[1682] | 1 | !> @file boundary_conds.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1933] | 22 | ! |
---|
[2233] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: boundary_conds.f90 2320 2017-07-21 12:47:43Z Giersch $ |
---|
[2320] | 27 | ! Remove unused control parameter large_scale_forcing from only-list |
---|
| 28 | ! |
---|
| 29 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 30 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 31 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 32 | ! and cloud water content (qc). |
---|
| 33 | ! |
---|
| 34 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1321] | 35 | ! |
---|
[2233] | 36 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 37 | ! Set boundary conditions on topography top using flag method. |
---|
| 38 | ! |
---|
[2119] | 39 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 40 | ! OpenACC directives removed |
---|
| 41 | ! |
---|
[2001] | 42 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 43 | ! Forced header and separation lines into 80 columns |
---|
| 44 | ! |
---|
[1993] | 45 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 46 | ! Adjustments for top boundary condition for passive scalar |
---|
| 47 | ! |
---|
[1961] | 48 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 49 | ! Treat humidity and passive scalar separately |
---|
| 50 | ! |
---|
[1933] | 51 | ! 1823 2016-04-07 08:57:52Z hoffmann |
---|
| 52 | ! Initial version of purely vertical nesting introduced. |
---|
| 53 | ! |
---|
[1823] | 54 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 55 | ! icloud_scheme removed. microphyisics_seifert added. |
---|
| 56 | ! |
---|
[1765] | 57 | ! 1764 2016-02-28 12:45:19Z raasch |
---|
| 58 | ! index bug for u_p at left outflow removed |
---|
| 59 | ! |
---|
[1763] | 60 | ! 1762 2016-02-25 12:31:13Z hellstea |
---|
| 61 | ! Introduction of nested domain feature |
---|
| 62 | ! |
---|
[1744] | 63 | ! 1742 2016-01-13 09:50:06Z raasch |
---|
| 64 | ! bugfix for outflow Neumann boundary conditions at bottom and top |
---|
| 65 | ! |
---|
[1718] | 66 | ! 1717 2015-11-11 15:09:47Z raasch |
---|
| 67 | ! Bugfix: index error in outflow conditions for left boundary |
---|
| 68 | ! |
---|
[1683] | 69 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 70 | ! Code annotations made doxygen readable |
---|
| 71 | ! |
---|
[1717] | 72 | ! 1410 2014-05-23 12:16:18Z suehring |
---|
[1463] | 73 | ! Bugfix: set dirichlet boundary condition for passive_scalar at model domain |
---|
| 74 | ! top |
---|
| 75 | ! |
---|
[1410] | 76 | ! 1399 2014-05-07 11:16:25Z heinze |
---|
| 77 | ! Bugfix: set inflow boundary conditions also if no humidity or passive_scalar |
---|
| 78 | ! is used. |
---|
| 79 | ! |
---|
[1399] | 80 | ! 1398 2014-05-07 11:15:00Z heinze |
---|
| 81 | ! Dirichlet-condition at the top for u and v changed to u_init and v_init also |
---|
| 82 | ! for large_scale_forcing |
---|
| 83 | ! |
---|
[1381] | 84 | ! 1380 2014-04-28 12:40:45Z heinze |
---|
| 85 | ! Adjust Dirichlet-condition at the top for pt in case of nudging |
---|
| 86 | ! |
---|
[1362] | 87 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 88 | ! Bottom and top boundary conditions of rain water content (qr) and |
---|
| 89 | ! rain drop concentration (nr) changed to Dirichlet |
---|
| 90 | ! |
---|
[1354] | 91 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 92 | ! REAL constants provided with KIND-attribute |
---|
| 93 | ! |
---|
[1321] | 94 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 95 | ! ONLY-attribute added to USE-statements, |
---|
| 96 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 97 | ! kinds are defined in new module kinds, |
---|
| 98 | ! revision history before 2012 removed, |
---|
| 99 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 100 | ! all variable declaration statements |
---|
[1160] | 101 | ! |
---|
[1258] | 102 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 103 | ! loop independent clauses added |
---|
| 104 | ! |
---|
[1242] | 105 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 106 | ! Adjust ug and vg at each timestep in case of large_scale_forcing |
---|
| 107 | ! |
---|
[1160] | 108 | ! 1159 2013-05-21 11:58:22Z fricke |
---|
[1159] | 109 | ! Bugfix: Neumann boundary conditions for the velocity components at the |
---|
| 110 | ! outflow are in fact radiation boundary conditions using the maximum phase |
---|
| 111 | ! velocity that ensures numerical stability (CFL-condition). |
---|
| 112 | ! Hence, logical operator use_cmax is now used instead of bc_lr_dirneu/_neudir. |
---|
| 113 | ! Bugfix: In case of use_cmax at the outflow, u, v, w are replaced by |
---|
| 114 | ! u_p, v_p, w_p |
---|
[1116] | 115 | ! |
---|
| 116 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 117 | ! boundary conditions of two-moment cloud scheme are restricted to Neumann- |
---|
| 118 | ! boundary-conditions |
---|
| 119 | ! |
---|
[1114] | 120 | ! 1113 2013-03-10 02:48:14Z raasch |
---|
| 121 | ! GPU-porting |
---|
| 122 | ! dummy argument "range" removed |
---|
| 123 | ! Bugfix: wrong index in loops of radiation boundary condition |
---|
[1113] | 124 | ! |
---|
[1054] | 125 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 126 | ! boundary conditions for the two new prognostic equations (nr, qr) of the |
---|
| 127 | ! two-moment cloud scheme |
---|
| 128 | ! |
---|
[1037] | 129 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 130 | ! code put under GPL (PALM 3.9) |
---|
| 131 | ! |
---|
[997] | 132 | ! 996 2012-09-07 10:41:47Z raasch |
---|
| 133 | ! little reformatting |
---|
| 134 | ! |
---|
[979] | 135 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 136 | ! Neumann boudnary conditions are added at the inflow boundary for the SGS-TKE. |
---|
| 137 | ! Outflow boundary conditions for the velocity components can be set to Neumann |
---|
| 138 | ! conditions or to radiation conditions with a horizontal averaged phase |
---|
| 139 | ! velocity. |
---|
| 140 | ! |
---|
[876] | 141 | ! 875 2012-04-02 15:35:15Z gryschka |
---|
