[3274] | 1 | !> @file basic_constants_and_equations_mod.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of the PALM model system. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[3274] | 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ----------------- |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: basic_constants_and_equations_mod.f90 4502 2020-04-17 16:14:16Z schwenkel $ |
---|
[4502] | 27 | ! Implementation of ice microphysics |
---|
| 28 | ! |
---|
| 29 | ! 4400 2020-02-10 20:32:41Z suehring |
---|
[4400] | 30 | ! Move routine to transform coordinates from netcdf_interface_mod to |
---|
| 31 | ! basic_constants_and_equations_mod |
---|
| 32 | ! |
---|
| 33 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 34 | ! Corrected "Former revisions" section |
---|
| 35 | ! |
---|
| 36 | ! 4088 2019-07-11 13:57:56Z Giersch |
---|
[4088] | 37 | ! Comment of barometric formula improved, function for ideal gas law revised |
---|
| 38 | ! |
---|
| 39 | ! 4084 2019-07-10 17:09:11Z knoop |
---|
[4084] | 40 | ! Changed precomputed fractions to be variable based |
---|
| 41 | ! |
---|
| 42 | ! 4055 2019-06-27 09:47:29Z suehring |
---|
[4055] | 43 | ! Added rgas_univ (universal gas constant) (E.C. Chan) |
---|
| 44 | ! |
---|
| 45 | ! |
---|
| 46 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 47 | ! OpenACC port for SPEC |
---|
[4182] | 48 | ! 3361 2018-10-16 20:39:37Z knoop |
---|
| 49 | ! New module (introduced with modularization of bulk cloud physics model) |
---|
| 50 | ! |
---|
[3634] | 51 | ! |
---|
[3274] | 52 | ! |
---|
[4182] | 53 | ! |
---|
[3274] | 54 | ! Description: |
---|
| 55 | ! ------------ |
---|
| 56 | !> This module contains all basic (physical) constants |
---|
| 57 | !> and |
---|
| 58 | !> functions for the calculation of diagnostic quantities. |
---|
| 59 | !------------------------------------------------------------------------------! |
---|
| 60 | MODULE basic_constants_and_equations_mod |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | USE kinds |
---|
| 64 | |
---|
| 65 | IMPLICIT NONE |
---|
| 66 | |
---|
| 67 | REAL(wp), PARAMETER :: c_p = 1005.0_wp !< heat capacity of dry air (J kg-1 K-1) |
---|
[3449] | 68 | REAL(wp), PARAMETER :: degc_to_k = 273.15_wp !< temperature (in K) of 0 deg C (K) |
---|
[3274] | 69 | REAL(wp), PARAMETER :: g = 9.81_wp !< gravitational acceleration (m s-2) |
---|
| 70 | REAL(wp), PARAMETER :: kappa = 0.4_wp !< von Karman constant |
---|
| 71 | REAL(wp), PARAMETER :: l_m = 0.33E+06_wp !< latent heat of water melting (J kg-1) |
---|
| 72 | REAL(wp), PARAMETER :: l_v = 2.5E+06_wp !< latent heat of water vaporization (J kg-1) |
---|
| 73 | REAL(wp), PARAMETER :: l_s = l_m + l_v !< latent heat of water sublimation (J kg-1) |
---|
| 74 | REAL(wp), PARAMETER :: molecular_weight_of_nacl = 0.05844_wp !< mol. m. NaCl (kg mol-1) |
---|
| 75 | REAL(wp), PARAMETER :: molecular_weight_of_c3h4o4 = 0.10406_wp !< mol. m. malonic acid (kg mol-1) |
---|
| 76 | REAL(wp), PARAMETER :: molecular_weight_of_nh4no3 = 0.08004_wp !< mol. m. ammonium sulfate (kg mol-1) |
---|
| 77 | REAL(wp), PARAMETER :: molecular_weight_of_water = 0.01801528_wp !< mol. m. H2O (kg mol-1) |
---|
[3449] | 78 | REAL(wp), PARAMETER :: pi = 3.141592654_wp !< PI |
---|
[3634] | 79 | !$ACC DECLARE COPYIN(pi) |
---|
[4055] | 80 | REAL(wp), PARAMETER :: rgas_univ = 8.31446261815324_wp !< universal gas constant (J K-1 mol-1) |
---|
[3274] | 81 | REAL(wp), PARAMETER :: rho_l = 1.0E3_wp !< density of water (kg m-3) |
---|
| 82 | REAL(wp), PARAMETER :: rho_nacl = 2165.0_wp !< density of NaCl (kg m-3) |
---|
