source: palm/trunk/SOURCE/basic_constants_and_equations_mod.f90 @ 4168

Last change on this file since 4168 was 4088, checked in by Giersch, 5 years ago

Pressure and density profile calculations revised using basic functions, comments improved, function for ideal gas law revised

  • Property svn:keywords set to Id
File size: 14.3 KB
Line 
1!> @file basic_constants_and_equations_mod.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! -----------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: basic_constants_and_equations_mod.f90 4088 2019-07-11 13:57:56Z suehring $
27! Comment of barometric formula improved, function for ideal gas law revised
28!
29! 4084 2019-07-10 17:09:11Z knoop
30! Changed precomputed fractions to be variable based
31!
32! 4055 2019-06-27 09:47:29Z suehring
33! Added rgas_univ (universal gas constant) (E.C. Chan)
34!
35!
36! 3655 2019-01-07 16:51:22Z knoop
37! OpenACC port for SPEC
38!
39! 3449 2018-10-29 19:36:56Z suehring
40! +degc_to_k
41!
42! 3361 2018-10-16 20:39:37Z knoop
43! New module (introduced with modularization of bulk cloud physics model)
44!
45!
46!
47!
48! Description:
49! ------------
50!> This module contains all basic (physical) constants
51!> and
52!> functions for the calculation of diagnostic quantities.
53!------------------------------------------------------------------------------!
54 MODULE basic_constants_and_equations_mod
55
56
57    USE kinds
58
59    IMPLICIT NONE
60
61    REAL(wp), PARAMETER ::  c_p = 1005.0_wp                           !< heat capacity of dry air (J kg-1 K-1)
62    REAL(wp), PARAMETER ::  degc_to_k = 273.15_wp                     !< temperature (in K) of 0 deg C (K)
63    REAL(wp), PARAMETER ::  g = 9.81_wp                               !< gravitational acceleration (m s-2)
64    REAL(wp), PARAMETER ::  kappa = 0.4_wp                            !< von Karman constant
65    REAL(wp), PARAMETER ::  l_m = 0.33E+06_wp                         !< latent heat of water melting (J kg-1)
66    REAL(wp), PARAMETER ::  l_v = 2.5E+06_wp                          !< latent heat of water vaporization (J kg-1)
67    REAL(wp), PARAMETER ::  l_s = l_m + l_v                           !< latent heat of water sublimation (J kg-1)
68    REAL(wp), PARAMETER ::  molecular_weight_of_nacl = 0.05844_wp     !< mol. m. NaCl (kg mol-1)
69    REAL(wp), PARAMETER ::  molecular_weight_of_c3h4o4 = 0.10406_wp   !< mol. m. malonic acid (kg mol-1)
70    REAL(wp), PARAMETER ::  molecular_weight_of_nh4no3 = 0.08004_wp   !< mol. m. ammonium sulfate (kg mol-1)
71    REAL(wp), PARAMETER ::  molecular_weight_of_water = 0.01801528_wp !< mol. m. H2O (kg mol-1)
72    REAL(wp), PARAMETER ::  pi = 3.141592654_wp                       !< PI
73    !$ACC DECLARE COPYIN(pi)
74    REAL(wp), PARAMETER ::  rgas_univ = 8.31446261815324_wp           !< universal gas constant (J K-1 mol-1)
75    REAL(wp), PARAMETER ::  rho_l = 1.0E3_wp                          !< density of water (kg m-3)
76    REAL(wp), PARAMETER ::  rho_nacl = 2165.0_wp                      !< density of NaCl (kg m-3)
77    REAL(wp), PARAMETER ::  rho_c3h4o4 = 1600.0_wp                    !< density of malonic acid (kg m-3)
78    REAL(wp), PARAMETER ::  rho_nh4no3 = 1720.0_wp                    !< density of ammonium sulfate (kg m-3)
79    REAL(wp), PARAMETER ::  r_d = 287.0_wp                            !< sp. gas const. dry air (J kg-1 K-1)
80    REAL(wp), PARAMETER ::  r_v = 461.51_wp                           !< sp. gas const. water vapor (J kg-1 K-1)
81    REAL(wp), PARAMETER ::  sigma_sb = 5.67037E-08_wp                 !< Stefan-Boltzmann constant