| 142 | ! Bugfix in case of dirichlet inflow bc at the right or north boundary |
---|
| 143 | ! |
---|
[1] | 144 | ! Revision 1.1 1997/09/12 06:21:34 raasch |
---|
| 145 | ! Initial revision |
---|
| 146 | ! |
---|
| 147 | ! |
---|
| 148 | ! Description: |
---|
| 149 | ! ------------ |
---|
[1682] | 150 | !> Boundary conditions for the prognostic quantities. |
---|
| 151 | !> One additional bottom boundary condition is applied for the TKE (=(u*)**2) |
---|
| 152 | !> in prandtl_fluxes. The cyclic lateral boundary conditions are implicitly |
---|
| 153 | !> handled in routine exchange_horiz. Pressure boundary conditions are |
---|
| 154 | !> explicitly set in routines pres, poisfft, poismg and sor. |
---|
[1] | 155 | !------------------------------------------------------------------------------! |
---|
[1682] | 156 | SUBROUTINE boundary_conds |
---|
| 157 | |
---|
[1] | 158 | |
---|
[1320] | 159 | USE arrays_3d, & |
---|
| 160 | ONLY: c_u, c_u_m, c_u_m_l, c_v, c_v_m, c_v_m_l, c_w, c_w_m, c_w_m_l, & |
---|
[2292] | 161 | dzu, e_p, nc_p, nr_p, pt, pt_p, q, q_p, qc_p, qr_p, s, s_p, sa, & |
---|
| 162 | sa_p, u, ug, u_init, u_m_l, u_m_n, u_m_r, u_m_s, u_p, & |
---|
[1320] | 163 | v, vg, v_init, v_m_l, v_m_n, v_m_r, v_m_s, v_p, & |
---|
[1960] | 164 | w, w_p, w_m_l, w_m_n, w_m_r, w_m_s, pt_init |
---|
[2292] | 165 | |
---|
[1320] | 166 | USE control_parameters, & |
---|
[1960] | 167 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, constant_diffusion, & |
---|
[1320] | 168 | cloud_physics, dt_3d, humidity, & |
---|
[1960] | 169 | ibc_pt_b, ibc_pt_t, ibc_q_b, ibc_q_t, ibc_s_b, ibc_s_t, & |
---|
| 170 | ibc_sa_t, ibc_uv_b, ibc_uv_t, inflow_l, inflow_n, inflow_r, & |
---|
[2320] | 171 | inflow_s, intermediate_timestep_count, & |
---|
[2292] | 172 | microphysics_morrison, microphysics_seifert, nest_domain, & |
---|
| 173 | nest_bound_l, nest_bound_s, nudging, ocean, outflow_l, & |
---|
| 174 | outflow_n, outflow_r, outflow_s, passive_scalar, tsc, use_cmax |
---|
[1320] | 175 | |
---|
| 176 | USE grid_variables, & |
---|
| 177 | ONLY: ddx, ddy, dx, dy |
---|
| 178 | |
---|
| 179 | USE indices, & |
---|
| 180 | ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
[2232] | 181 | nzb, nzt, wall_flags_0 |
---|
[1320] | 182 | |
---|
| 183 | USE kinds |
---|
| 184 | |
---|
[1] | 185 | USE pegrid |
---|
| 186 | |
---|
[1933] | 187 | USE pmc_interface, & |
---|
| 188 | ONLY : nesting_mode |
---|
[1320] | 189 | |
---|
[2232] | 190 | USE surface_mod, & |
---|
| 191 | ONLY : bc_h |
---|
[1933] | 192 | |
---|
[1] | 193 | IMPLICIT NONE |
---|
| 194 | |
---|
[2232] | 195 | INTEGER(iwp) :: i !< grid index x direction |
---|
| 196 | INTEGER(iwp) :: j !< grid index y direction |
---|
| 197 | INTEGER(iwp) :: k !< grid index z direction |
---|
| 198 | INTEGER(iwp) :: kb !< variable to set respective boundary value, depends on facing. |
---|
| 199 | INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls |
---|
| 200 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1] | 201 | |
---|
[1682] | 202 | REAL(wp) :: c_max !< |
---|
| 203 | REAL(wp) :: denom !< |
---|
[1] | 204 | |
---|
[73] | 205 | |
---|
[1] | 206 | ! |
---|
[1113] | 207 | !-- Bottom boundary |
---|
| 208 | IF ( ibc_uv_b == 1 ) THEN |
---|
| 209 | u_p(nzb,:,:) = u_p(nzb+1,:,:) |
---|
| 210 | v_p(nzb,:,:) = v_p(nzb+1,:,:) |
---|
| 211 | ENDIF |
---|
[2232] | 212 | ! |
---|
| 213 | !-- Set zero vertical velocity at topography top (l=0), or bottom (l=1) in case |
---|
| 214 | !-- of downward-facing surfaces. |
---|
| 215 | DO l = 0, 1 |
---|
| 216 | ! |
---|
| 217 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 218 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 219 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 220 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 221 | DO m = 1, bc_h(l)%ns |
---|
| 222 | i = bc_h(l)%i(m) |
---|
| 223 | j = bc_h(l)%j(m) |
---|
| 224 | k = bc_h(l)%k(m) |
---|
| 225 | w_p(k+kb,j,i) = 0.0_wp |
---|
[1113] | 226 | ENDDO |
---|
| 227 | ENDDO |
---|
| 228 | |
---|
| 229 | ! |
---|
[1762] | 230 | !-- Top boundary. A nested domain ( ibc_uv_t = 3 ) does not require settings. |
---|
[1113] | 231 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 232 | u_p(nzt+1,:,:) = u_init(nzt+1) |
---|
| 233 | v_p(nzt+1,:,:) = v_init(nzt+1) |
---|
[1762] | 234 | ELSEIF ( ibc_uv_t == 1 ) THEN |
---|
[1113] | 235 | u_p(nzt+1,:,:) = u_p(nzt,:,:) |
---|
| 236 | v_p(nzt+1,:,:) = v_p(nzt,:,:) |
---|
| 237 | ENDIF |
---|
| 238 | |
---|
[1762] | 239 | IF ( .NOT. nest_domain ) THEN |
---|
| 240 | w_p(nzt:nzt+1,:,:) = 0.0_wp ! nzt is not a prognostic level (but cf. pres) |
---|
| 241 | ENDIF |
---|
| 242 | |
---|
[1113] | 243 | ! |
---|
[2232] | 244 | !-- Temperature at bottom and top boundary. |
---|
[1113] | 245 | !-- In case of coupled runs (ibc_pt_b = 2) the temperature is given by |
---|
| 246 | !-- the sea surface temperature of the coupled ocean model. |
---|
[2232] | 247 | !-- Dirichlet |
---|
[1113] | 248 | IF ( ibc_pt_b == 0 ) THEN |
---|
[2232] | 249 | DO l = 0, 1 |
---|
| 250 | ! |
---|
| 251 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 252 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 253 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 254 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 255 | DO m = 1, bc_h(l)%ns |
---|
| 256 | i = bc_h(l)%i(m) |
---|
| 257 | j = bc_h(l)%j(m) |
---|
| 258 | k = bc_h(l)%k(m) |
---|
| 259 | pt_p(k+kb,j,i) = pt(k+kb,j,i) |
---|
[1] | 260 | ENDDO |
---|
| 261 | ENDDO |
---|
[2232] | 262 | ! |
---|
| 263 | !-- Neumann, zero-gradient |
---|
[1113] | 264 | ELSEIF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 265 | DO l = 0, 1 |
---|
| 266 | ! |
---|
| 267 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 268 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 269 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 270 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 271 | DO m = 1, bc_h(l)%ns |
---|
| 272 | i = bc_h(l)%i(m) |
---|
| 273 | j = bc_h(l)%j(m) |
---|
| 274 | k = bc_h(l)%k(m) |
---|