| 83 | REAL(wp), PARAMETER :: rho_c3h4o4 = 1600.0_wp !< density of malonic acid (kg m-3) |
---|
| 84 | REAL(wp), PARAMETER :: rho_nh4no3 = 1720.0_wp !< density of ammonium sulfate (kg m-3) |
---|
| 85 | REAL(wp), PARAMETER :: r_d = 287.0_wp !< sp. gas const. dry air (J kg-1 K-1) |
---|
| 86 | REAL(wp), PARAMETER :: r_v = 461.51_wp !< sp. gas const. water vapor (J kg-1 K-1) |
---|
[3449] | 87 | REAL(wp), PARAMETER :: sigma_sb = 5.67037E-08_wp !< Stefan-Boltzmann constant |
---|
[3274] | 88 | REAL(wp), PARAMETER :: solar_constant = 1368.0_wp !< solar constant at top of atmosphere |
---|
| 89 | REAL(wp), PARAMETER :: vanthoff_nacl = 2.0_wp !< van't Hoff factor for NaCl |
---|
| 90 | REAL(wp), PARAMETER :: vanthoff_c3h4o4 = 1.37_wp !< van't Hoff factor for malonic acid |
---|
| 91 | REAL(wp), PARAMETER :: vanthoff_nh4no3 = 2.31_wp !< van't Hoff factor for ammonium sulfate |
---|
| 92 | |
---|
| 93 | REAL(wp), PARAMETER :: p_0 = 100000.0_wp !< standard pressure reference state |
---|
| 94 | |
---|
| 95 | REAL(wp), PARAMETER :: g_d_cp = g / c_p !< precomputed g / c_p |
---|
| 96 | REAL(wp), PARAMETER :: lv_d_cp = l_v / c_p !< precomputed l_v / c_p |
---|
[4502] | 97 | REAL(wp), PARAMETER :: ls_d_cp = l_s / c_p !< precomputed l_s / c_p |
---|
[3274] | 98 | REAL(wp), PARAMETER :: lv_d_rd = l_v / r_d !< precomputed l_v / r_d |
---|
[4084] | 99 | REAL(wp), PARAMETER :: rd_d_rv = r_d / r_v !< precomputed r_d / r_v |
---|
| 100 | REAL(wp), PARAMETER :: rd_d_cp = r_d / c_p !< precomputed r_d / c_p |
---|
| 101 | REAL(wp), PARAMETER :: cp_d_rd = c_p / r_d !< precomputed c_p / r_d |
---|
[3274] | 102 | |
---|
| 103 | REAL(wp) :: molecular_weight_of_solute = molecular_weight_of_nacl !< mol. m. NaCl (kg mol-1) |
---|
| 104 | REAL(wp) :: rho_s = rho_nacl !< density of NaCl (kg m-3) |
---|
| 105 | REAL(wp) :: vanthoff = vanthoff_nacl !< van't Hoff factor for NaCl |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | SAVE |
---|
| 109 | |
---|
| 110 | PRIVATE magnus_0d, & |
---|
| 111 | magnus_1d, & |
---|
[4502] | 112 | magnus_tl_0d, & |
---|
| 113 | magnus_tl_1d, & |
---|
| 114 | magnus_0d_ice, & |
---|
| 115 | magnus_1d_ice, & |
---|
[3274] | 116 | ideal_gas_law_rho_0d, & |
---|
| 117 | ideal_gas_law_rho_1d, & |
---|
| 118 | ideal_gas_law_rho_pt_0d, & |
---|
| 119 | ideal_gas_law_rho_pt_1d, & |
---|
| 120 | exner_function_0d, & |
---|
| 121 | exner_function_1d, & |
---|
| 122 | exner_function_invers_0d, & |
---|
| 123 | exner_function_invers_1d, & |
---|
| 124 | barometric_formula_0d, & |
---|
| 125 | barometric_formula_1d |
---|
| 126 | |
---|
[4400] | 127 | |
---|
| 128 | INTERFACE convert_utm_to_geographic |
---|
| 129 | MODULE PROCEDURE convert_utm_to_geographic |
---|
| 130 | END INTERFACE convert_utm_to_geographic |
---|
| 131 | |
---|
[3274] | 132 | INTERFACE magnus |
---|
| 133 | MODULE PROCEDURE magnus_0d |
---|
| 134 | MODULE PROCEDURE magnus_1d |
---|
| 135 | END INTERFACE magnus |
---|
| 136 | |
---|
[4502] | 137 | INTERFACE magnus_tl |
---|
| 138 | MODULE PROCEDURE magnus_tl_0d |
---|
| 139 | MODULE PROCEDURE magnus_tl_1d |
---|
| 140 | END INTERFACE magnus_tl |
---|
| 141 | |
---|
| 142 | INTERFACE magnus_ice |
---|
| 143 | MODULE PROCEDURE magnus_0d_ice |
---|
| 144 | MODULE PROCEDURE magnus_1d_ice |
---|
| 145 | END INTERFACE magnus_ice |
---|
| 146 | |
---|
[3274] | 147 | INTERFACE ideal_gas_law_rho |
---|
| 148 | MODULE PROCEDURE ideal_gas_law_rho_0d |
---|
| 149 | MODULE PROCEDURE ideal_gas_law_rho_1d |
---|
| 150 | END INTERFACE ideal_gas_law_rho |
---|
| 151 | |
---|
| 152 | INTERFACE ideal_gas_law_rho_pt |
---|
| 153 | MODULE PROCEDURE ideal_gas_law_rho_pt_0d |
