[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[2233] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 2365 2017-08-21 14:59:59Z scharf $ |
---|
[2365] | 27 | ! Vertical grid nesting implemented: exclude setting vertical velocity to zero |
---|
| 28 | ! on fine grid (SadiqHuq) |
---|
| 29 | ! |
---|
| 30 | ! 2320 2017-07-21 12:47:43Z suehring |
---|
[2320] | 31 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 32 | ! |
---|
| 33 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 34 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 35 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 36 | ! and cloud water content (qc). |
---|
| 37 | ! |
---|
| 38 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 39 | ! |
---|
[2233] | 40 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 41 | ! Set boundary conditions on topography top using flag method. |
---|
| 42 | ! |
---|
[2119] | 43 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 44 | ! OpenACC directives removed |
---|
| 45 | ! |
---|
[2001] | 46 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 47 | ! Forced header and separation lines into 80 columns |
---|
| 48 | ! |
---|
[1993] | 49 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 50 | ! Adjustments for top boundary condition for passive scalar |
---|
| 51 | ! |
---|
[1961] | 52 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 53 | ! Treat humidity and passive scalar separately |
---|
| 54 | ! |
---|
[1933] | 55 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 56 | ! Initial version of purely vertical nesting introduced. |
---|
| 57 | ! |
---|
[1823] | 58 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 59 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 60 | ! |
---|
[1765] | 61 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 62 | ! index bug for u_p at left outflow removed |
---|
| 63 | ! |
---|
[1763] | 64 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 65 | ! Introduction of nested domain feature |
---|
| 66 | ! |
---|
[1744] | 67 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 68 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 69 | ! |
---|
[1718] | 70 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 71 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 72 | ! |
---|
[1683] | 73 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 74 | ! Code annotations made doxygen readable |
---|
| 75 | ! |
---|
[1717] | 76 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 77 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 78 | ! top |
---|
| 79 | ! |
---|
[1410] | 80 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 81 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 82 | ! is used. |
---|
| 83 | ! |
---|
[1399] | 84 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 85 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 86 | ! for large_scale_forcing |
---|
| 87 | ! |
---|
[1381] | 88 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 89 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 90 | ! |
---|
[1362] | 91 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 92 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 93 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 94 | ! |
---|
[1354] | 95 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 96 | ! REAL constants provided with KIND-attribute |
---|
| 97 | ! |
---|
[1321] | 98 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 99 | ! ONLY-attribute added to USE-statements, |
---|
| 100 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 101 | ! kinds are defined in new module kinds, |
---|
| 102 | ! revision history before 2012 removed, |
---|
| 103 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 104 | ! all variable declaration statements |
---|
[1160] | 105 | ! |
---|
[1258] | 106 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 107 | ! loop independent clauses added |
---|
| 108 | ! |
---|
[1242] | 109 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 110 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 111 | ! |
---|
[1160] | 112 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 113 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 114 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 115 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 116 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 117 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 118 | ! u_p, v_p, w_p |
---|
[1116] | 119 | ! |
---|
| 120 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 121 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 122 | ! boundary-conditions |
---|
| 123 | ! |
---|
[1114] | 124 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 125 | ! GPU-porting |
---|
| 126 | ! dummy argument "range" removed |
---|
| 127 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 128 | ! |
---|
[1054] | 129 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 130 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 131 | ! two-moment cloud scheme |
---|
| 132 | ! |
---|
[1037] | 133 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 134 | ! code put under GPL (PALM 3.9) |
---|
| 135 | ! |
---|
[997] | 136 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 137 | ! little reformatting |
---|
| 138 | ! |
---|
[979] | 139 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 140 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 141 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 142 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 143 | ! velocity. |
---|
| 144 | ! |
---|
[876] | 145 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 146 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 147 | ! |
---|
[1] | 148 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 149 | ! Initial revision |
---|
| 150 | ! |
---|
| 151 | ! |
---|
| 152 | ! Description: |
---|
| 153 | ! ------------ |
---|