| 275 | pt_p(k+kb,j,i) = pt_p(k,j,i) |
---|
[1113] | 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | ENDIF |
---|
[1] | 279 | |
---|
| 280 | ! |
---|
[1113] | 281 | !-- Temperature at top boundary |
---|
| 282 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 283 | pt_p(nzt+1,:,:) = pt(nzt+1,:,:) |
---|
[1380] | 284 | ! |
---|
| 285 | !-- In case of nudging adjust top boundary to pt which is |
---|
| 286 | !-- read in from NUDGING-DATA |
---|
| 287 | IF ( nudging ) THEN |
---|
| 288 | pt_p(nzt+1,:,:) = pt_init(nzt+1) |
---|
| 289 | ENDIF |
---|
[1113] | 290 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 291 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) |
---|
| 292 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1992] | 293 | pt_p(nzt+1,:,:) = pt_p(nzt,:,:) + bc_pt_t_val * dzu(nzt+1) |
---|
[1113] | 294 | ENDIF |
---|
[1] | 295 | |
---|
| 296 | ! |
---|
[1113] | 297 | !-- Boundary conditions for TKE |
---|
| 298 | !-- Generally Neumann conditions with de/dz=0 are assumed |
---|
| 299 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2232] | 300 | |
---|
| 301 | DO l = 0, 1 |
---|
| 302 | ! |
---|
| 303 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 304 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 305 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 306 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 307 | DO m = 1, bc_h(l)%ns |
---|
| 308 | i = bc_h(l)%i(m) |
---|
| 309 | j = bc_h(l)%j(m) |
---|
| 310 | k = bc_h(l)%k(m) |
---|
| 311 | e_p(k+kb,j,i) = e_p(k,j,i) |
---|
[73] | 312 | ENDDO |
---|
[1113] | 313 | ENDDO |
---|
[2232] | 314 | |
---|
[1762] | 315 | IF ( .NOT. nest_domain ) THEN |
---|
| 316 | e_p(nzt+1,:,:) = e_p(nzt,:,:) |
---|
| 317 | ENDIF |
---|
[1113] | 318 | ENDIF |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | !-- Boundary conditions for salinity |
---|
| 322 | IF ( ocean ) THEN |
---|
| 323 | ! |
---|
| 324 | !-- Bottom boundary: Neumann condition because salinity flux is always |
---|
[2232] | 325 | !-- given. |
---|
| 326 | DO l = 0, 1 |
---|
| 327 | ! |
---|
| 328 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 329 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 330 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 331 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 332 | DO m = 1, bc_h(l)%ns |
---|
| 333 | i = bc_h(l)%i(m) |
---|
| 334 | j = bc_h(l)%j(m) |
---|
| 335 | k = bc_h(l)%k(m) |
---|
| 336 | sa_p(k+kb,j,i) = sa_p(k,j,i) |
---|
[1] | 337 | ENDDO |
---|
[1113] | 338 | ENDDO |
---|
[1] | 339 | ! |
---|
[1113] | 340 | !-- Top boundary: Dirichlet or Neumann |
---|
| 341 | IF ( ibc_sa_t == 0 ) THEN |
---|
| 342 | sa_p(nzt+1,:,:) = sa(nzt+1,:,:) |
---|
| 343 | ELSEIF ( ibc_sa_t == 1 ) THEN |
---|
| 344 | sa_p(nzt+1,:,:) = sa_p(nzt,:,:) |
---|
[1] | 345 | ENDIF |
---|
| 346 | |
---|
[1113] | 347 | ENDIF |
---|
| 348 | |
---|
[1] | 349 | ! |
---|
[1960] | 350 | !-- Boundary conditions for total water content, |
---|
[1113] | 351 | !-- bottom and top boundary (see also temperature) |
---|
[1960] | 352 | IF ( humidity ) THEN |
---|
[1113] | 353 | ! |
---|
| 354 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 355 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 356 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 357 | !-- q_p at k-1 |
---|
[1113] | 358 | IF ( ibc_q_b == 0 ) THEN |
---|
[2232] | 359 | |
---|
| 360 | DO l = 0, 1 |
---|
| 361 | ! |
---|
| 362 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 363 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 364 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 365 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 366 | DO m = 1, bc_h(l)%ns |
---|
| 367 | i = bc_h(l)%i(m) |
---|
| 368 | j = bc_h(l)%j(m) |
---|
| 369 | k = bc_h(l)%k(m) |
---|
| 370 | q_p(k+kb,j,i) = q(k+kb,j,i) |
---|
[1] | 371 | ENDDO |
---|
| 372 | ENDDO |
---|
[2232] | 373 | |
---|
[1113] | 374 | ELSE |
---|
[2232] | 375 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 376 | DO m = 1, bc_h(0)%ns |
---|
| 377 | i = bc_h(0)%i(m) |
---|
| 378 | j = bc_h(0)%j(m) |
---|
| 379 | k = bc_h(0)%k(m) |
---|
| 380 | q_p(k-1,j,i) = q_p(k,j,i) |
---|
| 381 | ENDDO |
---|
| 382 | |
---|
| 383 | DO l = 0, 1 |
---|
| 384 | ! |
---|
| 385 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 386 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 387 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 388 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 389 | DO m = 1, bc_h(l)%ns |
---|
| 390 | i = bc_h(l)%i(m) |
---|
| 391 | j = bc_h(l)%j(m) |
---|
| 392 | k = bc_h(l)%k(m) |
---|
| 393 | q_p(k+kb,j,i) = q_p(k,j,i) |
---|
[95] | 394 | ENDDO |
---|
| 395 | ENDDO |
---|
[1113] | 396 | ENDIF |
---|
[95] | 397 | ! |
---|
[1113] | 398 | !-- Top boundary |
---|
[1462] | 399 | IF ( ibc_q_t == 0 ) THEN |
---|
| 400 | q_p(nzt+1,:,:) = q(nzt+1,:,:) |
---|
| 401 | ELSEIF ( ibc_q_t == 1 ) THEN |
---|
[1992] | 402 | q_p(nzt+1,:,:) = q_p(nzt,:,:) + bc_q_t_val * dzu(nzt+1) |
---|
[1462] | 403 | ENDIF |
---|
[95] | 404 | |
---|
[2292] | 405 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 406 | ! |
---|
| 407 | !-- Surface conditions cloud water (Dirichlet) |
---|
| 408 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 409 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 410 | !-- qr_p and nr_p at k-1 |
---|
| 411 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 412 | DO m = 1, bc_h(0)%ns |
---|
| 413 | i = bc_h(0)%i(m) |
---|
| 414 | j = bc_h(0)%j(m) |
---|
| 415 | k = bc_h(0)%k(m) |
---|
| 416 | qc_p(k-1,j,i) = 0.0_wp |
---|
| 417 | nc_p(k-1,j,i) = 0.0_wp |
---|
| 418 | ENDDO |
---|
| 419 | ! |
---|
| 420 | !-- Top boundary condition for cloud water (Dirichlet) |
---|
| 421 | qc_p(nzt+1,:,:) = 0.0_wp |
---|
| 422 | nc_p(nzt+1,:,:) = 0.0_wp |
---|
| 423 | |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
[1822] | 426 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1113] | 427 | ! |
---|
[1361] | 428 | !-- Surface conditions rain water (Dirichlet) |
---|