---|
| 154 | MODULE PROCEDURE ideal_gas_law_rho_pt_1d |
---|
| 155 | END INTERFACE ideal_gas_law_rho_pt |
---|
| 156 | |
---|
| 157 | INTERFACE exner_function |
---|
| 158 | MODULE PROCEDURE exner_function_0d |
---|
| 159 | MODULE PROCEDURE exner_function_1d |
---|
| 160 | END INTERFACE exner_function |
---|
| 161 | |
---|
| 162 | INTERFACE exner_function_invers |
---|
| 163 | MODULE PROCEDURE exner_function_invers_0d |
---|
| 164 | MODULE PROCEDURE exner_function_invers_1d |
---|
| 165 | END INTERFACE exner_function_invers |
---|
| 166 | |
---|
| 167 | INTERFACE barometric_formula |
---|
| 168 | MODULE PROCEDURE barometric_formula_0d |
---|
| 169 | MODULE PROCEDURE barometric_formula_1d |
---|
| 170 | END INTERFACE barometric_formula |
---|
[4400] | 171 | ! |
---|
| 172 | !-- Public routines |
---|
| 173 | PUBLIC convert_utm_to_geographic |
---|
[3274] | 174 | |
---|
| 175 | CONTAINS |
---|
| 176 | |
---|
[4400] | 177 | |
---|
[3274] | 178 | !------------------------------------------------------------------------------! |
---|
| 179 | ! Description: |
---|
| 180 | ! ------------ |
---|
[4400] | 181 | !> Convert UTM coordinates into geographic latitude and longitude. Conversion |
---|
| 182 | !> is based on the work of KrÃŒger (1912) DOI: 10.2312/GFZ.b103-krueger28 |
---|
| 183 | !> and Karney (2013) DOI: 10.1007/s00190-012-0578-z |
---|
| 184 | !> Based on a JavaScript of the geodesy function library written by chrisveness |
---|
| 185 | !> https://github.com/chrisveness/geodesy |
---|
| 186 | !------------------------------------------------------------------------------! |
---|
| 187 | SUBROUTINE convert_utm_to_geographic( crs, eutm, nutm, lon, lat ) |
---|
| 188 | |
---|
| 189 | INTEGER(iwp) :: j !< loop index |
---|
| 190 | |
---|
| 191 | REAL(wp), INTENT(in) :: eutm !< easting (UTM) |
---|
| 192 | REAL(wp), INTENT(out) :: lat !< geographic latitude in degree |
---|
| 193 | REAL(wp), INTENT(out) :: lon !< geographic longitude in degree |
---|
| 194 | REAL(wp), INTENT(in) :: nutm !< northing (UTM) |
---|
| 195 | |
---|
| 196 | REAL(wp) :: a !< 2*pi*a is the circumference of a meridian |
---|
| 197 | REAL(wp) :: cos_eta_s !< cos(eta_s) |
---|
| 198 | REAL(wp) :: delta_i !< |
---|
| 199 | REAL(wp) :: delta_tau_i !< |
---|
| 200 | REAL(wp) :: e !< eccentricity |
---|
| 201 | REAL(wp) :: eta !< |
---|
| 202 | REAL(wp) :: eta_s !< |
---|
| 203 | REAL(wp) :: n !< 3rd flattening |
---|
| 204 | REAL(wp) :: n2 !< n^2 |
---|
| 205 | REAL(wp) :: n3 !< n^3 |
---|
| 206 | REAL(wp) :: n4 !< n^4 |
---|
| 207 | REAL(wp) :: n5 !< n^5 |
---|
| 208 | REAL(wp) :: n6 !< n^6 |
---|
| 209 | REAL(wp) :: nu !< |
---|
| 210 | REAL(wp) :: nu_s !< |
---|
| 211 | REAL(wp) :: sin_eta_s !< sin(eta_s) |
---|
| 212 | REAL(wp) :: sinh_nu_s !< sinush(nu_s) |
---|
| 213 | REAL(wp) :: tau_i !< |
---|
| 214 | REAL(wp) :: tau_i_s !< |
---|
| 215 | REAL(wp) :: tau_s !< |
---|
| 216 | REAL(wp) :: x !< adjusted easting |
---|
| 217 | REAL(wp) :: y !< adjusted northing |
---|
| 218 | |
---|
| 219 | REAL(wp), DIMENSION(6) :: beta !< 6th order KrÃŒger expressions |
---|
| 220 | |
---|
| 221 | REAL(wp), DIMENSION(8), INTENT(in) :: crs !< coordinate reference system, consists of |
---|
| 222 | !< (/semi_major_axis, |
---|
| 223 | !< inverse_flattening, |
---|
| 224 | !< longitude_of_prime_meridian, |
---|
| 225 | !< longitude_of_central_meridian, |
---|
| 226 | !< scale_factor_at_central_meridian, |
---|
| 227 | !< latitude_of_projection_origin, |
---|
| 228 | !< false_easting, |
---|
| 229 | !< false_northing /) |
---|
| 230 | |
---|
