[1] | 1 | SUBROUTINE advec_u_ups |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[198] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: advec_u_ups.f90 198 2008-09-17 08:55:28Z letzel $ |
---|
[198] | 11 | ! |
---|
| 12 | ! 164 2008-05-15 08:46:15Z raasch |
---|
| 13 | ! Arguments removed from transpose routines |
---|
| 14 | ! |
---|
| 15 | ! February 2007 |
---|
[3] | 16 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 17 | ! |
---|
[1] | 18 | ! Revision 1.6 2004/04/30 08:03:19 raasch |
---|
| 19 | ! Enlarged transposition arrays introduced |
---|
| 20 | ! |
---|
| 21 | ! Revision 1.1 1999/02/05 08:49:08 raasch |
---|
| 22 | ! Initial revision |
---|
| 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! Description: |
---|
| 26 | ! ------------ |
---|
| 27 | ! Upstream-Spline advection of the u velocity-component. The advection process |
---|
| 28 | ! is divided into three subsequent steps, one for each of the dimensions. The |
---|
| 29 | ! results is stored as a tendency in array tend. The computation of the cubic |
---|
| 30 | ! splines and the possible execution of the Long-filter require that all grid |
---|
| 31 | ! points of the relevant dimension are available. For model runs on more than |
---|
| 32 | ! one PE therefore both the advected and the advecting quantities are |
---|
| 33 | ! transposed accordingly. |
---|
| 34 | ! |
---|
| 35 | ! Internally used arrays: |
---|
| 36 | ! v_ad = scalar quantity to be advected, initialised = u at the beginning, |
---|
| 37 | ! also being used as temporary storage after each time step |
---|
| 38 | ! d = advecting component (u, v, or w) |
---|
| 39 | !------------------------------------------------------------------------------! |
---|
| 40 | |
---|
| 41 | USE advection |
---|
| 42 | USE arrays_3d |
---|
| 43 | USE cpulog |
---|
| 44 | USE grid_variables |
---|
| 45 | USE indices |
---|
| 46 | USE interfaces |
---|
| 47 | USE control_parameters |
---|
| 48 | |
---|
| 49 | IMPLICIT NONE |
---|
| 50 | |
---|
| 51 | INTEGER :: i, j, k |
---|
| 52 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: v_ad |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | CALL cpu_log( log_point_s(17), 'advec_u_ups', 'start' ) |
---|
| 56 | |
---|
| 57 | #if defined( __parallel ) |
---|
| 58 | |
---|
| 59 | ! |
---|
| 60 | !-- Advection of u in x-direction: |
---|
| 61 | !-- Store u in temporary array v_ad (component to be advected, boundaries |
---|
| 62 | !-- are not used because they disturb the transposition) |
---|
| 63 | ALLOCATE( v_ad(nzb+1:nzta,nys:nyna,nxl:nxra) ) |
---|
| 64 | v_ad = 0.0 |
---|
| 65 | v_ad(nzb+1:nzt,nys:nyn,nxl:nxr) = u(nzb+1:nzt,nys:nyn,nxl:nxr) |
---|
| 66 | |
---|
| 67 | ! |
---|
| 68 | !-- Enlarge the size of tend, used as a working array for the transpositions |
---|
| 69 | IF ( nxra > nxr .OR. nyna > nyn .OR. nza > nz ) THEN |
---|
| 70 | DEALLOCATE( tend ) |
---|
| 71 | ALLOCATE( tend(1:nza,nys:nyna,nxl:nxra) ) |
---|
| 72 | ENDIF |
---|
| 73 | |
---|
| 74 | ! |
---|
| 75 | !-- Transpose the component to be advected: z --> x |
---|
[164] | 76 | CALL transpose_zx( v_ad, tend, v_ad ) |
---|
[1] | 77 | |
---|
| 78 | ! |
---|
| 79 | !-- Advecting component (d) = component to be advected (v_ad) (variable d is |
---|
| 80 | !-- used for storage, because it is the only one having suitable dimensions). |
---|
| 81 | !-- NOTE: here x is the first dimension and lies completely on the PE. |
---|
| 82 | d = v_ad - u_gtrans |
---|
| 83 | |
---|
| 84 | #else |
---|
| 85 | |
---|
| 86 | ! |
---|
| 87 | !-- Advection of u in x-direction: |
---|
| 88 | !-- Store u in temporary array v_ad (component to be advected) |
---|
