = nzb+1, nzt+1 |
---|
| 902 | DO i = nxlg, nxrg |
---|
[978] | 903 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 904 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 905 | |
---|
[978] | 906 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 907 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 908 | |
---|
[978] | 909 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 910 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 911 | ENDDO |
---|
[1] | 912 | ENDDO |
---|
| 913 | |
---|
| 914 | ! |
---|
[978] | 915 | !-- Bottom boundary at the outflow |
---|
| 916 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 917 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 918 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 919 | ELSE |
---|
| 920 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 921 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 922 | ENDIF |
---|
[1353] | 923 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 924 | |
---|
| 925 | ! |
---|
[978] | 926 | !-- Top boundary at the outflow |
---|
| 927 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 928 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 929 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 930 | ELSE |
---|
| 931 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 932 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 933 | ENDIF |
---|
[1353] | 934 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 935 | |
---|
[1] | 936 | ENDIF |
---|
| 937 | |
---|
[75] | 938 | ENDIF |
---|
| 939 | |
---|
[106] | 940 | IF ( outflow_l ) THEN |
---|
[75] | 941 | |
---|
[1159] | 942 | IF ( use_cmax ) THEN |
---|
[1717] | 943 | u_p(:,:,0) = u(:,:,1) |
---|
| 944 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 945 | w_p(:,:,-1) = w(:,:,0) |
---|
| 946 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 947 | |
---|
[978] | 948 | c_max = dx / dt_3d |
---|
[75] | 949 | |
---|
[1353] | 950 | c_u_m_l = 0.0_wp |
---|
| 951 | c_v_m_l = 0.0_wp |
---|
| 952 | c_w_m_l = 0.0_wp |
---|
[978] | 953 | |
---|
[1353] | 954 | c_u_m = 0.0_wp |
---|
| 955 | c_v_m = 0.0_wp |
---|
| 956 | c_w_m = 0.0_wp |
---|
[978] | 957 | |
---|
[1] | 958 | ! |
---|
[996] | 959 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 960 | !-- average along the outflow boundary. |
---|
| 961 | DO k = nzb+1, nzt+1 |
---|
| 962 | DO j = nys, nyn |
---|
[75] | 963 | |
---|
[106] | 964 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 965 | |
---|
[1353] | 966 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 967 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 968 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 969 | c_u(k,j) = 0.0_wp |
---|
[107] | 970 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 971 | c_u(k,j) = c_max |
---|
[106] | 972 | ENDIF |
---|
| 973 | ELSE |
---|
[107] | 974 | c_u(k,j) = c_max |
---|
[75] | 975 | ENDIF |
---|
| 976 | |
---|
[106] | 977 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 978 | |
---|
[1353] | 979 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 980 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 981 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 982 | c_v(k,j) = 0.0_wp |
---|
[106] | 983 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 984 | c_v(k,j) = c_max |
---|
| 985 | ENDIF |
---|
| 986 | ELSE |
---|
| 987 | c_v(k,j) = c_max |
---|
[75] | 988 | ENDIF |
---|
| 989 | |
---|
[106] | 990 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 991 | |
---|
[1353] | 992 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 993 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 994 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 995 | c_w(k,j) = 0.0_wp |
---|
[106] | 996 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 997 | c_w(k,j) = c_max |
---|
| 998 | ENDIF |
---|
| 999 | ELSE |
---|
| 1000 | c_w(k,j) = c_max |
---|
[75] | 1001 | ENDIF |
---|
[106] | 1002 | |
---|
[978] | 1003 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1004 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1005 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1006 | |
---|
[978] | 1007 | ENDDO |
---|
| 1008 | ENDDO |
---|
[75] | 1009 | |
---|
[978] | 1010 | #if defined( __parallel ) |
---|
| 1011 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1012 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1013 | MPI_SUM, comm1dy, ierr ) |
---|
| 1014 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1015 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1016 | MPI_SUM, comm1dy, ierr ) |
---|
| 1017 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1018 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1019 | MPI_SUM, comm1dy, ierr ) |
---|
| 1020 | #else |
---|
| 1021 | c_u_m = c_u_m_l |
---|
| 1022 | c_v_m = c_v_m_l |
---|
| 1023 | c_w_m = c_w_m_l |
---|
| 1024 | #endif |
---|
| 1025 | |
---|
| 1026 | c_u_m = c_u_m / (ny+1) |
---|
| 1027 | c_v_m = c_v_m / (ny+1) |
---|
| 1028 | c_w_m = c_w_m / (ny+1) |
---|
| 1029 | |
---|
[73] | 1030 | ! |
---|
[978] | 1031 | !-- Save old timelevels for the next timestep |
---|
| 1032 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1033 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1034 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1035 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1036 | ENDIF |
---|
| 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Calculate the new velocities |
---|
[996] | 1040 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1041 | DO j = nysg, nyng |
---|
[978] | 1042 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 1043 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 1044 | |
---|
[978] | 1045 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 1046 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 1047 | |
---|
[978] | 1048 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1049 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1050 | ENDDO |
---|
[75] | 1051 | ENDDO |
---|
| 1052 | |
---|
| 1053 | ! |
---|
[978] | 1054 | !-- Bottom boundary at the outflow |
---|
| 1055 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1056 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1057 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1058 | ELSE |
---|
| 1059 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1060 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1061 | ENDIF |
