[3274] | 1 | !> @file basic_constants_and_equations_mod.f90 |
---|
[4509] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 3 | ! This file is part of the PALM model system. |
---|
| 4 | ! |
---|
[4509] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[3274] | 8 | ! |
---|
[4509] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[3274] | 12 | ! |
---|
[4509] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[3274] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4509] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 18 | ! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ----------------- |
---|
[4742] | 21 | ! |
---|
| 22 | ! |
---|
[3274] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: basic_constants_and_equations_mod.f90 4742 2020-10-14 15:11:02Z gronemeier $ |
---|
[4742] | 26 | ! Implement snow and graupel (bulk microphysics) |
---|
| 27 | ! |
---|
| 28 | ! 4509 2020-04-26 15:57:55Z raasch |
---|
[4509] | 29 | ! file re-formatted to follow the PALM coding standard |
---|
| 30 | ! |
---|
| 31 | ! 4502 2020-04-17 16:14:16Z schwenkel |
---|
[4502] | 32 | ! Implementation of ice microphysics |
---|
[4509] | 33 | ! |
---|
[4502] | 34 | ! 4400 2020-02-10 20:32:41Z suehring |
---|
[4509] | 35 | ! Move routine to transform coordinates from netcdf_interface_mod to |
---|
[4400] | 36 | ! basic_constants_and_equations_mod |
---|
[4509] | 37 | ! |
---|
[4400] | 38 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 39 | ! Corrected "Former revisions" section |
---|
[4509] | 40 | ! |
---|
[4182] | 41 | ! 4088 2019-07-11 13:57:56Z Giersch |
---|
[4509] | 42 | ! Comment of barometric formula improved, function for ideal gas law revised |
---|
| 43 | ! |
---|
[4088] | 44 | ! 4084 2019-07-10 17:09:11Z knoop |
---|
[4084] | 45 | ! Changed precomputed fractions to be variable based |
---|
[4509] | 46 | ! |
---|
[4084] | 47 | ! 4055 2019-06-27 09:47:29Z suehring |
---|
[4055] | 48 | ! Added rgas_univ (universal gas constant) (E.C. Chan) |
---|
[4509] | 49 | ! |
---|
| 50 | ! |
---|
[4055] | 51 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 52 | ! OpenACC port for SPEC |
---|
[4182] | 53 | ! 3361 2018-10-16 20:39:37Z knoop |
---|
| 54 | ! New module (introduced with modularization of bulk cloud physics model) |
---|
| 55 | ! |
---|
[3274] | 56 | ! |
---|
[4182] | 57 | ! |
---|
[4509] | 58 | ! |
---|
[3274] | 59 | ! Description: |
---|
| 60 | ! ------------ |
---|
[4509] | 61 | !> This module contains all basic (physical) constants and functions for the calculation of |
---|
| 62 | !> diagnostic quantities. |
---|
| 63 | !- -----------------------------------------------------------------------------! |
---|
[3274] | 64 | MODULE basic_constants_and_equations_mod |
---|
| 65 | |
---|
| 66 | |
---|
| 67 | USE kinds |
---|
| 68 | |
---|
| 69 | IMPLICIT NONE |
---|
| 70 | |
---|
[4509] | 71 | |
---|
[3274] | 72 | REAL(wp), PARAMETER :: c_p = 1005.0_wp !< heat capacity of dry air (J kg-1 K-1) |
---|
[4742] | 73 | REAL(wp), PARAMETER :: c_w = 4185.0_wp !< heat capacity of water at 0°C (J kg-1 K-1) |
---|
[3449] | 74 | REAL(wp), PARAMETER :: degc_to_k = 273.15_wp !< temperature (in K) of 0 deg C (K) |
---|
[3274] | 75 | REAL(wp), PARAMETER :: g = 9.81_wp !< gravitational acceleration (m s-2) |
---|
| 76 | REAL(wp), PARAMETER :: kappa = 0.4_wp !< von Karman constant |
---|
| 77 | REAL(wp), PARAMETER :: l_m = 0.33E+06_wp !< latent heat of water melting (J kg-1) |
---|
| 78 | REAL(wp), PARAMETER :: l_v = 2.5E+06_wp !< latent heat of water vaporization (J kg-1) |
---|
| 79 | REAL(wp), PARAMETER :: l_s = l_m + l_v !< latent heat of water sublimation (J kg-1) |
---|
| 80 | REAL(wp), PARAMETER :: molecular_weight_of_nacl = 0.05844_wp !< mol. m. NaCl (kg mol-1) |
---|
| 81 | REAL(wp), PARAMETER :: molecular_weight_of_c3h4o4 = 0.10406_wp !< mol. m. malonic acid (kg mol-1) |
---|
| 82 | REAL(wp), PARAMETER :: molecular_weight_of_nh4no3 = 0.08004_wp !< mol. m. ammonium sulfate (kg mol-1) |
---|