82    REAL(wp), PARAMETER ::  solar_constant = 1368.0_wp                !< solar constant at top of atmosphere
83    REAL(wp), PARAMETER ::  vanthoff_nacl = 2.0_wp                    !< van't Hoff factor for NaCl
84    REAL(wp), PARAMETER ::  vanthoff_c3h4o4 = 1.37_wp                 !< van't Hoff factor for malonic acid
85    REAL(wp), PARAMETER ::  vanthoff_nh4no3 = 2.31_wp                 !< van't Hoff factor for ammonium sulfate
86
87    REAL(wp), PARAMETER ::  p_0 = 100000.0_wp                         !< standard pressure reference state
88
89    REAL(wp), PARAMETER ::  g_d_cp  = g   / c_p   !< precomputed g / c_p
90    REAL(wp), PARAMETER ::  lv_d_cp = l_v / c_p   !< precomputed l_v / c_p
91    REAL(wp), PARAMETER ::  lv_d_rd = l_v / r_d   !< precomputed l_v / r_d
92    REAL(wp), PARAMETER ::  rd_d_rv = r_d / r_v   !< precomputed r_d / r_v
93    REAL(wp), PARAMETER ::  rd_d_cp = r_d / c_p   !< precomputed r_d / c_p
94    REAL(wp), PARAMETER ::  cp_d_rd = c_p / r_d   !< precomputed c_p / r_d
95
96    REAL(wp) ::  molecular_weight_of_solute = molecular_weight_of_nacl  !< mol. m. NaCl (kg mol-1)
97    REAL(wp) ::  rho_s = rho_nacl                                       !< density of NaCl (kg m-3)
98    REAL(wp) ::  vanthoff = vanthoff_nacl                               !< van't Hoff factor for NaCl
99
100
101    SAVE
102
103    PRIVATE magnus_0d, &
104            magnus_1d, &
105            ideal_gas_law_rho_0d, &
106            ideal_gas_law_rho_1d, &
107            ideal_gas_law_rho_pt_0d, &
108            ideal_gas_law_rho_pt_1d, &
109            exner_function_0d, &
110            exner_function_1d, &
111            exner_function_invers_0d, &
112            exner_function_invers_1d, &
113            barometric_formula_0d, &
114            barometric_formula_1d
115
116    INTERFACE magnus
117       MODULE PROCEDURE magnus_0d
118       MODULE PROCEDURE magnus_1d
119    END INTERFACE magnus
120
121    INTERFACE ideal_gas_law_rho
122       MODULE PROCEDURE ideal_gas_law_rho_0d
123       MODULE PROCEDURE ideal_gas_law_rho_1d
124    END INTERFACE ideal_gas_law_rho
125
126    INTERFACE ideal_gas_law_rho_pt
127       MODULE PROCEDURE ideal_gas_law_rho_pt_0d
128       MODULE PROCEDURE ideal_gas_law_rho_pt_1d
129    END INTERFACE ideal_gas_law_rho_pt
130
131    INTERFACE exner_function
132       MODULE PROCEDURE exner_function_0d
133       MODULE PROCEDURE exner_function_1d
134    END INTERFACE exner_function
135
136    INTERFACE exner_function_invers
137       MODULE PROCEDURE exner_function_invers_0d
138       MODULE PROCEDURE exner_function_invers_1d
139    END INTERFACE exner_function_invers
140
141    INTERFACE barometric_formula
142       MODULE PROCEDURE barometric_formula_0d
143       MODULE PROCEDURE barometric_formula_1d
144    END INTERFACE barometric_formula
145
146 CONTAINS
147
148!------------------------------------------------------------------------------!
149! Description:
150! ------------
151!> This function computes the magnus formula (Press et al., 1992).
152!> The magnus formula is needed to calculate the saturation vapor pressure
153!------------------------------------------------------------------------------!
154    FUNCTION magnus_0d( t )
155
156       IMPLICIT NONE
157
158       REAL(wp), INTENT(IN) ::  t  !< temperature (K)
159
160       REAL(wp) ::  magnus_0d
161!
162!--    Saturation vapor pressure for a specific temperature:
163       magnus_0d =  611.2_wp * EXP( 17.62_wp * ( t - degc_to_k ) /             &
164                                                   ( t - 29.65_wp  ) )
165
166    END FUNCTION magnus_0d
167
168!------------------------------------------------------------------------------!