[1682] | 154 | !> Boundary conditions for the prognostic quantities. |
---|
| 155 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 156 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 157 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 158 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 159 | !------------------------------------------------------------------------------! |
---|
[1682] | 160 | SUBROUTINE boundary_conds |
---|
| 161 | |
---|
[1] | 162 | |
---|
[1320] | 163 | USE arrays_3d, & |
---|
| 164 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[2292] | 165 | dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, s_p, sa, & |
---|
| 166 | sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
[1320] | 167 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1960] | 168 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init |
---|
[2292] | 169 | |
---|
[1320] | 170 | USE control_parameters, & |
---|
[1960] | 171 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, constant_diffusion, & |
---|
[2365] | 172 | cloud_physics, coupling_mode, dt_3d, humidity, & |
---|
[1960] | 173 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
| 174 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
[2320] | 175 | inflow_s, intermediate_timestep_count, & |
---|
[2292] | 176 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
| 177 | nest_bound_l, nest_bound_s, nudging, ocean, outflow_l, & |
---|
| 178 | outflow_n, outflow_r, outflow_s, passive_scalar, tsc, use_cmax |
---|
[1320] | 179 | |
---|
| 180 | USE grid_variables, & |
---|
| 181 | ONLY: ddx, ddy, dx, dy |
---|
| 182 | |
---|
| 183 | USE indices, & |
---|
| 184 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
[2232] | 185 | nzb, nzt, wall_flags_0 |
---|
[1320] | 186 | |
---|
| 187 | USE kinds |
---|
| 188 | |
---|
[1] | 189 | USE pegrid |
---|
| 190 | |
---|
[1933] | 191 | USE pmc_interface, & |
---|
| 192 | ONLY : nesting_mode |
---|
[1320] | 193 | |
---|
[2232] | 194 | USE surface_mod, & |
---|
| 195 | ONLY : bc_h |
---|
[1933] | 196 | |
---|
[1] | 197 | IMPLICIT NONE |
---|
| 198 | |
---|
[2232] | 199 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 200 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 201 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 202 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 203 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 204 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 205 | |
---|
[1682] | 206 | REAL(wp) :: c_max !< |
---|
| 207 | REAL(wp) :: denom !< |
---|
[1] | 208 | |
---|
[73] | 209 | |
---|
[1] | 210 | ! |
---|
[1113] | 211 | !-- Bottom boundary |
---|
| 212 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 213 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 214 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 215 | ENDIF |
---|
[2232] | 216 | ! |
---|
| 217 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 218 | !-- of downward-facing surfaces. |
---|
| 219 | DO l = 0, 1 |
---|
| 220 | ! |
---|
| 221 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 222 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 223 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 224 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 225 | DO m = 1, bc_h(l)%ns |
---|
| 226 | i = bc_h(l)%i(m) |
---|
| 227 | j = bc_h(l)%j(m) |
---|
| 228 | k = bc_h(l)%k(m) |
---|
| 229 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | |
---|
| 233 | ! |
---|
[1762] | 234 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 235 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 236 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 237 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1762] | 238 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 239 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 240 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 241 | ENDIF |
---|
| 242 | |
---|
[2365] | 243 | ! |
---|
| 244 | !-- Vertical nesting: Vertical velocity not zero at the top of the fine grid |
---|
| 245 | IF ( .NOT. nest_domain .AND. & |
---|
| 246 | TRIM(coupling_mode) /= 'vnested_fine' ) THEN |
---|
| 247 | w_p(nzt:nzt+1,:,:) = 0.0_wp !< nzt is not a prognostic level (but cf. pres) |
---|
[1762] | 248 | ENDIF |
---|
| 249 | |
---|
[1113] | 250 | ! |
---|
[2232] | 251 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 252 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 253 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 254 | !-- Dirichlet |
---|
[1113] | 255 | IF ( ibc_pt_b == 0 ) THEN |
---|
[2232] | 256 | DO l = 0, 1 |
---|
| 257 | ! |
---|
| 258 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 259 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 260 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 261 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 262 | DO m = 1, bc_h(l)%ns |
---|
| 263 | i = bc_h(l)%i(m) |
---|
| 264 | j = bc_h(l)%j(m) |
---|
| 265 | k = bc_h(l)%k(m) |
---|
| 266 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
[1] | 267 | ENDDO |
---|
| 268 | ENDDO |
---|
[2232] | 269 | ! |
---|
| 270 | !-- Neumann, zero-gradient |
---|
[1113] | 271 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 272 | DO l = 0, 1 |
---|
| 273 | ! |
---|
| 274 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 275 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 276 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 277 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 278 | DO m = 1, bc_h(l)%ns |
---|
| 279 | i = bc_h(l)%i(m) |
---|
| 280 | j = bc_h(l)%j(m) |
---|
| 281 | k = bc_h(l)%k(m) |
---|
| 282 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
[1113] | 283 | ENDDO |
---|
| 284 | ENDDO |
---|
| 285 | ENDIF |
---|
[1] | 286 | |
---|
| 287 | ! |
---|
[1113] | 288 | !-- Temperature at top boundary |
---|
| 289 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 290 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 291 | ! |