| 83 | REAL(wp), PARAMETER :: molecular_weight_of_water = 0.01801528_wp !< mol. m. H2O (kg mol-1) |
---|
[3449] | 84 | REAL(wp), PARAMETER :: pi = 3.141592654_wp !< PI |
---|
[3634] | 85 | !$ACC DECLARE COPYIN(pi) |
---|
[4055] | 86 | REAL(wp), PARAMETER :: rgas_univ = 8.31446261815324_wp !< universal gas constant (J K-1 mol-1) |
---|
[4742] | 87 | REAL(wp), PARAMETER :: rho_i = 916.7_wp !> density of pure ice (kg m-3) |
---|
[3274] | 88 | REAL(wp), PARAMETER :: rho_l = 1.0E3_wp !< density of water (kg m-3) |
---|
| 89 | REAL(wp), PARAMETER :: rho_nacl = 2165.0_wp !< density of NaCl (kg m-3) |
---|
| 90 | REAL(wp), PARAMETER :: rho_c3h4o4 = 1600.0_wp !< density of malonic acid (kg m-3) |
---|
| 91 | REAL(wp), PARAMETER :: rho_nh4no3 = 1720.0_wp !< density of ammonium sulfate (kg m-3) |
---|
| 92 | REAL(wp), PARAMETER :: r_d = 287.0_wp !< sp. gas const. dry air (J kg-1 K-1) |
---|
| 93 | REAL(wp), PARAMETER :: r_v = 461.51_wp !< sp. gas const. water vapor (J kg-1 K-1) |
---|
[3449] | 94 | REAL(wp), PARAMETER :: sigma_sb = 5.67037E-08_wp !< Stefan-Boltzmann constant |
---|
[3274] | 95 | REAL(wp), PARAMETER :: solar_constant = 1368.0_wp !< solar constant at top of atmosphere |
---|
| 96 | REAL(wp), PARAMETER :: vanthoff_nacl = 2.0_wp !< van't Hoff factor for NaCl |
---|
| 97 | REAL(wp), PARAMETER :: vanthoff_c3h4o4 = 1.37_wp !< van't Hoff factor for malonic acid |
---|
| 98 | REAL(wp), PARAMETER :: vanthoff_nh4no3 = 2.31_wp !< van't Hoff factor for ammonium sulfate |
---|
| 99 | |
---|
| 100 | REAL(wp), PARAMETER :: p_0 = 100000.0_wp !< standard pressure reference state |
---|
| 101 | |
---|
[4509] | 102 | REAL(wp), PARAMETER :: cp_d_rd = c_p / r_d !< precomputed c_p / r_d |
---|
[3274] | 103 | REAL(wp), PARAMETER :: g_d_cp = g / c_p !< precomputed g / c_p |
---|
| 104 | REAL(wp), PARAMETER :: lv_d_cp = l_v / c_p !< precomputed l_v / c_p |
---|
[4502] | 105 | REAL(wp), PARAMETER :: ls_d_cp = l_s / c_p !< precomputed l_s / c_p |
---|
[3274] | 106 | REAL(wp), PARAMETER :: lv_d_rd = l_v / r_d !< precomputed l_v / r_d |
---|
[4084] | 107 | REAL(wp), PARAMETER :: rd_d_rv = r_d / r_v !< precomputed r_d / r_v |
---|
| 108 | REAL(wp), PARAMETER :: rd_d_cp = r_d / c_p !< precomputed r_d / c_p |
---|
[3274] | 109 | |
---|
| 110 | REAL(wp) :: molecular_weight_of_solute = molecular_weight_of_nacl !< mol. m. NaCl (kg mol-1) |
---|
| 111 | REAL(wp) :: rho_s = rho_nacl !< density of NaCl (kg m-3) |
---|
| 112 | REAL(wp) :: vanthoff = vanthoff_nacl !< van't Hoff factor for NaCl |
---|
| 113 | |
---|
| 114 | SAVE |
---|
| 115 | |
---|
[4509] | 116 | PRIVATE magnus_0d, & |
---|
| 117 | magnus_1d, & |
---|
| 118 | magnus_tl_0d, & |
---|
| 119 | magnus_tl_1d, & |
---|
| 120 | magnus_0d_ice, & |
---|
| 121 | magnus_1d_ice, & |
---|
| 122 | ideal_gas_law_rho_0d, & |
---|
| 123 | ideal_gas_law_rho_1d, & |
---|
| 124 | ideal_gas_law_rho_pt_0d, & |
---|
| 125 | ideal_gas_law_rho_pt_1d, & |
---|
| 126 | exner_function_0d, & |
---|
| 127 | exner_function_1d, & |
---|
| 128 | exner_function_invers_0d, & |
---|
| 129 | exner_function_invers_1d, & |
---|
| 130 | barometric_formula_0d, & |
---|
[3274] | 131 | barometric_formula_1d |
---|
| 132 | |
---|
[4400] | 133 | |
---|
| 134 | INTERFACE convert_utm_to_geographic |
---|
| 135 | MODULE PROCEDURE convert_utm_to_geographic |
---|
| 136 | END INTERFACE convert_utm_to_geographic |
---|
| 137 | |
---|
[3274] | 138 | INTERFACE magnus |
---|
| 139 | MODULE PROCEDURE magnus_0d |
---|
| 140 | MODULE PROCEDURE magnus_1d |
---|
| 141 | END INTERFACE magnus |
---|
| 142 | |
---|
[4502] | 143 | INTERFACE magnus_tl |
---|
| 144 | MODULE PROCEDURE magnus_tl_0d |
---|
| 145 | MODULE PROCEDURE magnus_tl_1d |
---|
| 146 | END INTERFACE magnus_tl |
---|
| 147 | |
---|
| 148 | INTERFACE magnus_ice |
---|
| 149 | MODULE PROCEDURE magnus_0d_ice |
---|
| 150 | MODULE PROCEDURE magnus_1d_ice |
---|
| 151 | END INTERFACE magnus_ice |
---|
| 152 | |
---|
[3274] | 153 | INTERFACE ideal_gas_law_rho |
---|
| 154 | MODULE PROCEDURE ideal_gas_law_rho_0d |