[2232] | 429 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 430 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 431 | !-- qr_p and nr_p at k-1 |
---|
| 432 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 433 | DO m = 1, bc_h(0)%ns |
---|
| 434 | i = bc_h(0)%i(m) |
---|
| 435 | j = bc_h(0)%j(m) |
---|
| 436 | k = bc_h(0)%k(m) |
---|
| 437 | qr_p(k-1,j,i) = 0.0_wp |
---|
| 438 | nr_p(k-1,j,i) = 0.0_wp |
---|
[1115] | 439 | ENDDO |
---|
[1] | 440 | ! |
---|
[1361] | 441 | !-- Top boundary condition for rain water (Dirichlet) |
---|
| 442 | qr_p(nzt+1,:,:) = 0.0_wp |
---|
| 443 | nr_p(nzt+1,:,:) = 0.0_wp |
---|
[1115] | 444 | |
---|
[1] | 445 | ENDIF |
---|
[1409] | 446 | ENDIF |
---|
[1] | 447 | ! |
---|
[1960] | 448 | !-- Boundary conditions for scalar, |
---|
| 449 | !-- bottom and top boundary (see also temperature) |
---|
| 450 | IF ( passive_scalar ) THEN |
---|
| 451 | ! |
---|
| 452 | !-- Surface conditions for constant_humidity_flux |
---|
[2232] | 453 | !-- Run loop over all non-natural and natural walls. Note, in wall-datatype |
---|
| 454 | !-- the k coordinate belongs to the atmospheric grid point, therefore, set |
---|
| 455 | !-- s_p at k-1 |
---|
[1960] | 456 | IF ( ibc_s_b == 0 ) THEN |
---|
[2232] | 457 | |
---|
| 458 | DO l = 0, 1 |
---|
| 459 | ! |
---|
| 460 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 461 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 462 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 463 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 464 | DO m = 1, bc_h(l)%ns |
---|
| 465 | i = bc_h(l)%i(m) |
---|
| 466 | j = bc_h(l)%j(m) |
---|
| 467 | k = bc_h(l)%k(m) |
---|
| 468 | s_p(k+kb,j,i) = s(k+kb,j,i) |
---|
[1960] | 469 | ENDDO |
---|
| 470 | ENDDO |
---|
[2232] | 471 | |
---|
[1960] | 472 | ELSE |
---|
[2232] | 473 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 474 | DO m = 1, bc_h(0)%ns |
---|
| 475 | i = bc_h(0)%i(m) |
---|
| 476 | j = bc_h(0)%j(m) |
---|
| 477 | k = bc_h(0)%k(m) |
---|
| 478 | s_p(k-1,j,i) = s_p(k,j,i) |
---|
| 479 | ENDDO |
---|
| 480 | |
---|
| 481 | DO l = 0, 1 |
---|
| 482 | ! |
---|
| 483 | !-- Set kb, for upward-facing surfaces value at topography top (k-1) is set, |
---|
| 484 | !-- for downward-facing surfaces at topography bottom (k+1). |
---|
| 485 | kb = MERGE( -1, 1, l == 0 ) |
---|
| 486 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 487 | DO m = 1, bc_h(l)%ns |
---|
| 488 | i = bc_h(l)%i(m) |
---|
| 489 | j = bc_h(l)%j(m) |
---|
| 490 | k = bc_h(l)%k(m) |
---|
| 491 | s_p(k+kb,j,i) = s_p(k,j,i) |
---|
[1960] | 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | ENDIF |
---|
| 495 | ! |
---|
[1992] | 496 | !-- Top boundary condition |
---|
| 497 | IF ( ibc_s_t == 0 ) THEN |
---|
[1960] | 498 | s_p(nzt+1,:,:) = s(nzt+1,:,:) |
---|
[1992] | 499 | ELSEIF ( ibc_s_t == 1 ) THEN |
---|
| 500 | s_p(nzt+1,:,:) = s_p(nzt,:,:) |
---|
| 501 | ELSEIF ( ibc_s_t == 2 ) THEN |
---|
| 502 | s_p(nzt+1,:,:) = s_p(nzt,:,:) + bc_s_t_val * dzu(nzt+1) |
---|
[1960] | 503 | ENDIF |
---|
| 504 | |
---|
| 505 | ENDIF |
---|
| 506 | ! |
---|
[1762] | 507 | !-- In case of inflow or nest boundary at the south boundary the boundary for v |
---|
| 508 | !-- is at nys and in case of inflow or nest boundary at the left boundary the |
---|
| 509 | !-- boundary for u is at nxl. Since in prognostic_equations (cache optimized |
---|
| 510 | !-- version) these levels are handled as a prognostic level, boundary values |
---|
| 511 | !-- have to be restored here. |
---|
[1409] | 512 | !-- For the SGS-TKE, Neumann boundary conditions are used at the inflow. |
---|
| 513 | IF ( inflow_s ) THEN |
---|
| 514 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 515 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
| 516 | ELSEIF ( inflow_n ) THEN |
---|
| 517 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
| 518 | ELSEIF ( inflow_l ) THEN |
---|
| 519 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 520 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
| 521 | ELSEIF ( inflow_r ) THEN |
---|
| 522 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
| 523 | ENDIF |
---|
[1] | 524 | |
---|
| 525 | ! |
---|
[1762] | 526 | !-- The same restoration for u at i=nxl and v at j=nys as above must be made |
---|
[1933] | 527 | !-- in case of nest boundaries. This must not be done in case of vertical nesting |
---|
| 528 | !-- mode as in that case the lateral boundaries are actually cyclic. |
---|
| 529 | IF ( nesting_mode /= 'vertical' ) THEN |
---|
| 530 | IF ( nest_bound_s ) THEN |
---|
| 531 | v_p(:,nys,:) = v_p(:,nys-1,:) |
---|
| 532 | ENDIF |
---|
| 533 | IF ( nest_bound_l ) THEN |
---|
| 534 | u_p(:,:,nxl) = u_p(:,:,nxl-1) |
---|
| 535 | ENDIF |
---|
[1762] | 536 | ENDIF |
---|
| 537 | |
---|
| 538 | ! |
---|
[1409] | 539 | !-- Lateral boundary conditions for scalar quantities at the outflow |
---|
| 540 | IF ( outflow_s ) THEN |
---|
| 541 | pt_p(:,nys-1,:) = pt_p(:,nys,:) |
---|
[2232] | 542 | IF ( .NOT. constant_diffusion ) e_p(:,nys-1,:) = e_p(:,nys,:) |
---|
[1960] | 543 | IF ( humidity ) THEN |
---|
[1409] | 544 | q_p(:,nys-1,:) = q_p(:,nys,:) |
---|
[2292] | 545 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 546 | qc_p(:,nys-1,:) = qc_p(:,nys,:) |
---|
| 547 | nc_p(:,nys-1,:) = nc_p(:,nys,:) |
---|
| 548 | ENDIF |
---|
[1822] | 549 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 550 | qr_p(:,nys-1,:) = qr_p(:,nys,:) |
---|
| 551 | nr_p(:,nys-1,:) = nr_p(:,nys,:) |
---|
[1053] | 552 | ENDIF |
---|
[1409] | 553 | ENDIF |
---|
[1960] | 554 | IF ( passive_scalar ) s_p(:,nys-1,:) = s_p(:,nys,:) |
---|
[1409] | 555 | ELSEIF ( outflow_n ) THEN |
---|
| 556 | pt_p(:,nyn+1,:) = pt_p(:,nyn,:) |
---|
| 557 | IF ( .NOT. constant_diffusion ) e_p(:,nyn+1,:) = e_p(:,nyn,:) |
---|
[1960] | 558 | IF ( humidity ) THEN |
---|
[1409] | 559 | q_p(:,nyn+1,:) = q_p(:,nyn,:) |
---|
[2292] | 560 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 561 | qc_p(:,nyn+1,:) = qc_p(:,nyn,:) |
---|
| 562 | nc_p(:,nyn+1,:) = nc_p(:,nyn,:) |
---|
| 563 | ENDIF |
---|