---|
| 292 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 293 | !-- read in from NUDGING-DATA |
---|
| 294 | IF ( nudging ) THEN |
---|
| 295 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 296 | ENDIF |
---|
[1113] | 297 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 298 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 299 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1992] | 300 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1113] | 301 | ENDIF |
---|
[1] | 302 | |
---|
| 303 | ! |
---|
[1113] | 304 | !-- Boundary conditions for TKE |
---|
| 305 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 306 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 307 | |
---|
| 308 | DO l = 0, 1 |
---|
| 309 | ! |
---|
| 310 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 311 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 312 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 313 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 314 | DO m = 1, bc_h(l)%ns |
---|
| 315 | i = bc_h(l)%i(m) |
---|
| 316 | j = bc_h(l)%j(m) |
---|
| 317 | k = bc_h(l)%k(m) |
---|
| 318 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
[73] | 319 | ENDDO |
---|
[1113] | 320 | ENDDO |
---|
[2232] | 321 | |
---|
[1762] | 322 | IF ( .NOT. nest_domain ) THEN |
---|
| 323 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 324 | ENDIF |
---|
[1113] | 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Boundary conditions for salinity |
---|
| 329 | IF ( ocean ) THEN |
---|
| 330 | ! |
---|
| 331 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 332 | !-- given. |
---|
| 333 | DO l = 0, 1 |
---|
| 334 | ! |
---|
| 335 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 336 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 337 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 338 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 339 | DO m = 1, bc_h(l)%ns |
---|
| 340 | i = bc_h(l)%i(m) |
---|
| 341 | j = bc_h(l)%j(m) |
---|
| 342 | k = bc_h(l)%k(m) |
---|
| 343 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 344 | ENDDO |
---|
[1113] | 345 | ENDDO |
---|
[1] | 346 | ! |
---|
[1113] | 347 | !-- Top boundary: Dirichlet or Neumann |
---|
| 348 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 349 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 350 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 351 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 352 | ENDIF |
---|
| 353 | |
---|
[1113] | 354 | ENDIF |
---|
| 355 | |
---|
[1] | 356 | ! |
---|
[1960] | 357 | !-- Boundary conditions for total water content, |
---|
[1113] | 358 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 359 | IF ( humidity ) THEN |
---|
[1113] | 360 | ! |
---|
| 361 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 362 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 363 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 364 | !-- q_p at k-1 |
---|
[1113] | 365 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 366 | |
---|
| 367 | DO l = 0, 1 |
---|
| 368 | ! |
---|
| 369 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 370 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 371 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 372 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 373 | DO m = 1, bc_h(l)%ns |
---|
| 374 | i = bc_h(l)%i(m) |
---|
| 375 | j = bc_h(l)%j(m) |
---|
| 376 | k = bc_h(l)%k(m) |
---|
| 377 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 378 | ENDDO |
---|
| 379 | ENDDO |
---|
[2232] | 380 | |
---|
[1113] | 381 | ELSE |
---|
[2232] | 382 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 383 | DO m = 1, bc_h(0)%ns |
---|
| 384 | i = bc_h(0)%i(m) |
---|
| 385 | j = bc_h(0)%j(m) |
---|
| 386 | k = bc_h(0)%k(m) |
---|
| 387 | q_p(k-1,j,i) = q_p(k,j,i) |
---|
| 388 | ENDDO |
---|
| 389 | |
---|
| 390 | DO l = 0, 1 |
---|
| 391 | ! |
---|
| 392 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 393 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 394 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 395 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 396 | DO m = 1, bc_h(l)%ns |
---|
| 397 | i = bc_h(l)%i(m) |
---|
| 398 | j = bc_h(l)%j(m) |
---|
| 399 | k = bc_h(l)%k(m) |
---|
| 400 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 401 | ENDDO |
---|
| 402 | ENDDO |
---|
[1113] | 403 | ENDIF |
---|
[95] | 404 | ! |
---|
[1113] | 405 | !-- Top boundary |
---|
[1462] | 406 | IF ( ibc_q_t == 0 ) THEN |
---|
| 407 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 408 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 409 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 410 | ENDIF |
---|
[95] | 411 | |
---|
[2292] | 412 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 413 | ! |
---|
| 414 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 415 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 416 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 417 | !-- qr_p and nr_p at k-1 |
---|
| 418 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 419 | DO m = 1, bc_h(0)%ns |
---|
| 420 | i = bc_h(0)%i(m) |
---|
| 421 | j = bc_h(0)%j(m) |
---|
| 422 | k = bc_h(0)%k(m) |
---|
| 423 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 424 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 425 | ENDDO |
---|
| 426 | ! |
---|
| 427 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 428 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 429 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 430 | |
---|
| 431 | ENDIF |
---|
| 432 | |
---|
[1822] | 433 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1113] | 434 | ! |
---|
[1361] | 435 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 436 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 437 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 438 | !-- qr_p and nr_p at k-1 |
---|