---|
| 155 | MODULE PROCEDURE ideal_gas_law_rho_1d |
---|
| 156 | END INTERFACE ideal_gas_law_rho |
---|
| 157 | |
---|
| 158 | INTERFACE ideal_gas_law_rho_pt |
---|
| 159 | MODULE PROCEDURE ideal_gas_law_rho_pt_0d |
---|
| 160 | MODULE PROCEDURE ideal_gas_law_rho_pt_1d |
---|
| 161 | END INTERFACE ideal_gas_law_rho_pt |
---|
| 162 | |
---|
| 163 | INTERFACE exner_function |
---|
| 164 | MODULE PROCEDURE exner_function_0d |
---|
| 165 | MODULE PROCEDURE exner_function_1d |
---|
| 166 | END INTERFACE exner_function |
---|
| 167 | |
---|
| 168 | INTERFACE exner_function_invers |
---|
| 169 | MODULE PROCEDURE exner_function_invers_0d |
---|
| 170 | MODULE PROCEDURE exner_function_invers_1d |
---|
| 171 | END INTERFACE exner_function_invers |
---|
| 172 | |
---|
| 173 | INTERFACE barometric_formula |
---|
| 174 | MODULE PROCEDURE barometric_formula_0d |
---|
| 175 | MODULE PROCEDURE barometric_formula_1d |
---|
| 176 | END INTERFACE barometric_formula |
---|
[4400] | 177 | ! |
---|
| 178 | !-- Public routines |
---|
| 179 | PUBLIC convert_utm_to_geographic |
---|
[3274] | 180 | |
---|
| 181 | CONTAINS |
---|
| 182 | |
---|
[4400] | 183 | |
---|
[4509] | 184 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 185 | ! Description: |
---|
| 186 | ! ------------ |
---|
[4509] | 187 | !> Convert UTM coordinates into geographic latitude and longitude. Conversion is based on the work |
---|
| 188 | !> of KrÃŒger (1912) DOI: 10.2312/GFZ.b103-krueger28 and Karney (2013) DOI: 10.1007/s00190-012-0578-z |
---|
[4400] | 189 | !> Based on a JavaScript of the geodesy function library written by chrisveness |
---|
| 190 | !> https://github.com/chrisveness/geodesy |
---|
[4509] | 191 | !--------------------------------------------------------------------------------------------------! |
---|
| 192 | SUBROUTINE convert_utm_to_geographic( crs, eutm, nutm, lon, lat ) |
---|
[4400] | 193 | |
---|
[4509] | 194 | INTEGER(iwp) :: j !< loop index |
---|
[4400] | 195 | |
---|
[4509] | 196 | REAL(wp), INTENT(in) :: eutm !< easting (UTM) |
---|
| 197 | REAL(wp), INTENT(out) :: lat !< geographic latitude in degree |
---|
| 198 | REAL(wp), INTENT(out) :: lon !< geographic longitude in degree |
---|
| 199 | REAL(wp), INTENT(in) :: nutm !< northing (UTM) |
---|
[4400] | 200 | |
---|
[4509] | 201 | REAL(wp) :: a !< 2*pi*a is the circumference of a meridian |
---|
| 202 | REAL(wp) :: cos_eta_s !< cos(eta_s) |
---|
| 203 | REAL(wp) :: delta_i !< |
---|
| 204 | REAL(wp) :: delta_tau_i !< |
---|
| 205 | REAL(wp) :: e !< eccentricity |
---|
| 206 | REAL(wp) :: eta !< |
---|
| 207 | REAL(wp) :: eta_s !< |
---|
| 208 | REAL(wp) :: n !< 3rd flattening |
---|
| 209 | REAL(wp) :: n2 !< n^2 |
---|
| 210 | REAL(wp) :: n3 !< n^3 |
---|
| 211 | REAL(wp) :: n4 !< n^4 |
---|
| 212 | REAL(wp) :: n5 !< n^5 |
---|
| 213 | REAL(wp) :: n6 !< n^6 |
---|
| 214 | REAL(wp) :: nu !< |
---|
| 215 | REAL(wp) :: nu_s !< |
---|
| 216 | REAL(wp) :: sin_eta_s !< sin(eta_s) |
---|
| 217 | REAL(wp) :: sinh_nu_s !< sinush(nu_s) |
---|
| 218 | REAL(wp) :: tau_i !< |
---|
| 219 | REAL(wp) :: tau_i_s !< |
---|
| 220 | REAL(wp) :: tau_s !< |
---|
| 221 | REAL(wp) :: x !< adjusted easting |
---|
| 222 | REAL(wp) :: y !< adjusted northing |
---|
[4400] | 223 | |
---|
[4509] | 224 | REAL(wp), DIMENSION(6) :: beta !< 6th order KrÃŒger expressions |
---|
[4400] | 225 | |
---|
[4509] | 226 | REAL(wp), DIMENSION(8), INTENT(in) :: crs !< coordinate reference system, consists of |
---|
| 227 | !< (/semi_major_axis, |
---|
| 228 | !< inverse_flattening, |
---|
| 229 | !< longitude_of_prime_meridian, |
---|
| 230 | !< longitude_of_central_meridian, |
---|
| 231 | !< scale_factor_at_central_meridian, |
---|
| 232 | !< latitude_of_projection_origin, |
---|
| 233 | !< false_easting, |
---|
| 234 | !< false_northing /) |
---|
[4400] | 235 | |
---|
[4509] | 236 | x = eutm - crs(7) ! remove false easting |
---|
| 237 | y = nutm - crs(8) ! remove false northing |
---|
[4400] | 238 | ! |