169! Description:
170! ------------
171!> This function computes the magnus formula (Press et al., 1992).
172!> The magnus formula is needed to calculate the saturation vapor pressure
173!------------------------------------------------------------------------------!
174    FUNCTION magnus_1d( t )
175
176       IMPLICIT NONE
177
178       REAL(wp), INTENT(IN), DIMENSION(:) ::  t  !< temperature (K)
179
180       REAL(wp), DIMENSION(size(t)) ::  magnus_1d
181!
182!--    Saturation vapor pressure for a specific temperature:
183       magnus_1d =  611.2_wp * EXP( 17.62_wp * ( t - degc_to_k ) /             &
184                                               ( t - 29.65_wp  ) )
185
186    END FUNCTION magnus_1d
187
188!------------------------------------------------------------------------------!
189! Description:
190! ------------
191!> Compute the ideal gas law for scalar arguments.
192!------------------------------------------------------------------------------!
193    FUNCTION ideal_gas_law_rho_0d( p, t )
194
195       IMPLICIT NONE
196
197       REAL(wp), INTENT(IN) ::  p  !< pressure (Pa)
198       REAL(wp), INTENT(IN) ::  t  !< temperature (K)
199
200       REAL(wp) ::  ideal_gas_law_rho_0d
201!
202!--    compute density according to ideal gas law:
203       ideal_gas_law_rho_0d = p / (r_d * t)
204
205    END FUNCTION ideal_gas_law_rho_0d
206
207!------------------------------------------------------------------------------!
208! Description:
209! ------------
210!> Compute the ideal gas law for 1-D array arguments.
211!------------------------------------------------------------------------------!
212    FUNCTION ideal_gas_law_rho_1d( p, t )
213
214       IMPLICIT NONE
215
216       REAL(wp), INTENT(IN), DIMENSION(:) ::  p  !< pressure (Pa)
217       REAL(wp), INTENT(IN), DIMENSION(:) ::  t  !< temperature (K)
218
219       REAL(wp), DIMENSION(size(p)) ::  ideal_gas_law_rho_1d
220!
221!--    compute density according to ideal gas law:
222       ideal_gas_law_rho_1d = p / (r_d * t)
223
224    END FUNCTION ideal_gas_law_rho_1d
225
226!------------------------------------------------------------------------------!
227! Description:
228! ------------
229!> Compute the ideal gas law for scalar arguments.
230!------------------------------------------------------------------------------!
231    FUNCTION ideal_gas_law_rho_pt_0d( p, t )
232
233       IMPLICIT NONE
234
235       REAL(wp), INTENT(IN) ::  p  !< pressure (Pa)
236       REAL(wp), INTENT(IN) ::  t  !< temperature (K)
237
238       REAL(wp) ::  ideal_gas_law_rho_pt_0d
239!
240!--    compute density according to ideal gas law:
241       ideal_gas_law_rho_pt_0d = p / (r_d * exner_function(p) * t)
242
243    END FUNCTION ideal_gas_law_rho_pt_0d
244
245!------------------------------------------------------------------------------!
246! Description:
247! ------------
248!> Compute the ideal gas law for 1-D array arguments.
249!------------------------------------------------------------------------------!
250    FUNCTION ideal_gas_law_rho_pt_1d( p, t )
251
252       IMPLICIT NONE
253
254       REAL(wp), INTENT(IN), DIMENSION(:) ::  p  !< pressure (Pa)
255       REAL(wp), INTENT(IN), DIMENSION(:) ::  t  !< temperature (K)
256
257       REAL(wp), DIMENSION(size(p)) ::  ideal_gas_law_rho_pt_1d
258!
259!--    compute density according to ideal gas law:
260       ideal_gas_law_rho_pt_1d = p / (r_d * exner_function(p) * t)
261
262    END FUNCTION ideal_gas_law_rho_pt_1d
263
264!------------------------------------------------------------------------------!
265! Description:
266! ------------
267!> Compute the exner function for scalar arguments.
268!------------------------------------------------------------------------------!