| 439 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 440 | DO m = 1, bc_h(0)%ns |
---|
| 441 | i = bc_h(0)%i(m) |
---|
| 442 | j = bc_h(0)%j(m) |
---|
| 443 | k = bc_h(0)%k(m) |
---|
| 444 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 445 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 446 | ENDDO |
---|
[1] | 447 | ! |
---|
[1361] | 448 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 449 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 450 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 451 | |
---|
[1] | 452 | ENDIF |
---|
[1409] | 453 | ENDIF |
---|
[1] | 454 | ! |
---|
[1960] | 455 | !-- Boundary conditions for scalar, |
---|
| 456 | !-- bottom and top boundary (see also temperature) |
---|
| 457 | IF ( passive_scalar ) THEN |
---|
| 458 | ! |
---|
| 459 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 460 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 461 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 462 | !-- s_p at k-1 |
---|
[1960] | 463 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 464 | |
---|
| 465 | DO l = 0, 1 |
---|
| 466 | ! |
---|
| 467 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 468 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 469 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 470 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 471 | DO m = 1, bc_h(l)%ns |
---|
| 472 | i = bc_h(l)%i(m) |
---|
| 473 | j = bc_h(l)%j(m) |
---|
| 474 | k = bc_h(l)%k(m) |
---|
| 475 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 476 | ENDDO |
---|
| 477 | ENDDO |
---|
[2232] | 478 | |
---|
[1960] | 479 | ELSE |
---|
[2232] | 480 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 481 | DO m = 1, bc_h(0)%ns |
---|
| 482 | i = bc_h(0)%i(m) |
---|
| 483 | j = bc_h(0)%j(m) |
---|
| 484 | k = bc_h(0)%k(m) |
---|
| 485 | s_p(k-1,j,i) = s_p(k,j,i) |
---|
| 486 | ENDDO |
---|
| 487 | |
---|
| 488 | DO l = 0, 1 |
---|
| 489 | ! |
---|
| 490 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 491 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 492 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 493 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 494 | DO m = 1, bc_h(l)%ns |
---|
| 495 | i = bc_h(l)%i(m) |
---|
| 496 | j = bc_h(l)%j(m) |
---|
| 497 | k = bc_h(l)%k(m) |
---|
| 498 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 499 | ENDDO |
---|
| 500 | ENDDO |
---|
| 501 | ENDIF |
---|
| 502 | ! |
---|
[1992] | 503 | !-- Top boundary condition |
---|
| 504 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 505 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 506 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 507 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 508 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 509 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 510 | ENDIF |
---|
| 511 | |
---|
| 512 | ENDIF |
---|
| 513 | ! |
---|
[1762] | 514 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 515 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 516 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 517 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 518 | !-- have to be restored here. |
---|
[1409] | 519 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 520 | IF ( inflow_s ) THEN |
---|
| 521 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 522 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 523 | ELSEIF ( inflow_n ) THEN |
---|
| 524 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 525 | ELSEIF ( inflow_l ) THEN |
---|
| 526 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 527 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 528 | ELSEIF ( inflow_r ) THEN |
---|
| 529 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 530 | ENDIF |
---|
[1] | 531 | |
---|
| 532 | ! |
---|
[1762] | 533 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 534 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
| 535 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
| 536 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
| 537 | IF ( nest_bound_s ) THEN |
---|
| 538 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 539 | ENDIF |
---|
| 540 | IF ( nest_bound_l ) THEN |
---|
| 541 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 542 | ENDIF |
---|
[1762] | 543 | ENDIF |
---|
| 544 | |
---|
| 545 | ! |
---|
[1409] | 546 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 547 | IF ( outflow_s ) THEN |
---|
| 548 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 549 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1960] | 550 | IF ( humidity ) THEN |
---|
[1409] | 551 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[2292] | 552 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 553 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 554 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 555 | ENDIF |
---|
[1822] | 556 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 557 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 558 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 559 | ENDIF |
---|
[1409] | 560 | ENDIF |
---|
[1960] | 561 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[1409] | 562 | ELSEIF ( outflow_n ) THEN |
---|
| 563 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 564 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1960] | 565 | IF ( humidity ) THEN |
---|
[1409] | 566 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[2292] | 567 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 568 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 569 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 570 | ENDIF |
---|
[1822] | 571 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 572 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 573 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 574 | ENDIF |
---|
[1409] | 575 | ENDIF |
---|
[1960] | 576 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[1409] | 577 | ELSEIF ( outflow_l ) THEN |