---|
[4509] | 239 | !-- From Karney 2011 Eq 15-22, 36: |
---|
| 240 | e = SQRT( 1.0_wp / crs(2) * ( 2.0_wp - 1.0_wp / crs(2) ) ) |
---|
| 241 | n = 1.0_wp / crs(2) / ( 2.0_wp - 1.0_wp / crs(2) ) |
---|
| 242 | n2 = n * n |
---|
| 243 | n3 = n * n2 |
---|
| 244 | n4 = n * n3 |
---|
| 245 | n5 = n * n4 |
---|
| 246 | n6 = n * n5 |
---|
[4400] | 247 | |
---|
[4509] | 248 | a = crs(1) / ( 1.0_wp + n ) * ( 1.0_wp + 0.25_wp * n2 + 0.015625_wp * n4 + 3.90625E-3_wp * n6 ) |
---|
[4400] | 249 | |
---|
[4509] | 250 | nu = x / ( crs(5) * a ) |
---|
| 251 | eta = y / ( crs(5) * a ) |
---|
[4400] | 252 | |
---|
[4509] | 253 | !-- According to KrÃŒger (1912), eq. 26* |
---|
| 254 | beta(1) = 0.5_wp * n & |
---|
| 255 | - 2.0_wp / 3.0_wp * n2 & |
---|
| 256 | + 37.0_wp / 96.0_wp * n3 & |
---|
| 257 | - 1.0_wp / 360.0_wp * n4 & |
---|
| 258 | - 81.0_wp / 512.0_wp * n5 & |
---|
| 259 | + 96199.0_wp / 604800.0_wp * n6 |
---|
[4400] | 260 | |
---|
[4509] | 261 | beta(2) = 1.0_wp / 48.0_wp * n2 & |
---|
| 262 | + 1.0_wp / 15.0_wp * n3 & |
---|
| 263 | - 437.0_wp / 1440.0_wp * n4 & |
---|
| 264 | + 46.0_wp / 105.0_wp * n5 & |
---|
| 265 | - 1118711.0_wp / 3870720.0_wp * n6 |
---|
[4400] | 266 | |
---|
[4509] | 267 | beta(3) = 17.0_wp / 480.0_wp * n3 & |
---|
| 268 | - 37.0_wp / 840.0_wp * n4 & |
---|
| 269 | - 209.0_wp / 4480.0_wp * n5 & |
---|
| 270 | + 5569.0_wp / 90720.0_wp * n6 |
---|
[4400] | 271 | |
---|
[4509] | 272 | beta(4) = 4397.0_wp / 161280.0_wp * n4 & |
---|
| 273 | - 11.0_wp / 504.0_wp * n5 & |
---|
| 274 | - 830251.0_wp / 7257600.0_wp * n6 |
---|
[4400] | 275 | |
---|
[4509] | 276 | beta(5) = 4583.0_wp / 161280.0_wp * n5 & |
---|
| 277 | - 108847.0_wp / 3991680.0_wp * n6 |
---|
[4400] | 278 | |
---|
[4509] | 279 | beta(6) = 20648693.0_wp / 638668800.0_wp * n6 |
---|
[4400] | 280 | |
---|
[4509] | 281 | eta_s = eta |
---|
| 282 | nu_s = nu |
---|
| 283 | DO j = 1, 6 |
---|
| 284 | eta_s = eta_s - beta(j) * SIN(2.0_wp * j * eta) * COSH(2.0_wp * j * nu) |
---|
| 285 | nu_s = nu_s - beta(j) * COS(2.0_wp * j * eta) * SINH(2.0_wp * j * nu) |
---|
| 286 | ENDDO |
---|
[4400] | 287 | |
---|
[4509] | 288 | sinh_nu_s = SINH( nu_s ) |
---|
| 289 | sin_eta_s = SIN( eta_s ) |
---|
| 290 | cos_eta_s = COS( eta_s ) |
---|
[4400] | 291 | |
---|
[4509] | 292 | tau_s = sin_eta_s / SQRT( sinh_nu_s**2 + cos_eta_s**2 ) |
---|
[4400] | 293 | |
---|
[4509] | 294 | tau_i = tau_s |
---|
| 295 | delta_tau_i = 1.0_wp |
---|
[4400] | 296 | |
---|
[4509] | 297 | DO WHILE ( ABS( delta_tau_i ) > 1.0E-12_wp ) |
---|
[4400] | 298 | |
---|
[4509] | 299 | delta_i = SINH( e * ATANH( e * tau_i / SQRT( 1.0_wp + tau_i**2 ) ) ) |
---|
[4400] | 300 | |
---|
[4509] | 301 | tau_i_s = tau_i * SQRT( 1.0_wp + delta_i**2 ) - delta_i * SQRT( 1.0_wp + tau_i**2 ) |
---|
[4400] | 302 | |
---|
[4509] | 303 | delta_tau_i = ( tau_s - tau_i_s ) / SQRT( 1.0_wp + tau_i_s**2 ) & |
---|
| 304 | * ( 1.0_wp + ( 1.0_wp - e**2 ) * tau_i**2 ) & |
---|
| 305 | / ( ( 1.0_wp - e**2 ) * SQRT( 1.0_wp + tau_i**2 ) ) |
---|
[4400] | 306 | |
---|
[4509] | 307 | tau_i = tau_i + delta_tau_i |
---|
[4400] | 308 | |
---|
[4509] | 309 | ENDDO |
---|
[4400] | 310 | |
---|
[4509] | 311 | lat = ATAN( tau_i ) / pi * 180.0_wp |
---|
| 312 | lon = ATAN2( sinh_nu_s, cos_eta_s ) / pi * 180.0_wp + crs(4) |
---|
[4400] | 313 | |
---|
[4509] | 314 | END SUBROUTINE convert_utm_to_geographic |
---|
[4400] | 315 | |
---|
[4509] | 316 | !--------------------------------------------------------------------------------------------------! |
---|
[4400] | 317 | ! Description: |
---|
| 318 | ! ------------ |
---|
[3274] | 319 | !> This function computes the magnus formula (Press et al., 1992). |
---|
[4509] | 320 | !> The magnus formula is needed to calculate the saturation vapor pressure. |
---|
| 321 | !--------------------------------------------------------------------------------------------------! |
---|
| 322 | FUNCTION magnus_0d( t ) |
---|
[3274] | 323 | |
---|
[4509] | 324 | IMPLICIT NONE |
---|