| 231 | x = eutm - crs(7) ! remove false easting |
---|
| 232 | y = nutm - crs(8) ! remove false northing |
---|
| 233 | ! |
---|
| 234 | !-- from Karney 2011 Eq 15-22, 36: |
---|
| 235 | e = SQRT( 1.0_wp / crs(2) * ( 2.0_wp - 1.0_wp / crs(2) ) ) |
---|
| 236 | n = 1.0_wp / crs(2) / ( 2.0_wp - 1.0_wp / crs(2) ) |
---|
| 237 | n2 = n * n |
---|
| 238 | n3 = n * n2 |
---|
| 239 | n4 = n * n3 |
---|
| 240 | n5 = n * n4 |
---|
| 241 | n6 = n * n5 |
---|
| 242 | |
---|
| 243 | a = crs(1) / ( 1.0_wp + n ) * ( 1.0_wp + 0.25_wp * n2 & |
---|
| 244 | + 0.015625_wp * n4 & |
---|
| 245 | + 3.90625E-3_wp * n6 ) |
---|
| 246 | |
---|
| 247 | nu = x / ( crs(5) * a ) |
---|
| 248 | eta = y / ( crs(5) * a ) |
---|
| 249 | |
---|
| 250 | !-- According to KrÃŒger (1912), eq. 26* |
---|
| 251 | beta(1) = 0.5_wp * n & |
---|
| 252 | - 2.0_wp / 3.0_wp * n2 & |
---|
| 253 | + 37.0_wp / 96.0_wp * n3 & |
---|
| 254 | - 1.0_wp / 360.0_wp * n4 & |
---|
| 255 | - 81.0_wp / 512.0_wp * n5 & |
---|
| 256 | + 96199.0_wp / 604800.0_wp * n6 |
---|
| 257 | |
---|
| 258 | beta(2) = 1.0_wp / 48.0_wp * n2 & |
---|
| 259 | + 1.0_wp / 15.0_wp * n3 & |
---|
| 260 | - 437.0_wp / 1440.0_wp * n4 & |
---|
| 261 | + 46.0_wp / 105.0_wp * n5 & |
---|
| 262 | - 1118711.0_wp / 3870720.0_wp * n6 |
---|
| 263 | |
---|
| 264 | beta(3) = 17.0_wp / 480.0_wp * n3 & |
---|
| 265 | - 37.0_wp / 840.0_wp * n4 & |
---|
| 266 | - 209.0_wp / 4480.0_wp * n5 & |
---|
| 267 | + 5569.0_wp / 90720.0_wp * n6 |
---|
| 268 | |
---|
| 269 | beta(4) = 4397.0_wp / 161280.0_wp * n4 & |
---|
| 270 | - 11.0_wp / 504.0_wp * n5 & |
---|
| 271 | - 830251.0_wp / 7257600.0_wp * n6 |
---|
| 272 | |
---|
| 273 | beta(5) = 4583.0_wp / 161280.0_wp * n5 & |
---|
| 274 | - 108847.0_wp / 3991680.0_wp * n6 |
---|
| 275 | |
---|
| 276 | beta(6) = 20648693.0_wp / 638668800.0_wp * n6 |
---|
| 277 | |
---|
| 278 | eta_s = eta |
---|
| 279 | nu_s = nu |
---|
| 280 | DO j = 1, 6 |
---|
| 281 | eta_s = eta_s - beta(j) * SIN(2.0_wp * j * eta) * COSH(2.0_wp * j * nu) |
---|
| 282 | nu_s = nu_s - beta(j) * COS(2.0_wp * j * eta) * SINH(2.0_wp * j * nu) |
---|
| 283 | ENDDO |
---|
| 284 | |
---|
| 285 | sinh_nu_s = SINH( nu_s ) |
---|
| 286 | sin_eta_s = SIN( eta_s ) |
---|
| 287 | cos_eta_s = COS( eta_s ) |
---|
| 288 | |
---|
| 289 | tau_s = sin_eta_s / SQRT( sinh_nu_s**2 + cos_eta_s**2 ) |
---|
| 290 | |
---|
| 291 | tau_i = tau_s |
---|
| 292 | delta_tau_i = 1.0_wp |
---|
| 293 | |
---|
| 294 | DO WHILE ( ABS( delta_tau_i ) > 1.0E-12_wp ) |
---|
| 295 | |
---|
| 296 | delta_i = SINH( e * ATANH( e * tau_i / SQRT( 1.0_wp + tau_i**2 ) ) ) |
---|
| 297 | |
---|
| 298 | tau_i_s = tau_i * SQRT( 1.0_wp + delta_i**2 ) & |
---|
| 299 | - delta_i * SQRT( 1.0_wp + tau_i**2 ) |
---|
| 300 | |
---|
| 301 | delta_tau_i = ( tau_s - tau_i_s ) / SQRT( 1.0_wp + tau_i_s**2 ) & |
---|
| 302 | * ( 1.0_wp + ( 1.0_wp - e**2 ) * tau_i**2 ) & |
---|
| 303 | / ( ( 1.0_wp - e**2 ) * SQRT( 1.0_wp + tau_i**2 ) ) |
---|
| 304 | |
---|
| 305 | tau_i = tau_i + delta_tau_i |
---|
| 306 | |
---|
| 307 | ENDDO |
---|
| 308 | |
---|
| 309 | lat = ATAN( tau_i ) / pi * 180.0_wp |
---|
| 310 | lon = ATAN2( sinh_nu_s, cos_eta_s ) / pi * 180.0_wp + crs(4) |
---|
| 311 | |
---|
| 312 | END SUBROUTINE convert_utm_to_geographic |
---|
| 313 | |
---|
| 314 | !------------------------------------------------------------------------------! |
---|
| 315 | ! Description: |
---|
| 316 | ! ------------ |
---|
[3274] | 317 | !> This function computes the magnus formula (Press et al., 1992). |
---|
| 318 | !> The magnus formula is needed to calculate the saturation vapor pressure |
---|