---|
| 578 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 579 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1960] | 580 | IF ( humidity ) THEN |
---|
[1409] | 581 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[2292] | 582 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 583 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 584 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 585 | ENDIF |
---|
[1822] | 586 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 587 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 588 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 589 | ENDIF |
---|
[1409] | 590 | ENDIF |
---|
[1960] | 591 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[1409] | 592 | ELSEIF ( outflow_r ) THEN |
---|
| 593 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 594 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1960] | 595 | IF ( humidity ) THEN |
---|
[1409] | 596 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[2292] | 597 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 598 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 599 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 600 | ENDIF |
---|
[1822] | 601 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 602 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 603 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 604 | ENDIF |
---|
[1] | 605 | ENDIF |
---|
[1960] | 606 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 607 | ENDIF |
---|
| 608 | |
---|
| 609 | ! |
---|
[1159] | 610 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 611 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 612 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 613 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 614 | IF ( outflow_s ) THEN |
---|
[75] | 615 | |
---|
[1159] | 616 | IF ( use_cmax ) THEN |
---|
| 617 | u_p(:,-1,:) = u(:,0,:) |
---|
| 618 | v_p(:,0,:) = v(:,1,:) |
---|
| 619 | w_p(:,-1,:) = w(:,0,:) |
---|
| 620 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 621 | |
---|
[978] | 622 | c_max = dy / dt_3d |
---|
[75] | 623 | |
---|
[1353] | 624 | c_u_m_l = 0.0_wp |
---|
| 625 | c_v_m_l = 0.0_wp |
---|
| 626 | c_w_m_l = 0.0_wp |
---|
[978] | 627 | |
---|
[1353] | 628 | c_u_m = 0.0_wp |
---|
| 629 | c_v_m = 0.0_wp |
---|
| 630 | c_w_m = 0.0_wp |
---|
[978] | 631 | |
---|
[75] | 632 | ! |
---|
[996] | 633 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 634 | !-- average along the outflow boundary. |
---|
| 635 | DO k = nzb+1, nzt+1 |
---|
| 636 | DO i = nxl, nxr |
---|
[75] | 637 | |
---|
[106] | 638 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 639 | |
---|
[1353] | 640 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 641 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 642 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 643 | c_u(k,i) = 0.0_wp |
---|
[106] | 644 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 645 | c_u(k,i) = c_max |
---|
| 646 | ENDIF |
---|
| 647 | ELSE |
---|
| 648 | c_u(k,i) = c_max |
---|
[75] | 649 | ENDIF |
---|
| 650 | |
---|
[106] | 651 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 652 | |
---|
[1353] | 653 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 654 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 655 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 656 | c_v(k,i) = 0.0_wp |
---|
[106] | 657 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 658 | c_v(k,i) = c_max |
---|
| 659 | ENDIF |
---|
| 660 | ELSE |
---|
| 661 | c_v(k,i) = c_max |
---|
[75] | 662 | ENDIF |
---|
| 663 | |
---|
[106] | 664 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 665 | |
---|
[1353] | 666 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 667 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 668 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 669 | c_w(k,i) = 0.0_wp |
---|
[106] | 670 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 671 | c_w(k,i) = c_max |
---|
| 672 | ENDIF |
---|
| 673 | ELSE |
---|
| 674 | c_w(k,i) = c_max |
---|
[75] | 675 | ENDIF |
---|
[106] | 676 | |
---|
[978] | 677 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 678 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 679 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 680 | |
---|
[978] | 681 | ENDDO |
---|
| 682 | ENDDO |
---|
[75] | 683 | |
---|
[978] | 684 | #if defined( __parallel ) |
---|
| 685 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 686 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 687 | MPI_SUM, comm1dx, ierr ) |
---|
| 688 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 689 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 690 | MPI_SUM, comm1dx, ierr ) |
---|
| 691 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 692 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 693 | MPI_SUM, comm1dx, ierr ) |
---|
| 694 | #else |
---|
| 695 | c_u_m = c_u_m_l |
---|
| 696 | c_v_m = c_v_m_l |
---|
| 697 | c_w_m = c_w_m_l |
---|
| 698 | #endif |
---|
| 699 | |
---|
| 700 | c_u_m = c_u_m / (nx+1) |
---|
| 701 | c_v_m = c_v_m / (nx+1) |
---|
| 702 | c_w_m = c_w_m / (nx+1) |
---|
| 703 | |
---|
[75] | 704 | ! |
---|
[978] | 705 | !-- Save old timelevels for the next timestep |
---|
| 706 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 707 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 708 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 709 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 710 | ENDIF |
---|
| 711 | |
---|
| 712 | ! |
---|
| 713 | !-- Calculate the new velocities |
---|
[996] | 714 | DO k = nzb+1, nzt+1 |
---|
| 715 | DO i = nxlg, nxrg |
---|
[978] | 716 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 717 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 718 | |
---|
[978] | 719 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 720 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 721 | |
