1 | !> @file advec_s_bc.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | ! -------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ----------------- |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: advec_s_bc.f90 4502 2020-04-17 16:14:16Z monakurppa $ |
---|
26 | ! Implementation of ice microphysics |
---|
27 | ! |
---|
28 | ! 4488 2020-04-03 11:34:29Z raasch |
---|
29 | ! file re-formatted to follow the PALM coding standard |
---|
30 | ! |
---|
31 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
32 | ! bugfix: cpp-directives added for serial mode |
---|
33 | ! |
---|
34 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
35 | ! Corrected "Former revisions" section |
---|
36 | ! |
---|
37 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
38 | ! unused variables removed |
---|
39 | ! |
---|
40 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
41 | ! nopointer option removed |
---|
42 | ! |
---|
43 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
44 | ! Initial revision |
---|
45 | ! |
---|
46 | ! |
---|
47 | ! Description: |
---|
48 | ! ------------ |
---|
49 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
50 | !> Computation in individual steps for each of the three dimensions. |
---|
51 | !> Limiting assumptions: |
---|
52 | !> So far the scheme has been assuming equidistant grid spacing. As this is not the case in the |
---|
53 | !> stretched portion of the z-direction, there dzw(k) is used as a substitute for a constant grid |
---|
54 | !> length. This certainly causes incorrect results; however, it is hoped that they are not too |
---|
55 | !> apparent for weakly stretched grids. |
---|
56 | !> NOTE: This is a provisional, non-optimised version! |
---|
57 | !--------------------------------------------------------------------------------------------------! |
---|
58 | MODULE advec_s_bc_mod |
---|
59 | |
---|
60 | |
---|
61 | PRIVATE |
---|
62 | PUBLIC advec_s_bc |
---|
63 | |
---|
64 | INTERFACE advec_s_bc |
---|
65 | MODULE PROCEDURE advec_s_bc |
---|
66 | END INTERFACE advec_s_bc |
---|
67 | |
---|
68 | CONTAINS |
---|
69 | |
---|
70 | !--------------------------------------------------------------------------------------------------! |
---|
71 | ! Description: |
---|
72 | ! ------------ |
---|
73 | !> @todo Missing subroutine description. |
---|
74 | !--------------------------------------------------------------------------------------------------! |
---|
75 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
76 | |
---|
77 | USE advection, & |
---|
78 | ONLY: aex, bex, dex, eex |
---|
79 | |
---|
80 | USE arrays_3d, & |
---|
81 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
82 | |
---|
83 | USE control_parameters, & |
---|
84 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, dt_3d, ibc_pt_b, ibc_pt_t, ibc_q_t, ibc_s_t,& |
---|
85 | message_string, pt_slope_offset, sloping_surface, u_gtrans, v_gtrans |
---|
86 | |
---|
87 | USE cpulog, & |
---|
88 | ONLY: cpu_log, log_point_s |
---|
89 | |
---|
90 | USE grid_variables, & |
---|
91 | ONLY: ddx, ddy |
---|
92 | |
---|
93 | USE indices, & |
---|
94 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
95 | |
---|
96 | USE kinds |
---|
97 | |
---|
98 | USE pegrid |
---|
99 | |
---|
100 | USE statistics, & |
---|
101 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
102 | |
---|
103 | |
---|
104 | IMPLICIT NONE |
---|
105 | |
---|
106 | CHARACTER (LEN=*) :: sk_char !< |
---|
107 | |
---|
108 | INTEGER(iwp) :: i !< |
---|
109 | INTEGER(iwp) :: ix !< |
---|
110 | INTEGER(iwp) :: j !< |
---|
111 | INTEGER(iwp) :: k !< |
---|
112 | INTEGER(iwp) :: sr !< |
---|
113 | #if defined( __parallel ) |
---|
114 | INTEGER(iwp) :: ngp !< |
---|
115 | INTEGER(iwp) :: type_xz_2 !< |
---|
116 | #endif |
---|
117 | REAL(wp) :: cim !< |
---|
118 | REAL(wp) :: cimf !< |
---|
119 | REAL(wp) :: cip !< |
---|
120 | REAL(wp) :: cipf !< |
---|
121 | REAL(wp) :: d_new !< |
---|
122 | REAL(wp) :: denomi !< denominator |
---|
123 | REAL(wp) :: fminus !< |
---|
124 | REAL(wp) :: fplus !< |
---|
125 | REAL(wp) :: f2 !< |
---|
126 | REAL(wp) :: f4 !< |
---|
127 | REAL(wp) :: f8 !< |
---|
128 | REAL(wp) :: f12 !< |
---|
129 | REAL(wp) :: f24 !< |
---|
130 | REAL(wp) :: f48 !< |
---|
131 | REAL(wp) :: f1920 !< |
---|
132 | REAL(wp) :: im !< |
---|
133 | REAL(wp) :: ip !< |
---|
134 | REAL(wp) :: m1n !< |
---|
135 | REAL(wp) :: m1z !< |
---|
136 | REAL(wp) :: m2 !< |
---|
137 | REAL(wp) :: m3 !< |