[3274] | 325 | |
---|
[4509] | 326 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
[3274] | 327 | |
---|
[4509] | 328 | REAL(wp) :: magnus_0d |
---|
| 329 | |
---|
[3274] | 330 | ! |
---|
[4509] | 331 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 332 | magnus_0d = 611.2_wp * EXP( 17.62_wp * ( t - degc_to_k ) / ( t - 29.65_wp ) ) |
---|
[3274] | 333 | |
---|
[4509] | 334 | END FUNCTION magnus_0d |
---|
[3274] | 335 | |
---|
[4509] | 336 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 337 | ! Description: |
---|
| 338 | ! ------------ |
---|
| 339 | !> This function computes the magnus formula (Press et al., 1992). |
---|
[4509] | 340 | !> The magnus formula is needed to calculate the saturation vapor pressure. |
---|
| 341 | !--------------------------------------------------------------------------------------------------! |
---|
| 342 | FUNCTION magnus_1d( t ) |
---|
[3274] | 343 | |
---|
[4509] | 344 | IMPLICIT NONE |
---|
[3274] | 345 | |
---|
[4509] | 346 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
[3274] | 347 | |
---|
[4509] | 348 | REAL(wp), DIMENSION(size(t)) :: magnus_1d |
---|
| 349 | |
---|
[3274] | 350 | ! |
---|
[4509] | 351 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 352 | magnus_1d = 611.2_wp * EXP( 17.62_wp * ( t - degc_to_k ) / ( t - 29.65_wp ) ) |
---|
[3274] | 353 | |
---|
[4509] | 354 | END FUNCTION magnus_1d |
---|
[3274] | 355 | |
---|
[4509] | 356 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 357 | ! Description: |
---|
| 358 | ! ------------ |
---|
[4509] | 359 | !> This function computes the magnus formula (Press et al., 1992) using the (ice-) liquid water |
---|
| 360 | !> potential temperature. |
---|
| 361 | !> The magnus formula is needed to calculate the saturation vapor pressure over a plane liquid water |
---|
| 362 | !> surface. |
---|
| 363 | !--------------------------------------------------------------------------------------------------! |
---|
| 364 | FUNCTION magnus_tl_0d( t_l ) |
---|
[4502] | 365 | |
---|
[4509] | 366 | IMPLICIT NONE |
---|
[4502] | 367 | |
---|
[4509] | 368 | REAL(wp), INTENT(IN) :: t_l !< liquid water temperature (K) |
---|
[4502] | 369 | |
---|
[4509] | 370 | REAL(wp) :: magnus_tl_0d |
---|
| 371 | |
---|
[4502] | 372 | ! |
---|
[4509] | 373 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 374 | magnus_tl_0d = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / ( t_l - 35.86_wp ) ) |
---|
[4502] | 375 | |
---|
[4509] | 376 | END FUNCTION magnus_tl_0d |
---|
[4502] | 377 | |
---|
[4509] | 378 | !--------------------------------------------------------------------------------------------------! |
---|
[4502] | 379 | ! Description: |
---|
| 380 | ! ------------ |
---|
[4509] | 381 | !> This function computes the magnus formula (Press et al., 1992) using the (ice-) liquid water |
---|
| 382 | !> potential temperature. |
---|
| 383 | !> The magnus formula is needed to calculate the saturation vapor pressure over a plane liquid water |
---|
| 384 | !> surface. |
---|
| 385 | !--------------------------------------------------------------------------------------------------! |
---|
| 386 | FUNCTION magnus_tl_1d( t_l ) |
---|
[4502] | 387 | |
---|
[4509] | 388 | IMPLICIT NONE |
---|
[4502] | 389 | |
---|
[4509] | 390 | REAL(wp), INTENT(IN), DIMENSION(:) :: t_l !< liquid water temperature (K) |
---|
[4502] | 391 | |
---|
[4509] | 392 | REAL(wp), DIMENSION(size(t_l)) :: magnus_tl_1d |
---|
[4502] | 393 | ! |
---|
[4509] | 394 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 395 | magnus_tl_1d = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / ( t_l - 35.86_wp ) ) |
---|
[4502] | 396 | |
---|
[4509] | 397 | END FUNCTION magnus_tl_1d |
---|
[4502] | 398 | |
---|
[4509] | 399 | !--------------------------------------------------------------------------------------------------! |
---|
[4502] | 400 | ! Description: |
---|
| 401 | ! ------------ |
---|
| 402 | !> This function computes the magnus formula (Press et al., 1992). |