---|
[978] | 722 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 723 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 724 | ENDDO |
---|
[75] | 725 | ENDDO |
---|
| 726 | |
---|
| 727 | ! |
---|
[978] | 728 | !-- Bottom boundary at the outflow |
---|
| 729 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 730 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 731 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 732 | ELSE |
---|
| 733 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 734 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 735 | ENDIF |
---|
[1353] | 736 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 737 | |
---|
[75] | 738 | ! |
---|
[978] | 739 | !-- Top boundary at the outflow |
---|
| 740 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 741 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 742 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 743 | ELSE |
---|
[1742] | 744 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 745 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 746 | ENDIF |
---|
[1353] | 747 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 748 | |
---|
[75] | 749 | ENDIF |
---|
[73] | 750 | |
---|
[75] | 751 | ENDIF |
---|
[73] | 752 | |
---|
[106] | 753 | IF ( outflow_n ) THEN |
---|
[73] | 754 | |
---|
[1159] | 755 | IF ( use_cmax ) THEN |
---|
| 756 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 757 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 758 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 759 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 760 | |
---|
[978] | 761 | c_max = dy / dt_3d |
---|
[75] | 762 | |
---|
[1353] | 763 | c_u_m_l = 0.0_wp |
---|
| 764 | c_v_m_l = 0.0_wp |
---|
| 765 | c_w_m_l = 0.0_wp |
---|
[978] | 766 | |
---|
[1353] | 767 | c_u_m = 0.0_wp |
---|
| 768 | c_v_m = 0.0_wp |
---|
| 769 | c_w_m = 0.0_wp |
---|
[978] | 770 | |
---|
[1] | 771 | ! |
---|
[996] | 772 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 773 | !-- average along the outflow boundary. |
---|
| 774 | DO k = nzb+1, nzt+1 |
---|
| 775 | DO i = nxl, nxr |
---|
[73] | 776 | |
---|
[106] | 777 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 778 | |
---|
[1353] | 779 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 780 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 781 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 782 | c_u(k,i) = 0.0_wp |
---|
[106] | 783 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 784 | c_u(k,i) = c_max |
---|
| 785 | ENDIF |
---|
| 786 | ELSE |
---|
| 787 | c_u(k,i) = c_max |
---|
[73] | 788 | ENDIF |
---|
| 789 | |
---|
[106] | 790 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 791 | |
---|
[1353] | 792 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 793 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 794 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 795 | c_v(k,i) = 0.0_wp |
---|
[106] | 796 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 797 | c_v(k,i) = c_max |
---|
| 798 | ENDIF |
---|
| 799 | ELSE |
---|
| 800 | c_v(k,i) = c_max |
---|
[73] | 801 | ENDIF |
---|
| 802 | |
---|
[106] | 803 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 804 | |
---|
[1353] | 805 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 806 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 807 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 808 | c_w(k,i) = 0.0_wp |
---|
[106] | 809 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 810 | c_w(k,i) = c_max |
---|
| 811 | ENDIF |
---|
| 812 | ELSE |
---|
| 813 | c_w(k,i) = c_max |
---|
[73] | 814 | ENDIF |
---|
[106] | 815 | |
---|
[978] | 816 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 817 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 818 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 819 | |
---|
[978] | 820 | ENDDO |
---|
| 821 | ENDDO |
---|
[73] | 822 | |
---|
[978] | 823 | #if defined( __parallel ) |
---|
| 824 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 825 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 826 | MPI_SUM, comm1dx, ierr ) |
---|
| 827 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 828 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 829 | MPI_SUM, comm1dx, ierr ) |
---|
| 830 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 831 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 832 | MPI_SUM, comm1dx, ierr ) |
---|
| 833 | #else |
---|
| 834 | c_u_m = c_u_m_l |
---|
| 835 | c_v_m = c_v_m_l |
---|
| 836 | c_w_m = c_w_m_l |
---|
| 837 | #endif |
---|
| 838 | |
---|
| 839 | c_u_m = c_u_m / (nx+1) |
---|
| 840 | c_v_m = c_v_m / (nx+1) |
---|
| 841 | c_w_m = c_w_m / (nx+1) |
---|
| 842 | |
---|
[73] | 843 | ! |
---|
[978] | 844 | !-- Save old timelevels for the next timestep |
---|
| 845 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 846 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 847 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 848 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 849 | ENDIF |
---|
[73] | 850 | |
---|
[978] | 851 | ! |
---|
| 852 | !-- Calculate the new velocities |
---|
[996] | 853 | DO k = nzb+1, nzt+1 |
---|
| 854 | DO i = nxlg, nxrg |
---|
[978] | 855 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 856 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 857 | |
---|
[978] | 858 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 859 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 860 | |
---|
[978] | 861 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 862 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 863 | ENDDO |
---|
[1] | 864 | ENDDO |
---|
| 865 | |
---|
| 866 | ! |
---|
[978] | 867 | !-- Bottom boundary at the outflow |
---|
| 868 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 869 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 870 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 871 | ELSE |