[1822] | 564 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 565 | qr_p(:,nyn+1,:) = qr_p(:,nyn,:) |
---|
| 566 | nr_p(:,nyn+1,:) = nr_p(:,nyn,:) |
---|
[1053] | 567 | ENDIF |
---|
[1409] | 568 | ENDIF |
---|
[1960] | 569 | IF ( passive_scalar ) s_p(:,nyn+1,:) = s_p(:,nyn,:) |
---|
[1409] | 570 | ELSEIF ( outflow_l ) THEN |
---|
| 571 | pt_p(:,:,nxl-1) = pt_p(:,:,nxl) |
---|
| 572 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxl-1) = e_p(:,:,nxl) |
---|
[1960] | 573 | IF ( humidity ) THEN |
---|
[1409] | 574 | q_p(:,:,nxl-1) = q_p(:,:,nxl) |
---|
[2292] | 575 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 576 | qc_p(:,:,nxl-1) = qc_p(:,:,nxl) |
---|
| 577 | nc_p(:,:,nxl-1) = nc_p(:,:,nxl) |
---|
| 578 | ENDIF |
---|
[1822] | 579 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 580 | qr_p(:,:,nxl-1) = qr_p(:,:,nxl) |
---|
| 581 | nr_p(:,:,nxl-1) = nr_p(:,:,nxl) |
---|
[1053] | 582 | ENDIF |
---|
[1409] | 583 | ENDIF |
---|
[1960] | 584 | IF ( passive_scalar ) s_p(:,:,nxl-1) = s_p(:,:,nxl) |
---|
[1409] | 585 | ELSEIF ( outflow_r ) THEN |
---|
| 586 | pt_p(:,:,nxr+1) = pt_p(:,:,nxr) |
---|
| 587 | IF ( .NOT. constant_diffusion ) e_p(:,:,nxr+1) = e_p(:,:,nxr) |
---|
[1960] | 588 | IF ( humidity ) THEN |
---|
[1409] | 589 | q_p(:,:,nxr+1) = q_p(:,:,nxr) |
---|
[2292] | 590 | IF ( cloud_physics .AND. microphysics_morrison ) THEN |
---|
| 591 | qc_p(:,:,nxr+1) = qc_p(:,:,nxr) |
---|
| 592 | nc_p(:,:,nxr+1) = nc_p(:,:,nxr) |
---|
| 593 | ENDIF |
---|
[1822] | 594 | IF ( cloud_physics .AND. microphysics_seifert ) THEN |
---|
[1409] | 595 | qr_p(:,:,nxr+1) = qr_p(:,:,nxr) |
---|
| 596 | nr_p(:,:,nxr+1) = nr_p(:,:,nxr) |
---|
[1053] | 597 | ENDIF |
---|
[1] | 598 | ENDIF |
---|
[1960] | 599 | IF ( passive_scalar ) s_p(:,:,nxr+1) = s_p(:,:,nxr) |
---|
[1] | 600 | ENDIF |
---|
| 601 | |
---|
| 602 | ! |
---|
[1159] | 603 | !-- Radiation boundary conditions for the velocities at the respective outflow. |
---|
| 604 | !-- The phase velocity is either assumed to the maximum phase velocity that |
---|
| 605 | !-- ensures numerical stability (CFL-condition) or calculated after |
---|
| 606 | !-- Orlanski(1976) and averaged along the outflow boundary. |
---|
[106] | 607 | IF ( outflow_s ) THEN |
---|
[75] | 608 | |
---|
[1159] | 609 | IF ( use_cmax ) THEN |
---|
| 610 | u_p(:,-1,:) = u(:,0,:) |
---|
| 611 | v_p(:,0,:) = v(:,1,:) |
---|
| 612 | w_p(:,-1,:) = w(:,0,:) |
---|
| 613 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 614 | |
---|
[978] | 615 | c_max = dy / dt_3d |
---|
[75] | 616 | |
---|
[1353] | 617 | c_u_m_l = 0.0_wp |
---|
| 618 | c_v_m_l = 0.0_wp |
---|
| 619 | c_w_m_l = 0.0_wp |
---|
[978] | 620 | |
---|
[1353] | 621 | c_u_m = 0.0_wp |
---|
| 622 | c_v_m = 0.0_wp |
---|
| 623 | c_w_m = 0.0_wp |
---|
[978] | 624 | |
---|
[75] | 625 | ! |
---|
[996] | 626 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 627 | !-- average along the outflow boundary. |
---|
| 628 | DO k = nzb+1, nzt+1 |
---|
| 629 | DO i = nxl, nxr |
---|
[75] | 630 | |
---|
[106] | 631 | denom = u_m_s(k,0,i) - u_m_s(k,1,i) |
---|
| 632 | |
---|
[1353] | 633 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 634 | c_u(k,i) = -c_max * ( u(k,0,i) - u_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 635 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 636 | c_u(k,i) = 0.0_wp |
---|
[106] | 637 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 638 | c_u(k,i) = c_max |
---|
| 639 | ENDIF |
---|
| 640 | ELSE |
---|
| 641 | c_u(k,i) = c_max |
---|
[75] | 642 | ENDIF |
---|
| 643 | |
---|
[106] | 644 | denom = v_m_s(k,1,i) - v_m_s(k,2,i) |
---|
| 645 | |
---|
[1353] | 646 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 647 | c_v(k,i) = -c_max * ( v(k,1,i) - v_m_s(k,1,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 648 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 649 | c_v(k,i) = 0.0_wp |
---|
[106] | 650 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 651 | c_v(k,i) = c_max |
---|
| 652 | ENDIF |
---|
| 653 | ELSE |
---|
| 654 | c_v(k,i) = c_max |
---|
[75] | 655 | ENDIF |
---|
| 656 | |
---|
[106] | 657 | denom = w_m_s(k,0,i) - w_m_s(k,1,i) |
---|
[75] | 658 | |
---|
[1353] | 659 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 660 | c_w(k,i) = -c_max * ( w(k,0,i) - w_m_s(k,0,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 661 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 662 | c_w(k,i) = 0.0_wp |
---|
[106] | 663 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 664 | c_w(k,i) = c_max |
---|
| 665 | ENDIF |
---|
| 666 | ELSE |
---|
| 667 | c_w(k,i) = c_max |
---|
[75] | 668 | ENDIF |
---|
[106] | 669 | |
---|
[978] | 670 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 671 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 672 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 673 | |
---|
[978] | 674 | ENDDO |
---|
| 675 | ENDDO |
---|
[75] | 676 | |
---|
[978] | 677 | #if defined( __parallel ) |
---|
| 678 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 679 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 680 | MPI_SUM, comm1dx, ierr ) |
---|
| 681 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 682 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 683 | MPI_SUM, comm1dx, ierr ) |
---|
| 684 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 685 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 686 | MPI_SUM, comm1dx, ierr ) |
---|
| 687 | #else |
---|
| 688 | c_u_m = c_u_m_l |
---|
| 689 | c_v_m = c_v_m_l |
---|
| 690 | c_w_m = c_w_m_l |
---|
| 691 | #endif |
---|
| 692 | |
---|
| 693 | c_u_m = c_u_m / (nx+1) |
---|
| 694 | c_v_m = c_v_m / (nx+1) |
---|
| 695 | c_w_m = c_w_m / (nx+1) |
---|
| 696 | |
---|
[75] | 697 | ! |
---|
[978] | 698 | !-- Save old timelevels for the next timestep |
---|
| 699 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 700 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 701 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 702 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 703 | ENDIF |
---|
| 704 | |
---|
| 705 | ! |
---|
| 706 | !-- Calculate the new velocities |