---|
[4509] | 403 | !> The magnus formula is needed to calculate the saturation vapor pressure over a plane ice surface. |
---|
| 404 | !--------------------------------------------------------------------------------------------------! |
---|
| 405 | FUNCTION magnus_0d_ice( t ) |
---|
[4502] | 406 | |
---|
[4509] | 407 | IMPLICIT NONE |
---|
[4502] | 408 | |
---|
[4509] | 409 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
[4502] | 410 | |
---|
[4509] | 411 | REAL(wp) :: magnus_0d_ice |
---|
| 412 | |
---|
[4502] | 413 | ! |
---|
[4742] | 414 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 415 | !magnus_0d_ice = 611.2_wp * EXP( 22.46_wp * ( t - degc_to_k ) / ( t - 0.53_wp ) ) |
---|
| 416 | magnus_0d_ice = 610.78_wp * EXP( 21.875_wp * ( t - degc_to_k ) / ( t - 7.66_wp ) ) |
---|
[4502] | 417 | |
---|
[4742] | 418 | |
---|
[4509] | 419 | END FUNCTION magnus_0d_ice |
---|
[4502] | 420 | |
---|
[4509] | 421 | !--------------------------------------------------------------------------------------------------! |
---|
[4502] | 422 | ! Description: |
---|
| 423 | ! ------------ |
---|
| 424 | !> This function computes the magnus formula (Press et al., 1992). |
---|
[4509] | 425 | !> The magnus formula is needed to calculate the saturation vapor pressure over a plane ice surface. |
---|
| 426 | !--------------------------------------------------------------------------------------------------! |
---|
| 427 | FUNCTION magnus_1d_ice( t ) |
---|
[4502] | 428 | |
---|
[4509] | 429 | IMPLICIT NONE |
---|
[4502] | 430 | |
---|
[4509] | 431 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
[4502] | 432 | |
---|
[4509] | 433 | REAL(wp), DIMENSION(size(t)) :: magnus_1d_ice |
---|
| 434 | |
---|
[4502] | 435 | ! |
---|
[4509] | 436 | !-- Saturation vapor pressure for a specific temperature: |
---|
[4742] | 437 | !magnus_1d_ice = 611.2_wp * EXP( 22.46_wp * ( t - degc_to_k ) / ( t - 0.53_wp ) ) |
---|
| 438 | magnus_1d_ice = 610.78_wp * EXP( 21.875_wp * ( t - degc_to_k ) / ( t - 7.66_wp ) ) |
---|
[4502] | 439 | |
---|
[4742] | 440 | |
---|
[4509] | 441 | END FUNCTION magnus_1d_ice |
---|
[4502] | 442 | |
---|
[4509] | 443 | !--------------------------------------------------------------------------------------------------! |
---|
[4502] | 444 | ! Description: |
---|
| 445 | ! ------------ |
---|
[3274] | 446 | !> Compute the ideal gas law for scalar arguments. |
---|
[4509] | 447 | !--------------------------------------------------------------------------------------------------! |
---|
| 448 | FUNCTION ideal_gas_law_rho_0d( p, t ) |
---|
[3274] | 449 | |
---|
[4509] | 450 | IMPLICIT NONE |
---|
[3274] | 451 | |
---|
[4509] | 452 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
| 453 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
[3274] | 454 | |
---|
[4509] | 455 | REAL(wp) :: ideal_gas_law_rho_0d |
---|
| 456 | |
---|
[3274] | 457 | ! |
---|
[4509] | 458 | !-- Compute density according to ideal gas law: |
---|
| 459 | ideal_gas_law_rho_0d = p / (r_d * t) |
---|
[3274] | 460 | |
---|
[4509] | 461 | END FUNCTION ideal_gas_law_rho_0d |
---|
[3274] | 462 | |
---|
[4509] | 463 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 464 | ! Description: |
---|
| 465 | ! ------------ |
---|
| 466 | !> Compute the ideal gas law for 1-D array arguments. |
---|
[4509] | 467 | !--------------------------------------------------------------------------------------------------! |
---|
| 468 | FUNCTION ideal_gas_law_rho_1d( p, t ) |
---|
[3274] | 469 | |
---|
[4509] | 470 | IMPLICIT NONE |
---|
[3274] | 471 | |
---|
[4509] | 472 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
| 473 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
[3274] | 474 | |
---|
[4509] | 475 | REAL(wp), DIMENSION(size(p)) :: ideal_gas_law_rho_1d |
---|
| 476 | |
---|
[3274] | 477 | ! |
---|
[4509] | 478 | !-- Compute density according to ideal gas law: |
---|
| 479 | ideal_gas_law_rho_1d = p / (r_d * t) |
---|