---|
| 872 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 873 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 874 | ENDIF |
---|
[1353] | 875 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 876 | |
---|
| 877 | ! |
---|
[978] | 878 | !-- Top boundary at the outflow |
---|
| 879 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 880 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 881 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 882 | ELSE |
---|
| 883 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 884 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 885 | ENDIF |
---|
[1353] | 886 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 887 | |
---|
[1] | 888 | ENDIF |
---|
| 889 | |
---|
[75] | 890 | ENDIF |
---|
| 891 | |
---|
[106] | 892 | IF ( outflow_l ) THEN |
---|
[75] | 893 | |
---|
[1159] | 894 | IF ( use_cmax ) THEN |
---|
[1717] | 895 | u_p(:,:,0) = u(:,:,1) |
---|
| 896 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 897 | w_p(:,:,-1) = w(:,:,0) |
---|
| 898 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 899 | |
---|
[978] | 900 | c_max = dx / dt_3d |
---|
[75] | 901 | |
---|
[1353] | 902 | c_u_m_l = 0.0_wp |
---|
| 903 | c_v_m_l = 0.0_wp |
---|
| 904 | c_w_m_l = 0.0_wp |
---|
[978] | 905 | |
---|
[1353] | 906 | c_u_m = 0.0_wp |
---|
| 907 | c_v_m = 0.0_wp |
---|
| 908 | c_w_m = 0.0_wp |
---|
[978] | 909 | |
---|
[1] | 910 | ! |
---|
[996] | 911 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 912 | !-- average along the outflow boundary. |
---|
| 913 | DO k = nzb+1, nzt+1 |
---|
| 914 | DO j = nys, nyn |
---|
[75] | 915 | |
---|
[106] | 916 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 917 | |
---|
[1353] | 918 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 919 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 920 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 921 | c_u(k,j) = 0.0_wp |
---|
[107] | 922 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 923 | c_u(k,j) = c_max |
---|
[106] | 924 | ENDIF |
---|
| 925 | ELSE |
---|
[107] | 926 | c_u(k,j) = c_max |
---|
[75] | 927 | ENDIF |
---|
| 928 | |
---|
[106] | 929 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 930 | |
---|
[1353] | 931 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 932 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 933 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 934 | c_v(k,j) = 0.0_wp |
---|
[106] | 935 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 936 | c_v(k,j) = c_max |
---|
| 937 | ENDIF |
---|
| 938 | ELSE |
---|
| 939 | c_v(k,j) = c_max |
---|
[75] | 940 | ENDIF |
---|
| 941 | |
---|
[106] | 942 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 943 | |
---|
[1353] | 944 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 945 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 946 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 947 | c_w(k,j) = 0.0_wp |
---|
[106] | 948 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 949 | c_w(k,j) = c_max |
---|
| 950 | ENDIF |
---|
| 951 | ELSE |
---|
| 952 | c_w(k,j) = c_max |
---|
[75] | 953 | ENDIF |
---|
[106] | 954 | |
---|
[978] | 955 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 956 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 957 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 958 | |
---|
[978] | 959 | ENDDO |
---|
| 960 | ENDDO |
---|
[75] | 961 | |
---|
[978] | 962 | #if defined( __parallel ) |
---|
| 963 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 964 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 965 | MPI_SUM, comm1dy, ierr ) |
---|
| 966 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 967 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 968 | MPI_SUM, comm1dy, ierr ) |
---|
| 969 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 970 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 971 | MPI_SUM, comm1dy, ierr ) |
---|
| 972 | #else |
---|
| 973 | c_u_m = c_u_m_l |
---|
| 974 | c_v_m = c_v_m_l |
---|
| 975 | c_w_m = c_w_m_l |
---|
| 976 | #endif |
---|
| 977 | |
---|
| 978 | c_u_m = c_u_m / (ny+1) |
---|
| 979 | c_v_m = c_v_m / (ny+1) |
---|
| 980 | c_w_m = c_w_m / (ny+1) |
---|
| 981 | |
---|
[73] | 982 | ! |
---|
[978] | 983 | !-- Save old timelevels for the next timestep |
---|
| 984 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 985 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 986 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 987 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 988 | ENDIF |
---|
| 989 | |
---|
| 990 | ! |
---|
| 991 | !-- Calculate the new velocities |
---|
[996] | 992 | DO k = nzb+1, nzt+1 |
---|
[1113] | 993 | DO j = nysg, nyng |
---|
[978] | 994 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 995 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 996 | |
---|
[978] | 997 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 998 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 999 | |
---|
[978] | 1000 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 1001 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 1002 | ENDDO |
---|
[75] | 1003 | ENDDO |
---|
| 1004 | |
---|
| 1005 | ! |
---|
[978] | 1006 | !-- Bottom boundary at the outflow |
---|
| 1007 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1008 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1009 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1010 | ELSE |
---|
| 1011 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1012 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1013 | ENDIF |
---|
[1353] | 1014 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1015 | |
---|
[75] | 1016 | ! |
---|
[978] | 1017 | !-- Top boundary at the outflow |
---|
| 1018 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1019 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1020 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1021 | ELSE |