| 319 | !------------------------------------------------------------------------------! |
---|
| 320 | FUNCTION magnus_0d( t ) |
---|
| 321 | |
---|
| 322 | IMPLICIT NONE |
---|
| 323 | |
---|
| 324 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
| 325 | |
---|
| 326 | REAL(wp) :: magnus_0d |
---|
| 327 | ! |
---|
| 328 | !-- Saturation vapor pressure for a specific temperature: |
---|
[3449] | 329 | magnus_0d = 611.2_wp * EXP( 17.62_wp * ( t - degc_to_k ) / & |
---|
[4400] | 330 | ( t - 29.65_wp ) ) |
---|
[3274] | 331 | |
---|
| 332 | END FUNCTION magnus_0d |
---|
| 333 | |
---|
| 334 | !------------------------------------------------------------------------------! |
---|
| 335 | ! Description: |
---|
| 336 | ! ------------ |
---|
| 337 | !> This function computes the magnus formula (Press et al., 1992). |
---|
| 338 | !> The magnus formula is needed to calculate the saturation vapor pressure |
---|
| 339 | !------------------------------------------------------------------------------! |
---|
| 340 | FUNCTION magnus_1d( t ) |
---|
| 341 | |
---|
| 342 | IMPLICIT NONE |
---|
| 343 | |
---|
| 344 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
| 345 | |
---|
| 346 | REAL(wp), DIMENSION(size(t)) :: magnus_1d |
---|
| 347 | ! |
---|
| 348 | !-- Saturation vapor pressure for a specific temperature: |
---|
[3449] | 349 | magnus_1d = 611.2_wp * EXP( 17.62_wp * ( t - degc_to_k ) / & |
---|
[3274] | 350 | ( t - 29.65_wp ) ) |
---|
| 351 | |
---|
| 352 | END FUNCTION magnus_1d |
---|
| 353 | |
---|
| 354 | !------------------------------------------------------------------------------! |
---|
| 355 | ! Description: |
---|
| 356 | ! ------------ |
---|
[4502] | 357 | !> This function computes the magnus formula (Press et al., 1992) using the |
---|
| 358 | !> (ice-) liquid water potential temperature. |
---|
| 359 | !> The magnus formula is needed to calculate the saturation vapor pressure over |
---|
| 360 | !> a plane liquid water surface |
---|
| 361 | !------------------------------------------------------------------------------! |
---|
| 362 | FUNCTION magnus_tl_0d( t_l ) |
---|
| 363 | |
---|
| 364 | IMPLICIT NONE |
---|
| 365 | |
---|
| 366 | REAL(wp), INTENT(IN) :: t_l !< liquid water temperature (K) |
---|
| 367 | |
---|
| 368 | REAL(wp) :: magnus_tl_0d |
---|
| 369 | ! |
---|
| 370 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 371 | magnus_tl_0d = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 372 | ( t_l - 35.86_wp ) ) |
---|
| 373 | |
---|
| 374 | END FUNCTION magnus_tl_0d |
---|
| 375 | |
---|
| 376 | !------------------------------------------------------------------------------! |
---|
| 377 | ! Description: |
---|
| 378 | ! ------------ |
---|
| 379 | !> This function computes the magnus formula (Press et al., 1992) using the |
---|
| 380 | !> (ice-) liquid water potential temperature. |
---|
| 381 | !> The magnus formula is needed to calculate the saturation vapor pressure over |
---|
| 382 | !> a plane liquid water surface |
---|
| 383 | !------------------------------------------------------------------------------! |
---|
| 384 | FUNCTION magnus_tl_1d( t_l ) |
---|
| 385 | |
---|
| 386 | IMPLICIT NONE |
---|
| 387 | |
---|
| 388 | REAL(wp), INTENT(IN), DIMENSION(:) :: t_l !< liquid water temperature (K) |
---|
| 389 | |
---|
| 390 | REAL(wp), DIMENSION(size(t_l)) :: magnus_tl_1d |
---|
| 391 | ! |
---|
| 392 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 393 | magnus_tl_1d = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 394 | ( t_l - 35.86_wp ) ) |
---|
| 395 | |
---|
| 396 | END FUNCTION magnus_tl_1d |
---|