[3274] | 480 | |
---|
[4509] | 481 | END FUNCTION ideal_gas_law_rho_1d |
---|
[3274] | 482 | |
---|
[4509] | 483 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 484 | ! Description: |
---|
| 485 | ! ------------ |
---|
| 486 | !> Compute the ideal gas law for scalar arguments. |
---|
[4509] | 487 | !--------------------------------------------------------------------------------------------------! |
---|
| 488 | FUNCTION ideal_gas_law_rho_pt_0d( p, t ) |
---|
[3274] | 489 | |
---|
[4509] | 490 | IMPLICIT NONE |
---|
[3274] | 491 | |
---|
[4509] | 492 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
| 493 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
[3274] | 494 | |
---|
[4509] | 495 | REAL(wp) :: ideal_gas_law_rho_pt_0d |
---|
| 496 | |
---|
[3274] | 497 | ! |
---|
[4509] | 498 | !-- Compute density according to ideal gas law: |
---|
| 499 | ideal_gas_law_rho_pt_0d = p / (r_d * exner_function(p) * t) |
---|
[3274] | 500 | |
---|
[4509] | 501 | END FUNCTION ideal_gas_law_rho_pt_0d |
---|
[3274] | 502 | |
---|
[4509] | 503 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 504 | ! Description: |
---|
| 505 | ! ------------ |
---|
| 506 | !> Compute the ideal gas law for 1-D array arguments. |
---|
[4509] | 507 | !--------------------------------------------------------------------------------------------------! |
---|
| 508 | FUNCTION ideal_gas_law_rho_pt_1d( p, t ) |
---|
[3274] | 509 | |
---|
[4509] | 510 | IMPLICIT NONE |
---|
[3274] | 511 | |
---|
[4509] | 512 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
| 513 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
[3274] | 514 | |
---|
[4509] | 515 | REAL(wp), DIMENSION(size(p)) :: ideal_gas_law_rho_pt_1d |
---|
| 516 | |
---|
[3274] | 517 | ! |
---|
[4509] | 518 | !-- Compute density according to ideal gas law: |
---|
| 519 | ideal_gas_law_rho_pt_1d = p / (r_d * exner_function(p) * t) |
---|
[3274] | 520 | |
---|
[4509] | 521 | END FUNCTION ideal_gas_law_rho_pt_1d |
---|
[3274] | 522 | |
---|
[4509] | 523 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 524 | ! Description: |
---|
| 525 | ! ------------ |
---|
| 526 | !> Compute the exner function for scalar arguments. |
---|
[4509] | 527 | !--------------------------------------------------------------------------------------------------! |
---|
| 528 | FUNCTION exner_function_0d( p ) |
---|
[3274] | 529 | |
---|
[4509] | 530 | IMPLICIT NONE |
---|
[3274] | 531 | |
---|
[4509] | 532 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
[3274] | 533 | |
---|
[4509] | 534 | REAL(wp) :: exner_function_0d |
---|
| 535 | |
---|
[3274] | 536 | ! |
---|
[4509] | 537 | !-- Compute exner function: |
---|
| 538 | exner_function_0d = ( p / p_0 )**( rd_d_cp ) |
---|
[3274] | 539 | |
---|
[4509] | 540 | END FUNCTION exner_function_0d |
---|
[3274] | 541 | |
---|
[4509] | 542 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 543 | ! Description: |
---|
| 544 | ! ------------ |
---|
| 545 | !> Compute the exner function for 1-D array arguments. |
---|
[4509] | 546 | !--------------------------------------------------------------------------------------------------! |
---|
| 547 | FUNCTION exner_function_1d( p ) |
---|
[3274] | 548 | |
---|
[4509] | 549 | IMPLICIT NONE |
---|
[3274] | 550 | |
---|
[4509] | 551 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
[3274] | 552 | |
---|
[4509] | 553 | REAL(wp), DIMENSION(size(p)) :: exner_function_1d |
---|
| 554 | |
---|
[3274] | 555 | ! |
---|
[4509] | 556 | !-- Compute exner function: |
---|
| 557 | exner_function_1d = ( p / p_0 )**( rd_d_cp ) |
---|
[3274] | 558 | |
---|
[4509] | 559 | END FUNCTION exner_function_1d |
---|
[3274] | 560 | |
---|
[4509] | 561 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 562 | ! Description: |
---|
| 563 | ! ------------ |
---|
| 564 | !> Compute the exner function for scalar arguments. |
---|
[4509] | 565 | !--------------------------------------------------------------------------------------------------! |