269    FUNCTION exner_function_0d( p )
270
271       IMPLICIT NONE
272
273       REAL(wp), INTENT(IN) ::  p    !< pressure (Pa)
274
275       REAL(wp) ::  exner_function_0d
276!
277!--    compute exner function:
278       exner_function_0d = ( p / p_0 )**( rd_d_cp )
279
280    END FUNCTION exner_function_0d
281
282!------------------------------------------------------------------------------!
283! Description:
284! ------------
285!> Compute the exner function for 1-D array arguments.
286!------------------------------------------------------------------------------!
287    FUNCTION exner_function_1d( p )
288
289       IMPLICIT NONE
290
291       REAL(wp), INTENT(IN), DIMENSION(:) ::  p  !< pressure (Pa)
292
293       REAL(wp), DIMENSION(size(p)) ::  exner_function_1d
294!
295!--    compute exner function:
296       exner_function_1d = ( p / p_0 )**( rd_d_cp )
297
298    END FUNCTION exner_function_1d
299
300!------------------------------------------------------------------------------!
301! Description:
302! ------------
303!> Compute the exner function for scalar arguments.
304!------------------------------------------------------------------------------!
305    FUNCTION exner_function_invers_0d( p )
306
307       IMPLICIT NONE
308
309       REAL(wp), INTENT(IN) ::  p    !< pressure (Pa)
310
311       REAL(wp) ::  exner_function_invers_0d
312!
313!--    compute exner function:
314       exner_function_invers_0d = ( p_0 / p )**( rd_d_cp )
315
316    END FUNCTION exner_function_invers_0d
317
318!------------------------------------------------------------------------------!
319! Description:
320! ------------
321!> Compute the exner function for 1-D array arguments.
322!------------------------------------------------------------------------------!
323    FUNCTION exner_function_invers_1d( p )
324
325       IMPLICIT NONE
326
327       REAL(wp), INTENT(IN), DIMENSION(:) ::  p  !< pressure (Pa)
328
329       REAL(wp), DIMENSION(size(p)) ::  exner_function_invers_1d
330!
331!--    compute exner function:
332       exner_function_invers_1d = ( p_0 / p )**( rd_d_cp )
333
334    END FUNCTION exner_function_invers_1d
335
336!------------------------------------------------------------------------------!
337! Description:
338! ------------
339!> Compute the barometric formula for scalar arguments. The calculation is
340!> based on the assumption of a polytropic atmosphere and neutral
341!> stratification, where the temperature lapse rate is g/cp.
342!------------------------------------------------------------------------------!
343    FUNCTION barometric_formula_0d( z, t_0, p_0)
344
345       IMPLICIT NONE
346
347       REAL(wp), INTENT(IN) ::  z    !< height (m)
348       REAL(wp), INTENT(IN) ::  t_0  !< temperature reference state (K)
349       REAL(wp), INTENT(IN) ::  p_0  !< surface pressure (Pa)
350
351       REAL(wp) ::  barometric_formula_0d
352!
353!--    compute barometric formula:
354       barometric_formula_0d =  p_0 * ( (t_0 - g_d_cp * z) / t_0 )**( cp_d_rd )
355
356    END FUNCTION barometric_formula_0d
357
358!------------------------------------------------------------------------------!
359! Description:
360! ------------
361!> Compute the barometric formula for 1-D array arguments. The calculation is
362!> based on the assumption of a polytropic atmosphere and neutral
363!> stratification, where the temperature lapse rate is g/cp.
364!------------------------------------------------------------------------------!
365    FUNCTION barometric_formula_1d( z, t_0, p_0)
366
367       IMPLICIT NONE
368
369       REAL(wp), INTENT(IN), DIMENSION(:) ::  z  !< height (m)
370       REAL(wp), INTENT(IN) ::  t_0              !< temperature reference state (K)
371       REAL(wp), INTENT(IN) ::  p_0              !< surface pressure (Pa)
372
373       REAL(wp), DIMENSION(size(z)) ::  barometric_formula_1d
374!
375!--    compute barometric formula:
376       barometric_formula_1d =  p_0 * ( (t_0 - g_d_cp * z) / t_0 )**( cp_d_rd )
377
378    END FUNCTION barometric_formula_1d
379
380 END MODULE basic_constants_and_equations_mod
Note: See TracBrowser for help on using the repository browser.