| 397 | |
---|
| 398 | !------------------------------------------------------------------------------! |
---|
| 399 | ! Description: |
---|
| 400 | ! ------------ |
---|
| 401 | !> This function computes the magnus formula (Press et al., 1992). |
---|
| 402 | !> The magnus formula is needed to calculate the saturation vapor pressure over |
---|
| 403 | !> a plane ice surface |
---|
| 404 | !------------------------------------------------------------------------------! |
---|
| 405 | FUNCTION magnus_0d_ice( t ) |
---|
| 406 | |
---|
| 407 | IMPLICIT NONE |
---|
| 408 | |
---|
| 409 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
| 410 | |
---|
| 411 | REAL(wp) :: magnus_0d_ice |
---|
| 412 | ! |
---|
| 413 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 414 | magnus_0d_ice = 611.2_wp * EXP( 22.46_wp * ( t - degc_to_k ) / & |
---|
| 415 | ( t - 0.53_wp ) ) |
---|
| 416 | |
---|
| 417 | END FUNCTION magnus_0d_ice |
---|
| 418 | |
---|
| 419 | !------------------------------------------------------------------------------! |
---|
| 420 | ! Description: |
---|
| 421 | ! ------------ |
---|
| 422 | !> This function computes the magnus formula (Press et al., 1992). |
---|
| 423 | !> The magnus formula is needed to calculate the saturation vapor pressure over |
---|
| 424 | !> a plane ice surface |
---|
| 425 | !------------------------------------------------------------------------------! |
---|
| 426 | FUNCTION magnus_1d_ice( t ) |
---|
| 427 | |
---|
| 428 | IMPLICIT NONE |
---|
| 429 | |
---|
| 430 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
| 431 | |
---|
| 432 | REAL(wp), DIMENSION(size(t)) :: magnus_1d_ice |
---|
| 433 | ! |
---|
| 434 | !-- Saturation vapor pressure for a specific temperature: |
---|
| 435 | magnus_1d_ice = 611.2_wp * EXP( 22.46_wp * ( t - degc_to_k ) / & |
---|
| 436 | ( t - 0.53_wp ) ) |
---|
| 437 | |
---|
| 438 | END FUNCTION magnus_1d_ice |
---|
| 439 | |
---|
| 440 | !------------------------------------------------------------------------------! |
---|
| 441 | ! Description: |
---|
| 442 | ! ------------ |
---|
[3274] | 443 | !> Compute the ideal gas law for scalar arguments. |
---|
| 444 | !------------------------------------------------------------------------------! |
---|
| 445 | FUNCTION ideal_gas_law_rho_0d( p, t ) |
---|
| 446 | |
---|
| 447 | IMPLICIT NONE |
---|
| 448 | |
---|
| 449 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
| 450 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
| 451 | |
---|
| 452 | REAL(wp) :: ideal_gas_law_rho_0d |
---|
| 453 | ! |
---|
| 454 | !-- compute density according to ideal gas law: |
---|
| 455 | ideal_gas_law_rho_0d = p / (r_d * t) |
---|
| 456 | |
---|
| 457 | END FUNCTION ideal_gas_law_rho_0d |
---|
| 458 | |
---|
| 459 | !------------------------------------------------------------------------------! |
---|
| 460 | ! Description: |
---|
| 461 | ! ------------ |
---|
| 462 | !> Compute the ideal gas law for 1-D array arguments. |
---|
| 463 | !------------------------------------------------------------------------------! |
---|
| 464 | FUNCTION ideal_gas_law_rho_1d( p, t ) |
---|
| 465 | |
---|
| 466 | IMPLICIT NONE |
---|
| 467 | |
---|
| 468 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
| 469 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
| 470 | |
---|
| 471 | REAL(wp), DIMENSION(size(p)) :: ideal_gas_law_rho_1d |
---|
| 472 | ! |
---|
| 473 | !-- compute density according to ideal gas law: |
---|
| 474 | ideal_gas_law_rho_1d = p / (r_d * t) |
---|
| 475 | |
---|
| 476 | END FUNCTION ideal_gas_law_rho_1d |
---|
| 477 | |