| 89 | ALLOCATE( v_ad(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 90 | v_ad(:,:,:) = u(:,:,:) |
---|
| 91 | |
---|
| 92 | ! |
---|
| 93 | !-- Advecting component (d) = component to be advected (u) (variable d is used |
---|
| 94 | !-- for storage, because it is the only one having suitable dimensions. This is |
---|
| 95 | !-- done for for reasons of compatibility with the parallel part.) |
---|
| 96 | d(:,:,:) = u(nzb+1:nzt,nys:nyn,nxl:nxr) - u_gtrans |
---|
| 97 | |
---|
| 98 | #endif |
---|
| 99 | |
---|
| 100 | ! |
---|
| 101 | !-- Upstream-Spline advection of u in x-direction. Array tend comes out |
---|
| 102 | !-- as v_ad before the advection step including cyclic boundaries. |
---|
| 103 | !-- It is needed for the long filter. |
---|
| 104 | CALL spline_x( v_ad, d, 'u' ) |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- Advection of u in y-direction: |
---|
| 108 | !-- advecting component (v) must be averaged out on the u grid |
---|
| 109 | DO i = nxl, nxr |
---|
| 110 | DO j = nys, nyn |
---|
| 111 | DO k = nzb+1, nzt |
---|
| 112 | d(k,j,i) = 0.25 * ( v(k,j,i-1) + v(k,j+1,i-1) + & |
---|
| 113 | v(k,j,i) + v(k,j+1,i) ) - v_gtrans |
---|
| 114 | ENDDO |
---|
| 115 | ENDDO |
---|
| 116 | ENDDO |
---|
| 117 | |
---|
| 118 | #if defined( __parallel ) |
---|
| 119 | |
---|
| 120 | ! |
---|
| 121 | !-- Transpose the advecting component: z --> y |
---|
[164] | 122 | CALL transpose_zx( d, tend, d ) |
---|
| 123 | CALL transpose_xy( d, tend, d ) |
---|
[1] | 124 | |
---|
| 125 | ! |
---|
| 126 | !-- Transpose the component to be advected: x --> y |
---|
[164] | 127 | CALL transpose_xy( v_ad, tend, v_ad ) |
---|
[1] | 128 | |
---|
| 129 | #endif |
---|
| 130 | |
---|
| 131 | ! |
---|
| 132 | !-- Upstream-Spline advection of u in y-direction |
---|
| 133 | CALL spline_y( v_ad, d, 'u' ) |
---|
| 134 | |
---|
| 135 | ! |
---|
| 136 | !-- Advection of u in z-direction: |
---|
| 137 | !-- the advecting component (w) must be averaged out on the u grid |
---|
| 138 | !-- (weighted for non-equidistant grid) |
---|
| 139 | DO i = nxl, nxr |
---|
| 140 | DO j = nys, nyn |
---|
| 141 | DO k = nzb+1, nzt |
---|
| 142 | d(k,j,i) = ( 0.5 * ( w(k,j,i) + w(k,j,i-1) ) * & |
---|
| 143 | ( zu(k) - zw(k-1) ) & |
---|
| 144 | + 0.5 * ( w(k-1,j,i) + w(k-1,j,i-1) ) * & |
---|
| 145 | ( zw(k) - zu(k) ) & |
---|
| 146 | ) * ddzw(k) |
---|
| 147 | ENDDO |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | |
---|
| 151 | #if defined( __parallel ) |
---|
| 152 | |
---|
| 153 | ! |
---|
| 154 | !-- Transpose the component to be advected: y --> z (= y --> x + x --> z) |
---|
[164] | 155 | CALL transpose_yx( v_ad, tend, v_ad ) |
---|
| 156 | CALL transpose_xz( v_ad, tend, v_ad ) |
---|
[1] | 157 | |
---|
| 158 | ! |
---|
| 159 | !-- Resize tend to its normal size |
---|
| 160 | IF ( nxra > nxr .OR. nyna > nyn .OR. nza > nz ) THEN |
---|
| 161 | DEALLOCATE( tend ) |
---|
| 162 | ALLOCATE( tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 163 | ENDIF |
---|
| 164 | |
---|
| 165 | #endif |
---|
| 166 | |
---|
| 167 | ! |
---|
| 168 | !-- Upstream-Spline advection of u in z-direction |
---|
| 169 | CALL spline_z( v_ad, d, dzu, spl_tri_zu, 'u' ) |
---|
| 170 | |
---|
| 171 | ! |
---|
| 172 | !-- Compute the tendency term |
---|
| 173 | DO i = nxl, nxr |
---|
| 174 | DO j = nys, nyn |
---|
| 175 | DO k = nzb+1, nzt |
---|
| 176 | tend(k,j,i) = ( v_ad(k,j,i) - u(k,j,i) ) / dt_3d |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
| 179 | ENDDO |
---|
| 180 | |
---|
| 181 | DEALLOCATE( v_ad ) |
---|
| 182 | |
---|
| 183 | CALL cpu_log( log_point_s(17), 'advec_u_ups', 'stop' ) |
---|
| 184 | |
---|
| 185 | END SUBROUTINE advec_u_ups |
---|