---|
| 566 | FUNCTION exner_function_invers_0d( p ) |
---|
[3274] | 567 | |
---|
[4509] | 568 | IMPLICIT NONE |
---|
[3274] | 569 | |
---|
[4509] | 570 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
[3274] | 571 | |
---|
[4509] | 572 | REAL(wp) :: exner_function_invers_0d |
---|
| 573 | |
---|
[3274] | 574 | ! |
---|
[4509] | 575 | !-- Compute exner function: |
---|
| 576 | exner_function_invers_0d = ( p_0 / p )**( rd_d_cp ) |
---|
[3274] | 577 | |
---|
[4509] | 578 | END FUNCTION exner_function_invers_0d |
---|
[3274] | 579 | |
---|
[4509] | 580 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 581 | ! Description: |
---|
| 582 | ! ------------ |
---|
| 583 | !> Compute the exner function for 1-D array arguments. |
---|
[4509] | 584 | !--------------------------------------------------------------------------------------------------! |
---|
| 585 | FUNCTION exner_function_invers_1d( p ) |
---|
[3274] | 586 | |
---|
[4509] | 587 | IMPLICIT NONE |
---|
[3274] | 588 | |
---|
[4509] | 589 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
[3274] | 590 | |
---|
[4509] | 591 | REAL(wp), DIMENSION(size(p)) :: exner_function_invers_1d |
---|
| 592 | |
---|
[3274] | 593 | ! |
---|
[4509] | 594 | !-- Compute exner function: |
---|
| 595 | exner_function_invers_1d = ( p_0 / p )**( rd_d_cp ) |
---|
[3274] | 596 | |
---|
[4509] | 597 | END FUNCTION exner_function_invers_1d |
---|
[3274] | 598 | |
---|
[4509] | 599 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 600 | ! Description: |
---|
| 601 | ! ------------ |
---|
[4509] | 602 | !> Compute the barometric formula for scalar arguments. The calculation is based on the assumption |
---|
| 603 | !> of a polytropic atmosphere and neutral stratification, where the temperature lapse rate is g/cp. |
---|
| 604 | !--------------------------------------------------------------------------------------------------! |
---|
| 605 | FUNCTION barometric_formula_0d( z, t_0, p_0) |
---|
[3274] | 606 | |
---|
[4509] | 607 | IMPLICIT NONE |
---|
[3274] | 608 | |
---|
[4509] | 609 | REAL(wp), INTENT(IN) :: z !< height (m) |
---|
| 610 | REAL(wp), INTENT(IN) :: t_0 !< temperature reference state (K) |
---|
| 611 | REAL(wp), INTENT(IN) :: p_0 !< surface pressure (Pa) |
---|
[3274] | 612 | |
---|
[4509] | 613 | REAL(wp) :: barometric_formula_0d |
---|
| 614 | |
---|
[3274] | 615 | ! |
---|
[4509] | 616 | !-- Compute barometric formula: |
---|
| 617 | barometric_formula_0d = p_0 * ( (t_0 - g_d_cp * z) / t_0 )**( cp_d_rd ) |
---|
[3274] | 618 | |
---|
[4509] | 619 | END FUNCTION barometric_formula_0d |
---|
[3274] | 620 | |
---|
[4509] | 621 | !--------------------------------------------------------------------------------------------------! |
---|
[3274] | 622 | ! Description: |
---|
| 623 | ! ------------ |
---|
[4509] | 624 | !> Compute the barometric formula for 1-D array arguments. The calculation is based on the |
---|
| 625 | !> assumption of a polytropic atmosphere and neutral stratification, where the temperature lapse |
---|
| 626 | !> rate is g/cp. |
---|
| 627 | !--------------------------------------------------------------------------------------------------! |
---|
| 628 | FUNCTION barometric_formula_1d( z, t_0, p_0) |
---|
[3274] | 629 | |
---|
[4509] | 630 | IMPLICIT NONE |
---|
[3274] | 631 | |
---|
[4509] | 632 | REAL(wp), INTENT(IN), DIMENSION(:) :: z !< height (m) |
---|
| 633 | REAL(wp), INTENT(IN) :: t_0 !< temperature reference state (K) |
---|
| 634 | REAL(wp), INTENT(IN) :: p_0 !< surface pressure (Pa) |
---|
[3274] | 635 | |
---|
[4509] | 636 | REAL(wp), DIMENSION(size(z)) :: barometric_formula_1d |
---|
| 637 | |
---|
[3274] | 638 | ! |
---|
[4509] | 639 | !-- Compute barometric formula: |
---|
| 640 | barometric_formula_1d = p_0 * ( (t_0 - g_d_cp * z) / t_0 )**( cp_d_rd ) |
---|
[3274] | 641 | |
---|
[4509] | 642 | END FUNCTION barometric_formula_1d |
---|
[3274] | 643 | |
---|
| 644 | END MODULE basic_constants_and_equations_mod |
---|