---|
| 478 | !------------------------------------------------------------------------------! |
---|
| 479 | ! Description: |
---|
| 480 | ! ------------ |
---|
| 481 | !> Compute the ideal gas law for scalar arguments. |
---|
| 482 | !------------------------------------------------------------------------------! |
---|
| 483 | FUNCTION ideal_gas_law_rho_pt_0d( p, t ) |
---|
| 484 | |
---|
| 485 | IMPLICIT NONE |
---|
| 486 | |
---|
| 487 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
| 488 | REAL(wp), INTENT(IN) :: t !< temperature (K) |
---|
| 489 | |
---|
| 490 | REAL(wp) :: ideal_gas_law_rho_pt_0d |
---|
| 491 | ! |
---|
| 492 | !-- compute density according to ideal gas law: |
---|
[4088] | 493 | ideal_gas_law_rho_pt_0d = p / (r_d * exner_function(p) * t) |
---|
[3274] | 494 | |
---|
| 495 | END FUNCTION ideal_gas_law_rho_pt_0d |
---|
| 496 | |
---|
| 497 | !------------------------------------------------------------------------------! |
---|
| 498 | ! Description: |
---|
| 499 | ! ------------ |
---|
| 500 | !> Compute the ideal gas law for 1-D array arguments. |
---|
| 501 | !------------------------------------------------------------------------------! |
---|
| 502 | FUNCTION ideal_gas_law_rho_pt_1d( p, t ) |
---|
| 503 | |
---|
| 504 | IMPLICIT NONE |
---|
| 505 | |
---|
| 506 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
| 507 | REAL(wp), INTENT(IN), DIMENSION(:) :: t !< temperature (K) |
---|
| 508 | |
---|
| 509 | REAL(wp), DIMENSION(size(p)) :: ideal_gas_law_rho_pt_1d |
---|
| 510 | ! |
---|
| 511 | !-- compute density according to ideal gas law: |
---|
[4088] | 512 | ideal_gas_law_rho_pt_1d = p / (r_d * exner_function(p) * t) |
---|
[3274] | 513 | |
---|
| 514 | END FUNCTION ideal_gas_law_rho_pt_1d |
---|
| 515 | |
---|
| 516 | !------------------------------------------------------------------------------! |
---|
| 517 | ! Description: |
---|
| 518 | ! ------------ |
---|
| 519 | !> Compute the exner function for scalar arguments. |
---|
| 520 | !------------------------------------------------------------------------------! |
---|
| 521 | FUNCTION exner_function_0d( p ) |
---|
| 522 | |
---|
| 523 | IMPLICIT NONE |
---|
| 524 | |
---|
| 525 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
| 526 | |
---|
| 527 | REAL(wp) :: exner_function_0d |
---|
| 528 | ! |
---|
| 529 | !-- compute exner function: |
---|
| 530 | exner_function_0d = ( p / p_0 )**( rd_d_cp ) |
---|
| 531 | |
---|
| 532 | END FUNCTION exner_function_0d |
---|
| 533 | |
---|
| 534 | !------------------------------------------------------------------------------! |
---|
| 535 | ! Description: |
---|
| 536 | ! ------------ |
---|
| 537 | !> Compute the exner function for 1-D array arguments. |
---|
| 538 | !------------------------------------------------------------------------------! |
---|
| 539 | FUNCTION exner_function_1d( p ) |
---|
| 540 | |
---|
| 541 | IMPLICIT NONE |
---|
| 542 | |
---|
| 543 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
| 544 | |
---|
| 545 | REAL(wp), DIMENSION(size(p)) :: exner_function_1d |
---|
| 546 | ! |
---|
| 547 | !-- compute exner function: |
---|
| 548 | exner_function_1d = ( p / p_0 )**( rd_d_cp ) |
---|
| 549 | |
---|
| 550 | END FUNCTION exner_function_1d |
---|
| 551 | |
---|
| 552 | !------------------------------------------------------------------------------! |
---|
| 553 | ! Description: |
---|
| 554 | ! ------------ |
---|
| 555 | !> Compute the exner function for scalar arguments. |
---|
| 556 | !------------------------------------------------------------------------------! |