---|
[996] | 707 | DO k = nzb+1, nzt+1 |
---|
| 708 | DO i = nxlg, nxrg |
---|
[978] | 709 | u_p(k,-1,i) = u(k,-1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[75] | 710 | ( u(k,-1,i) - u(k,0,i) ) * ddy |
---|
| 711 | |
---|
[978] | 712 | v_p(k,0,i) = v(k,0,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[106] | 713 | ( v(k,0,i) - v(k,1,i) ) * ddy |
---|
[75] | 714 | |
---|
[978] | 715 | w_p(k,-1,i) = w(k,-1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 716 | ( w(k,-1,i) - w(k,0,i) ) * ddy |
---|
[978] | 717 | ENDDO |
---|
[75] | 718 | ENDDO |
---|
| 719 | |
---|
| 720 | ! |
---|
[978] | 721 | !-- Bottom boundary at the outflow |
---|
| 722 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 723 | u_p(nzb,-1,:) = 0.0_wp |
---|
| 724 | v_p(nzb,0,:) = 0.0_wp |
---|
[978] | 725 | ELSE |
---|
| 726 | u_p(nzb,-1,:) = u_p(nzb+1,-1,:) |
---|
| 727 | v_p(nzb,0,:) = v_p(nzb+1,0,:) |
---|
| 728 | ENDIF |
---|
[1353] | 729 | w_p(nzb,-1,:) = 0.0_wp |
---|
[73] | 730 | |
---|
[75] | 731 | ! |
---|
[978] | 732 | !-- Top boundary at the outflow |
---|
| 733 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 734 | u_p(nzt+1,-1,:) = u_init(nzt+1) |
---|
| 735 | v_p(nzt+1,0,:) = v_init(nzt+1) |
---|
| 736 | ELSE |
---|
[1742] | 737 | u_p(nzt+1,-1,:) = u_p(nzt,-1,:) |
---|
| 738 | v_p(nzt+1,0,:) = v_p(nzt,0,:) |
---|
[978] | 739 | ENDIF |
---|
[1353] | 740 | w_p(nzt:nzt+1,-1,:) = 0.0_wp |
---|
[978] | 741 | |
---|
[75] | 742 | ENDIF |
---|
[73] | 743 | |
---|
[75] | 744 | ENDIF |
---|
[73] | 745 | |
---|
[106] | 746 | IF ( outflow_n ) THEN |
---|
[73] | 747 | |
---|
[1159] | 748 | IF ( use_cmax ) THEN |
---|
| 749 | u_p(:,ny+1,:) = u(:,ny,:) |
---|
| 750 | v_p(:,ny+1,:) = v(:,ny,:) |
---|
| 751 | w_p(:,ny+1,:) = w(:,ny,:) |
---|
| 752 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 753 | |
---|
[978] | 754 | c_max = dy / dt_3d |
---|
[75] | 755 | |
---|
[1353] | 756 | c_u_m_l = 0.0_wp |
---|
| 757 | c_v_m_l = 0.0_wp |
---|
| 758 | c_w_m_l = 0.0_wp |
---|
[978] | 759 | |
---|
[1353] | 760 | c_u_m = 0.0_wp |
---|
| 761 | c_v_m = 0.0_wp |
---|
| 762 | c_w_m = 0.0_wp |
---|
[978] | 763 | |
---|
[1] | 764 | ! |
---|
[996] | 765 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 766 | !-- average along the outflow boundary. |
---|
| 767 | DO k = nzb+1, nzt+1 |
---|
| 768 | DO i = nxl, nxr |
---|
[73] | 769 | |
---|
[106] | 770 | denom = u_m_n(k,ny,i) - u_m_n(k,ny-1,i) |
---|
| 771 | |
---|
[1353] | 772 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 773 | c_u(k,i) = -c_max * ( u(k,ny,i) - u_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 774 | IF ( c_u(k,i) < 0.0_wp ) THEN |
---|
| 775 | c_u(k,i) = 0.0_wp |
---|
[106] | 776 | ELSEIF ( c_u(k,i) > c_max ) THEN |
---|
| 777 | c_u(k,i) = c_max |
---|
| 778 | ENDIF |
---|
| 779 | ELSE |
---|
| 780 | c_u(k,i) = c_max |
---|
[73] | 781 | ENDIF |
---|
| 782 | |
---|
[106] | 783 | denom = v_m_n(k,ny,i) - v_m_n(k,ny-1,i) |
---|
[73] | 784 | |
---|
[1353] | 785 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 786 | c_v(k,i) = -c_max * ( v(k,ny,i) - v_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 787 | IF ( c_v(k,i) < 0.0_wp ) THEN |
---|
| 788 | c_v(k,i) = 0.0_wp |
---|
[106] | 789 | ELSEIF ( c_v(k,i) > c_max ) THEN |
---|
| 790 | c_v(k,i) = c_max |
---|
| 791 | ENDIF |
---|
| 792 | ELSE |
---|
| 793 | c_v(k,i) = c_max |
---|
[73] | 794 | ENDIF |
---|
| 795 | |
---|
[106] | 796 | denom = w_m_n(k,ny,i) - w_m_n(k,ny-1,i) |
---|
[73] | 797 | |
---|
[1353] | 798 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 799 | c_w(k,i) = -c_max * ( w(k,ny,i) - w_m_n(k,ny,i) ) / ( denom * tsc(2) ) |
---|
[1353] | 800 | IF ( c_w(k,i) < 0.0_wp ) THEN |
---|
| 801 | c_w(k,i) = 0.0_wp |
---|
[106] | 802 | ELSEIF ( c_w(k,i) > c_max ) THEN |
---|
| 803 | c_w(k,i) = c_max |
---|
| 804 | ENDIF |
---|
| 805 | ELSE |
---|
| 806 | c_w(k,i) = c_max |
---|
[73] | 807 | ENDIF |
---|
[106] | 808 | |
---|
[978] | 809 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,i) |
---|
| 810 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,i) |
---|
| 811 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,i) |
---|
[106] | 812 | |
---|
[978] | 813 | ENDDO |
---|
| 814 | ENDDO |
---|
[73] | 815 | |
---|
[978] | 816 | #if defined( __parallel ) |
---|
| 817 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 818 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 819 | MPI_SUM, comm1dx, ierr ) |
---|
| 820 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 821 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 822 | MPI_SUM, comm1dx, ierr ) |
---|
| 823 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dx, ierr ) |
---|
| 824 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 825 | MPI_SUM, comm1dx, ierr ) |
---|
| 826 | #else |
---|
| 827 | c_u_m = c_u_m_l |
---|
| 828 | c_v_m = c_v_m_l |
---|
| 829 | c_w_m = c_w_m_l |
---|
| 830 | #endif |
---|
| 831 | |
---|
| 832 | c_u_m = c_u_m / (nx+1) |
---|
| 833 | c_v_m = c_v_m / (nx+1) |
---|
| 834 | c_w_m = c_w_m / (nx+1) |
---|
| 835 | |
---|
[73] | 836 | ! |
---|
[978] | 837 | !-- Save old timelevels for the next timestep |
---|
| 838 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 839 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 840 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 841 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 842 | ENDIF |
---|
[73] | 843 | |
---|
[978] | 844 | ! |
---|
| 845 | !-- Calculate the new velocities |
---|
[996] | 846 | DO k = nzb+1, nzt+1 |
---|
| 847 | DO i = nxlg, nxrg |
---|
[978] | 848 | u_p(k,ny+1,i) = u(k,ny+1,i) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 849 | ( u(k,ny+1,i) - u(k,ny,i) ) * ddy |
---|
[73] | 850 | |
---|
[978] | 851 | v_p(k,ny+1,i) = v(k,ny+1,i) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 852 | ( v(k,ny+1,i) - v(k,ny,i) ) * ddy |
---|
[73] | 853 | |
---|
[978] | 854 | w_p(k,ny+1,i) = w(k,ny+1,i) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 855 | ( w(k,ny+1,i) - w(k,ny,i) ) * ddy |
---|
| 856 | ENDDO |
---|
[1] | 857 | ENDDO |
---|
| 858 | |
---|