---|
[1353] | 1062 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1063 | |
---|
[75] | 1064 | ! |
---|
[978] | 1065 | !-- Top boundary at the outflow |
---|
| 1066 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1067 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1068 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1069 | ELSE |
---|
[1764] | 1070 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1071 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1072 | ENDIF |
---|
[1353] | 1073 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1074 | |
---|
[75] | 1075 | ENDIF |
---|
[73] | 1076 | |
---|
[75] | 1077 | ENDIF |
---|
[73] | 1078 | |
---|
[106] | 1079 | IF ( outflow_r ) THEN |
---|
[73] | 1080 | |
---|
[1159] | 1081 | IF ( use_cmax ) THEN |
---|
| 1082 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1083 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1084 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1085 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1086 | |
---|
[978] | 1087 | c_max = dx / dt_3d |
---|
[75] | 1088 | |
---|
[1353] | 1089 | c_u_m_l = 0.0_wp |
---|
| 1090 | c_v_m_l = 0.0_wp |
---|
| 1091 | c_w_m_l = 0.0_wp |
---|
[978] | 1092 | |
---|
[1353] | 1093 | c_u_m = 0.0_wp |
---|
| 1094 | c_v_m = 0.0_wp |
---|
| 1095 | c_w_m = 0.0_wp |
---|
[978] | 1096 | |
---|
[1] | 1097 | ! |
---|
[996] | 1098 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1099 | !-- average along the outflow boundary. |
---|
| 1100 | DO k = nzb+1, nzt+1 |
---|
| 1101 | DO j = nys, nyn |
---|
[73] | 1102 | |
---|
[106] | 1103 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1104 | |
---|
[1353] | 1105 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1106 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1107 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1108 | c_u(k,j) = 0.0_wp |
---|
[106] | 1109 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1110 | c_u(k,j) = c_max |
---|
| 1111 | ENDIF |
---|
| 1112 | ELSE |
---|
| 1113 | c_u(k,j) = c_max |
---|
[73] | 1114 | ENDIF |
---|
| 1115 | |
---|
[106] | 1116 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1117 | |
---|
[1353] | 1118 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1119 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1120 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1121 | c_v(k,j) = 0.0_wp |
---|
[106] | 1122 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1123 | c_v(k,j) = c_max |
---|
| 1124 | ENDIF |
---|
| 1125 | ELSE |
---|
| 1126 | c_v(k,j) = c_max |
---|
[73] | 1127 | ENDIF |
---|
| 1128 | |
---|
[106] | 1129 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1130 | |
---|
[1353] | 1131 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1132 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1133 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1134 | c_w(k,j) = 0.0_wp |
---|
[106] | 1135 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1136 | c_w(k,j) = c_max |
---|
| 1137 | ENDIF |
---|
| 1138 | ELSE |
---|
| 1139 | c_w(k,j) = c_max |
---|
[73] | 1140 | ENDIF |
---|
[106] | 1141 | |
---|
[978] | 1142 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1143 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1144 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1145 | |
---|
[978] | 1146 | ENDDO |
---|
| 1147 | ENDDO |
---|
[73] | 1148 | |
---|
[978] | 1149 | #if defined( __parallel ) |
---|
| 1150 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1151 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1152 | MPI_SUM, comm1dy, ierr ) |
---|
| 1153 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1154 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1155 | MPI_SUM, comm1dy, ierr ) |
---|
| 1156 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1157 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1158 | MPI_SUM, comm1dy, ierr ) |
---|
| 1159 | #else |
---|
| 1160 | c_u_m = c_u_m_l |
---|
| 1161 | c_v_m = c_v_m_l |
---|
| 1162 | c_w_m = c_w_m_l |
---|
| 1163 | #endif |
---|
| 1164 | |
---|
| 1165 | c_u_m = c_u_m / (ny+1) |
---|
| 1166 | c_v_m = c_v_m / (ny+1) |
---|
| 1167 | c_w_m = c_w_m / (ny+1) |
---|
| 1168 | |
---|
[73] | 1169 | ! |
---|
[978] | 1170 | !-- Save old timelevels for the next timestep |
---|
| 1171 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1172 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1173 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1174 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1175 | ENDIF |
---|
[73] | 1176 | |
---|
[978] | 1177 | ! |
---|
| 1178 | !-- Calculate the new velocities |
---|
[996] | 1179 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1180 | DO j = nysg, nyng |
---|
[978] | 1181 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1182 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1183 | |
---|
[978] | 1184 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1185 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1186 | |
---|
[978] | 1187 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1188 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1189 | ENDDO |
---|
[73] | 1190 | ENDDO |
---|
| 1191 | |
---|
| 1192 | ! |
---|
[978] | 1193 | !-- Bottom boundary at the outflow |
---|
| 1194 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1195 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1196 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1197 | ELSE |
---|
| 1198 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1199 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1200 | ENDIF |
---|
[1353] | 1201 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1202 | |
---|
| 1203 | ! |
---|
[978] | 1204 | !-- Top boundary at the outflow |
---|
| 1205 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1206 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1207 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1208 | ELSE |
---|
| 1209 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1210 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1211 | ENDIF |
---|
[1742] | 1212 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1213 | |
---|
[1] | 1214 | ENDIF |
---|
| 1215 | |
---|
| 1216 | ENDIF |
---|
| 1217 | |
---|
| 1218 | END SUBROUTINE boundary_conds |
---|