---|
| 557 | FUNCTION exner_function_invers_0d( p ) |
---|
| 558 | |
---|
| 559 | IMPLICIT NONE |
---|
| 560 | |
---|
| 561 | REAL(wp), INTENT(IN) :: p !< pressure (Pa) |
---|
| 562 | |
---|
| 563 | REAL(wp) :: exner_function_invers_0d |
---|
| 564 | ! |
---|
| 565 | !-- compute exner function: |
---|
| 566 | exner_function_invers_0d = ( p_0 / p )**( rd_d_cp ) |
---|
| 567 | |
---|
| 568 | END FUNCTION exner_function_invers_0d |
---|
| 569 | |
---|
| 570 | !------------------------------------------------------------------------------! |
---|
| 571 | ! Description: |
---|
| 572 | ! ------------ |
---|
| 573 | !> Compute the exner function for 1-D array arguments. |
---|
| 574 | !------------------------------------------------------------------------------! |
---|
| 575 | FUNCTION exner_function_invers_1d( p ) |
---|
| 576 | |
---|
| 577 | IMPLICIT NONE |
---|
| 578 | |
---|
| 579 | REAL(wp), INTENT(IN), DIMENSION(:) :: p !< pressure (Pa) |
---|
| 580 | |
---|
| 581 | REAL(wp), DIMENSION(size(p)) :: exner_function_invers_1d |
---|
| 582 | ! |
---|
| 583 | !-- compute exner function: |
---|
| 584 | exner_function_invers_1d = ( p_0 / p )**( rd_d_cp ) |
---|
| 585 | |
---|
| 586 | END FUNCTION exner_function_invers_1d |
---|
| 587 | |
---|
| 588 | !------------------------------------------------------------------------------! |
---|
| 589 | ! Description: |
---|
| 590 | ! ------------ |
---|
[4088] | 591 | !> Compute the barometric formula for scalar arguments. The calculation is |
---|
| 592 | !> based on the assumption of a polytropic atmosphere and neutral |
---|
| 593 | !> stratification, where the temperature lapse rate is g/cp. |
---|
[3274] | 594 | !------------------------------------------------------------------------------! |
---|
| 595 | FUNCTION barometric_formula_0d( z, t_0, p_0) |
---|
| 596 | |
---|
| 597 | IMPLICIT NONE |
---|
| 598 | |
---|
| 599 | REAL(wp), INTENT(IN) :: z !< height (m) |
---|
| 600 | REAL(wp), INTENT(IN) :: t_0 !< temperature reference state (K) |
---|
| 601 | REAL(wp), INTENT(IN) :: p_0 !< surface pressure (Pa) |
---|
| 602 | |
---|
| 603 | REAL(wp) :: barometric_formula_0d |
---|
| 604 | ! |
---|
| 605 | !-- compute barometric formula: |
---|
| 606 | barometric_formula_0d = p_0 * ( (t_0 - g_d_cp * z) / t_0 )**( cp_d_rd ) |
---|
| 607 | |
---|
| 608 | END FUNCTION barometric_formula_0d |
---|
| 609 | |
---|
| 610 | !------------------------------------------------------------------------------! |
---|
| 611 | ! Description: |
---|
| 612 | ! ------------ |
---|
[4088] | 613 | !> Compute the barometric formula for 1-D array arguments. The calculation is |
---|
| 614 | !> based on the assumption of a polytropic atmosphere and neutral |
---|
| 615 | !> stratification, where the temperature lapse rate is g/cp. |
---|
[3274] | 616 | !------------------------------------------------------------------------------! |
---|
| 617 | FUNCTION barometric_formula_1d( z, t_0, p_0) |
---|
| 618 | |
---|
| 619 | IMPLICIT NONE |
---|
| 620 | |
---|
| 621 | REAL(wp), INTENT(IN), DIMENSION(:) :: z !< height (m) |
---|
| 622 | REAL(wp), INTENT(IN) :: t_0 !< temperature reference state (K) |
---|
| 623 | REAL(wp), INTENT(IN) :: p_0 !< surface pressure (Pa) |
---|
| 624 | |
---|
| 625 | REAL(wp), DIMENSION(size(z)) :: barometric_formula_1d |
---|
| 626 | ! |
---|
| 627 | !-- compute barometric formula: |
---|
| 628 | barometric_formula_1d = p_0 * ( (t_0 - g_d_cp * z) / t_0 )**( cp_d_rd ) |
---|
| 629 | |
---|
| 630 | END FUNCTION barometric_formula_1d |
---|
| 631 | |
---|
| 632 | END MODULE basic_constants_and_equations_mod |
---|