---|
[1764] | 1022 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1023 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1024 | ENDIF |
---|
[1353] | 1025 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1026 | |
---|
[75] | 1027 | ENDIF |
---|
[73] | 1028 | |
---|
[75] | 1029 | ENDIF |
---|
[73] | 1030 | |
---|
[106] | 1031 | IF ( outflow_r ) THEN |
---|
[73] | 1032 | |
---|
[1159] | 1033 | IF ( use_cmax ) THEN |
---|
| 1034 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1035 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1036 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1037 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1038 | |
---|
[978] | 1039 | c_max = dx / dt_3d |
---|
[75] | 1040 | |
---|
[1353] | 1041 | c_u_m_l = 0.0_wp |
---|
| 1042 | c_v_m_l = 0.0_wp |
---|
| 1043 | c_w_m_l = 0.0_wp |
---|
[978] | 1044 | |
---|
[1353] | 1045 | c_u_m = 0.0_wp |
---|
| 1046 | c_v_m = 0.0_wp |
---|
| 1047 | c_w_m = 0.0_wp |
---|
[978] | 1048 | |
---|
[1] | 1049 | ! |
---|
[996] | 1050 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1051 | !-- average along the outflow boundary. |
---|
| 1052 | DO k = nzb+1, nzt+1 |
---|
| 1053 | DO j = nys, nyn |
---|
[73] | 1054 | |
---|
[106] | 1055 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1056 | |
---|
[1353] | 1057 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1058 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1059 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1060 | c_u(k,j) = 0.0_wp |
---|
[106] | 1061 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1062 | c_u(k,j) = c_max |
---|
| 1063 | ENDIF |
---|
| 1064 | ELSE |
---|
| 1065 | c_u(k,j) = c_max |
---|
[73] | 1066 | ENDIF |
---|
| 1067 | |
---|
[106] | 1068 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1069 | |
---|
[1353] | 1070 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1071 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1072 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1073 | c_v(k,j) = 0.0_wp |
---|
[106] | 1074 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1075 | c_v(k,j) = c_max |
---|
| 1076 | ENDIF |
---|
| 1077 | ELSE |
---|
| 1078 | c_v(k,j) = c_max |
---|
[73] | 1079 | ENDIF |
---|
| 1080 | |
---|
[106] | 1081 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1082 | |
---|
[1353] | 1083 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1084 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1085 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1086 | c_w(k,j) = 0.0_wp |
---|
[106] | 1087 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1088 | c_w(k,j) = c_max |
---|
| 1089 | ENDIF |
---|
| 1090 | ELSE |
---|
| 1091 | c_w(k,j) = c_max |
---|
[73] | 1092 | ENDIF |
---|
[106] | 1093 | |
---|
[978] | 1094 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1095 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1096 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1097 | |
---|
[978] | 1098 | ENDDO |
---|
| 1099 | ENDDO |
---|
[73] | 1100 | |
---|
[978] | 1101 | #if defined( __parallel ) |
---|
| 1102 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1103 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1104 | MPI_SUM, comm1dy, ierr ) |
---|
| 1105 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1106 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1107 | MPI_SUM, comm1dy, ierr ) |
---|
| 1108 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1109 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1110 | MPI_SUM, comm1dy, ierr ) |
---|
| 1111 | #else |
---|
| 1112 | c_u_m = c_u_m_l |
---|
| 1113 | c_v_m = c_v_m_l |
---|
| 1114 | c_w_m = c_w_m_l |
---|
| 1115 | #endif |
---|
| 1116 | |
---|
| 1117 | c_u_m = c_u_m / (ny+1) |
---|
| 1118 | c_v_m = c_v_m / (ny+1) |
---|
| 1119 | c_w_m = c_w_m / (ny+1) |
---|
| 1120 | |
---|
[73] | 1121 | ! |
---|
[978] | 1122 | !-- Save old timelevels for the next timestep |
---|
| 1123 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1124 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1125 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1126 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1127 | ENDIF |
---|
[73] | 1128 | |
---|
[978] | 1129 | ! |
---|
| 1130 | !-- Calculate the new velocities |
---|
[996] | 1131 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1132 | DO j = nysg, nyng |
---|
[978] | 1133 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1134 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1135 | |
---|
[978] | 1136 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1137 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1138 | |
---|
[978] | 1139 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1140 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1141 | ENDDO |
---|
[73] | 1142 | ENDDO |
---|
| 1143 | |
---|
| 1144 | ! |
---|
[978] | 1145 | !-- Bottom boundary at the outflow |
---|
| 1146 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1147 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1148 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1149 | ELSE |
---|
| 1150 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1151 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1152 | ENDIF |
---|
[1353] | 1153 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1154 | |
---|
| 1155 | ! |
---|
[978] | 1156 | !-- Top boundary at the outflow |
---|
| 1157 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1158 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1159 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1160 | ELSE |
---|
| 1161 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1162 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1163 | ENDIF |
---|
[1742] | 1164 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1165 | |
---|
[1] | 1166 | ENDIF |
---|
| 1167 | |
---|
| 1168 | ENDIF |
---|
| 1169 | |
---|
| 1170 | END SUBROUTINE boundary_conds |
---|