| 859 | ! |
---|
[978] | 860 | !-- Bottom boundary at the outflow |
---|
| 861 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 862 | u_p(nzb,ny+1,:) = 0.0_wp |
---|
| 863 | v_p(nzb,ny+1,:) = 0.0_wp |
---|
[978] | 864 | ELSE |
---|
| 865 | u_p(nzb,ny+1,:) = u_p(nzb+1,ny+1,:) |
---|
| 866 | v_p(nzb,ny+1,:) = v_p(nzb+1,ny+1,:) |
---|
| 867 | ENDIF |
---|
[1353] | 868 | w_p(nzb,ny+1,:) = 0.0_wp |
---|
[73] | 869 | |
---|
| 870 | ! |
---|
[978] | 871 | !-- Top boundary at the outflow |
---|
| 872 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 873 | u_p(nzt+1,ny+1,:) = u_init(nzt+1) |
---|
| 874 | v_p(nzt+1,ny+1,:) = v_init(nzt+1) |
---|
| 875 | ELSE |
---|
| 876 | u_p(nzt+1,ny+1,:) = u_p(nzt,nyn+1,:) |
---|
| 877 | v_p(nzt+1,ny+1,:) = v_p(nzt,nyn+1,:) |
---|
| 878 | ENDIF |
---|
[1353] | 879 | w_p(nzt:nzt+1,ny+1,:) = 0.0_wp |
---|
[978] | 880 | |
---|
[1] | 881 | ENDIF |
---|
| 882 | |
---|
[75] | 883 | ENDIF |
---|
| 884 | |
---|
[106] | 885 | IF ( outflow_l ) THEN |
---|
[75] | 886 | |
---|
[1159] | 887 | IF ( use_cmax ) THEN |
---|
[1717] | 888 | u_p(:,:,0) = u(:,:,1) |
---|
| 889 | v_p(:,:,-1) = v(:,:,0) |
---|
[1159] | 890 | w_p(:,:,-1) = w(:,:,0) |
---|
| 891 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 892 | |
---|
[978] | 893 | c_max = dx / dt_3d |
---|
[75] | 894 | |
---|
[1353] | 895 | c_u_m_l = 0.0_wp |
---|
| 896 | c_v_m_l = 0.0_wp |
---|
| 897 | c_w_m_l = 0.0_wp |
---|
[978] | 898 | |
---|
[1353] | 899 | c_u_m = 0.0_wp |
---|
| 900 | c_v_m = 0.0_wp |
---|
| 901 | c_w_m = 0.0_wp |
---|
[978] | 902 | |
---|
[1] | 903 | ! |
---|
[996] | 904 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 905 | !-- average along the outflow boundary. |
---|
| 906 | DO k = nzb+1, nzt+1 |
---|
| 907 | DO j = nys, nyn |
---|
[75] | 908 | |
---|
[106] | 909 | denom = u_m_l(k,j,1) - u_m_l(k,j,2) |
---|
| 910 | |
---|
[1353] | 911 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 912 | c_u(k,j) = -c_max * ( u(k,j,1) - u_m_l(k,j,1) ) / ( denom * tsc(2) ) |
---|
[1353] | 913 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 914 | c_u(k,j) = 0.0_wp |
---|
[107] | 915 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 916 | c_u(k,j) = c_max |
---|
[106] | 917 | ENDIF |
---|
| 918 | ELSE |
---|
[107] | 919 | c_u(k,j) = c_max |
---|
[75] | 920 | ENDIF |
---|
| 921 | |
---|
[106] | 922 | denom = v_m_l(k,j,0) - v_m_l(k,j,1) |
---|
[75] | 923 | |
---|
[1353] | 924 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 925 | c_v(k,j) = -c_max * ( v(k,j,0) - v_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 926 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 927 | c_v(k,j) = 0.0_wp |
---|
[106] | 928 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 929 | c_v(k,j) = c_max |
---|
| 930 | ENDIF |
---|
| 931 | ELSE |
---|
| 932 | c_v(k,j) = c_max |
---|
[75] | 933 | ENDIF |
---|
| 934 | |
---|
[106] | 935 | denom = w_m_l(k,j,0) - w_m_l(k,j,1) |
---|
[75] | 936 | |
---|
[1353] | 937 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 938 | c_w(k,j) = -c_max * ( w(k,j,0) - w_m_l(k,j,0) ) / ( denom * tsc(2) ) |
---|
[1353] | 939 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 940 | c_w(k,j) = 0.0_wp |
---|
[106] | 941 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 942 | c_w(k,j) = c_max |
---|
| 943 | ENDIF |
---|
| 944 | ELSE |
---|
| 945 | c_w(k,j) = c_max |
---|
[75] | 946 | ENDIF |
---|
[106] | 947 | |
---|
[978] | 948 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 949 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 950 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 951 | |
---|
[978] | 952 | ENDDO |
---|
| 953 | ENDDO |
---|
[75] | 954 | |
---|
[978] | 955 | #if defined( __parallel ) |
---|
| 956 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 957 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 958 | MPI_SUM, comm1dy, ierr ) |
---|
| 959 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 960 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 961 | MPI_SUM, comm1dy, ierr ) |
---|
| 962 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 963 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 964 | MPI_SUM, comm1dy, ierr ) |
---|
| 965 | #else |
---|
| 966 | c_u_m = c_u_m_l |
---|
| 967 | c_v_m = c_v_m_l |
---|
| 968 | c_w_m = c_w_m_l |
---|
| 969 | #endif |
---|
| 970 | |
---|
| 971 | c_u_m = c_u_m / (ny+1) |
---|
| 972 | c_v_m = c_v_m / (ny+1) |
---|
| 973 | c_w_m = c_w_m / (ny+1) |
---|
| 974 | |
---|
[73] | 975 | ! |
---|
[978] | 976 | !-- Save old timelevels for the next timestep |
---|
| 977 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 978 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 979 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 980 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 981 | ENDIF |
---|
| 982 | |
---|
| 983 | ! |
---|
| 984 | !-- Calculate the new velocities |
---|
[996] | 985 | DO k = nzb+1, nzt+1 |
---|
[1113] | 986 | DO j = nysg, nyng |
---|
[978] | 987 | u_p(k,j,0) = u(k,j,0) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
[106] | 988 | ( u(k,j,0) - u(k,j,1) ) * ddx |
---|
[75] | 989 | |
---|
[978] | 990 | v_p(k,j,-1) = v(k,j,-1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
[75] | 991 | ( v(k,j,-1) - v(k,j,0) ) * ddx |
---|
| 992 | |
---|
[978] | 993 | w_p(k,j,-1) = w(k,j,-1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
[75] | 994 | ( w(k,j,-1) - w(k,j,0) ) * ddx |
---|
[978] | 995 | ENDDO |
---|
[75] | 996 | ENDDO |
---|
| 997 | |
---|
| 998 | ! |
---|
[978] | 999 | !-- Bottom boundary at the outflow |
---|
| 1000 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1001 | u_p(nzb,:,0) = 0.0_wp |
---|
| 1002 | v_p(nzb,:,-1) = 0.0_wp |
---|
[978] | 1003 | ELSE |
---|
| 1004 | u_p(nzb,:,0) = u_p(nzb+1,:,0) |
---|
| 1005 | v_p(nzb,:,-1) = v_p(nzb+1,:,-1) |
---|
| 1006 | ENDIF |
---|
[1353] | 1007 | w_p(nzb,:,-1) = 0.0_wp |
---|
[1] | 1008 | |
---|
[75] | 1009 | ! |
---|
[978] | 1010 | !-- Top boundary at the outflow |
---|
| 1011 | IF ( ibc_uv_t == 0 ) THEN |
---|
[1764] | 1012 | u_p(nzt+1,:,0) = u_init(nzt+1) |
---|
[978] | 1013 | v_p(nzt+1,:,-1) = v_init(nzt+1) |
---|
| 1014 | ELSE |
---|
[1764] | 1015 | u_p(nzt+1,:,0) = u_p(nzt,:,0) |
---|
[978] | 1016 | v_p(nzt+1,:,-1) = v_p(nzt,:,-1) |
---|
| 1017 | ENDIF |
---|
[1353] | 1018 | w_p(nzt:nzt+1,:,-1) = 0.0_wp |
---|
[978] | 1019 | |
---|
[75] | 1020 | ENDIF |
---|
[73] | 1021 | |
---|
[75] | 1022 | ENDIF |
---|
[73] | 1023 | |
---|
[106] | 1024 | IF ( outflow_r ) THEN |
---|
[73] | 1025 | |
---|
[1159] | 1026 | IF ( use_cmax ) THEN |
---|
| 1027 | u_p(:,:,nx+1) = u(:,:,nx) |
---|
| 1028 | v_p(:,:,nx+1) = v(:,:,nx) |
---|
| 1029 | w_p(:,:,nx+1) = w(:,:,nx) |
---|
| 1030 | ELSEIF ( .NOT. use_cmax ) THEN |
---|
[75] | 1031 | |
---|
[978] | 1032 | c_max = dx / dt_3d |
---|
[75] | 1033 | |
---|
[1353] | 1034 | c_u_m_l = 0.0_wp |
---|
| 1035 | c_v_m_l = 0.0_wp |
---|
| 1036 | c_w_m_l = 0.0_wp |
---|
[978] | 1037 | |
---|
[1353] | 1038 | c_u_m = 0.0_wp |
---|
| 1039 | c_v_m = 0.0_wp |
---|
| 1040 | c_w_m = 0.0_wp |
---|
[978] | 1041 | |
---|
[1] | 1042 | ! |
---|
[996] | 1043 | !-- Calculate the phase speeds for u, v, and w, first local and then |
---|
| 1044 | !-- average along the outflow boundary. |
---|
| 1045 | DO k = nzb+1, nzt+1 |
---|
| 1046 | DO j = nys, nyn |
---|
[73] | 1047 | |
---|
[106] | 1048 | denom = u_m_r(k,j,nx) - u_m_r(k,j,nx-1) |
---|
| 1049 | |
---|
[1353] | 1050 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1051 | c_u(k,j) = -c_max * ( u(k,j,nx) - u_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1052 | IF ( c_u(k,j) < 0.0_wp ) THEN |
---|
| 1053 | c_u(k,j) = 0.0_wp |
---|
[106] | 1054 | ELSEIF ( c_u(k,j) > c_max ) THEN |
---|
| 1055 | c_u(k,j) = c_max |
---|
| 1056 | ENDIF |
---|
| 1057 | ELSE |
---|
| 1058 | c_u(k,j) = c_max |
---|
[73] | 1059 | ENDIF |
---|
| 1060 | |
---|
[106] | 1061 | denom = v_m_r(k,j,nx) - v_m_r(k,j,nx-1) |
---|
[73] | 1062 | |
---|
[1353] | 1063 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1064 | c_v(k,j) = -c_max * ( v(k,j,nx) - v_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1065 | IF ( c_v(k,j) < 0.0_wp ) THEN |
---|
| 1066 | c_v(k,j) = 0.0_wp |
---|
[106] | 1067 | ELSEIF ( c_v(k,j) > c_max ) THEN |
---|
| 1068 | c_v(k,j) = c_max |
---|
| 1069 | ENDIF |
---|
| 1070 | ELSE |
---|
| 1071 | c_v(k,j) = c_max |
---|
[73] | 1072 | ENDIF |
---|
| 1073 | |
---|
[106] | 1074 | denom = w_m_r(k,j,nx) - w_m_r(k,j,nx-1) |
---|
[73] | 1075 | |
---|
[1353] | 1076 | IF ( denom /= 0.0_wp ) THEN |
---|
[996] | 1077 | c_w(k,j) = -c_max * ( w(k,j,nx) - w_m_r(k,j,nx) ) / ( denom * tsc(2) ) |
---|
[1353] | 1078 | IF ( c_w(k,j) < 0.0_wp ) THEN |
---|
| 1079 | c_w(k,j) = 0.0_wp |
---|
[106] | 1080 | ELSEIF ( c_w(k,j) > c_max ) THEN |
---|
| 1081 | c_w(k,j) = c_max |
---|
| 1082 | ENDIF |
---|
| 1083 | ELSE |
---|
| 1084 | c_w(k,j) = c_max |
---|
[73] | 1085 | ENDIF |
---|
[106] | 1086 | |
---|
[978] | 1087 | c_u_m_l(k) = c_u_m_l(k) + c_u(k,j) |
---|
| 1088 | c_v_m_l(k) = c_v_m_l(k) + c_v(k,j) |
---|
| 1089 | c_w_m_l(k) = c_w_m_l(k) + c_w(k,j) |
---|
[106] | 1090 | |
---|
[978] | 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
[73] | 1093 | |
---|
[978] | 1094 | #if defined( __parallel ) |
---|
| 1095 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1096 | CALL MPI_ALLREDUCE( c_u_m_l(nzb+1), c_u_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1097 | MPI_SUM, comm1dy, ierr ) |
---|
| 1098 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1099 | CALL MPI_ALLREDUCE( c_v_m_l(nzb+1), c_v_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1100 | MPI_SUM, comm1dy, ierr ) |
---|
| 1101 | IF ( collective_wait ) CALL MPI_BARRIER( comm1dy, ierr ) |
---|
| 1102 | CALL MPI_ALLREDUCE( c_w_m_l(nzb+1), c_w_m(nzb+1), nzt-nzb, MPI_REAL, & |
---|
| 1103 | MPI_SUM, comm1dy, ierr ) |
---|
| 1104 | #else |
---|
| 1105 | c_u_m = c_u_m_l |
---|
| 1106 | c_v_m = c_v_m_l |
---|
| 1107 | c_w_m = c_w_m_l |
---|
| 1108 | #endif |
---|
| 1109 | |
---|
| 1110 | c_u_m = c_u_m / (ny+1) |
---|
| 1111 | c_v_m = c_v_m / (ny+1) |
---|
| 1112 | c_w_m = c_w_m / (ny+1) |
---|
| 1113 | |
---|
[73] | 1114 | ! |
---|
[978] | 1115 | !-- Save old timelevels for the next timestep |
---|
| 1116 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1117 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1118 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1119 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1120 | ENDIF |
---|
[73] | 1121 | |
---|
[978] | 1122 | ! |
---|
| 1123 | !-- Calculate the new velocities |
---|
[996] | 1124 | DO k = nzb+1, nzt+1 |
---|
[1113] | 1125 | DO j = nysg, nyng |
---|
[978] | 1126 | u_p(k,j,nx+1) = u(k,j,nx+1) - dt_3d * tsc(2) * c_u_m(k) * & |
---|
| 1127 | ( u(k,j,nx+1) - u(k,j,nx) ) * ddx |
---|
[73] | 1128 | |
---|
[978] | 1129 | v_p(k,j,nx+1) = v(k,j,nx+1) - dt_3d * tsc(2) * c_v_m(k) * & |
---|
| 1130 | ( v(k,j,nx+1) - v(k,j,nx) ) * ddx |
---|
[73] | 1131 | |
---|
[978] | 1132 | w_p(k,j,nx+1) = w(k,j,nx+1) - dt_3d * tsc(2) * c_w_m(k) * & |
---|
| 1133 | ( w(k,j,nx+1) - w(k,j,nx) ) * ddx |
---|
| 1134 | ENDDO |
---|
[73] | 1135 | ENDDO |
---|
| 1136 | |
---|
| 1137 | ! |
---|
[978] | 1138 | !-- Bottom boundary at the outflow |
---|
| 1139 | IF ( ibc_uv_b == 0 ) THEN |
---|
[1353] | 1140 | u_p(nzb,:,nx+1) = 0.0_wp |
---|
| 1141 | v_p(nzb,:,nx+1) = 0.0_wp |
---|
[978] | 1142 | ELSE |
---|
| 1143 | u_p(nzb,:,nx+1) = u_p(nzb+1,:,nx+1) |
---|
| 1144 | v_p(nzb,:,nx+1) = v_p(nzb+1,:,nx+1) |
---|
| 1145 | ENDIF |
---|
[1353] | 1146 | w_p(nzb,:,nx+1) = 0.0_wp |
---|
[73] | 1147 | |
---|
| 1148 | ! |
---|
[978] | 1149 | !-- Top boundary at the outflow |
---|
| 1150 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 1151 | u_p(nzt+1,:,nx+1) = u_init(nzt+1) |
---|
| 1152 | v_p(nzt+1,:,nx+1) = v_init(nzt+1) |
---|
| 1153 | ELSE |
---|
| 1154 | u_p(nzt+1,:,nx+1) = u_p(nzt,:,nx+1) |
---|
| 1155 | v_p(nzt+1,:,nx+1) = v_p(nzt,:,nx+1) |
---|
| 1156 | ENDIF |
---|
[1742] | 1157 | w_p(nzt:nzt+1,:,nx+1) = 0.0_wp |
---|
[978] | 1158 | |
---|
[1] | 1159 | ENDIF |
---|
| 1160 | |
---|
| 1161 | ENDIF |
---|
| 1162 | |
---|
| 1163 | END SUBROUTINE boundary_conds |
---|