---|
138 | REAL(wp) :: numera !< numerator |
---|
139 | REAL(wp) :: snenn !< |
---|
140 | REAL(wp) :: sterm !< |
---|
141 | REAL(wp) :: tendcy !< |
---|
142 | REAL(wp) :: t1 !< |
---|
143 | REAL(wp) :: t2 !< |
---|
144 | |
---|
145 | REAL(wp) :: fmax(2) !< |
---|
146 | REAL(wp) :: fmax_l(2) !< |
---|
147 | |
---|
148 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
149 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
150 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
158 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
159 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
160 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
162 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
163 | |
---|
164 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
165 | |
---|
166 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk !< |
---|
167 | |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
171 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
172 | sk_p = 0.0_wp |
---|
173 | |
---|
174 | ! |
---|
175 | !-- Assign reciprocal values in order to avoid divisions later |
---|
176 | f2 = 0.5_wp |
---|
177 | f4 = 0.25_wp |
---|
178 | f8 = 0.125_wp |
---|
179 | f12 = 0.8333333333333333E-01_wp |
---|
180 | f24 = 0.4166666666666666E-01_wp |
---|
181 | f48 = 0.2083333333333333E-01_wp |
---|
182 | f1920 = 0.5208333333333333E-03_wp |
---|
183 | |
---|
184 | ! |
---|
185 | !-- Advection in x-direction: |
---|
186 | |
---|
187 | ! |
---|
188 | !-- Save the quantity to be advected in a local array |
---|
189 | !-- add an enlarged boundary in x-direction |
---|
190 | DO i = nxl-1, nxr+1 |
---|
191 | DO j = nys, nyn |
---|
192 | DO k = nzb, nzt+1 |
---|
193 | sk_p(k,j,i) = sk(k,j,i) |
---|
194 | ENDDO |
---|
195 | ENDDO |
---|
196 | ENDDO |
---|
197 | #if defined( __parallel ) |
---|
198 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
199 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
200 | ! |
---|
201 | !-- Send left boundary, receive right boundary |
---|
202 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
203 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
204 | comm2d, status, ierr ) |
---|
205 | ! |
---|
206 | !-- Send right boundary, receive left boundary |
---|
207 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
208 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
209 | comm2d, status, ierr ) |
---|
210 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
211 | #else |
---|
212 | |
---|
213 | ! |
---|
214 | !-- Cyclic boundary conditions |
---|
215 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
216 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
217 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
218 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
219 | #endif |
---|
220 | |
---|
221 | ! |
---|
222 | !-- In case of a sloping surface, the additional gridpoints in x-direction of the temperature |
---|
223 | !-- field at the left and right boundary of the total domain must be adjusted by the temperature |
---|
224 | !-- difference between this distance |
---|
225 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
226 | IF ( nxl == 0 ) THEN |
---|
227 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
228 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
229 | ENDIF |
---|
230 | IF ( nxr == nx ) THEN |
---|
231 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
232 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
233 | ENDIF |
---|
234 | ENDIF |
---|
235 | |
---|
236 | ! |
---|
237 | !-- Initialise control density |
---|
238 | d = 0.0_wp |
---|
239 | |
---|
240 | ! |
---|
241 | !-- Determine maxima of the first and second derivative in x-direction |
---|
242 | fmax_l = 0.0_wp |
---|
243 | DO i = nxl, nxr |
---|
244 | DO j = nys, nyn |
---|
245 | DO k = nzb+1, nzt |
---|
246 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
247 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
248 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
249 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
250 | ENDDO |
---|
251 | ENDDO |
---|
252 | ENDDO |
---|
253 | #if defined( __parallel ) |
---|
254 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
255 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
256 | #else |
---|
257 | fmax = fmax_l |
---|
258 | #endif |
---|
259 | |
---|
260 | fmax = 0.04_wp * fmax |
---|
261 | |
---|
262 | ! |
---|
263 | !-- Allocate temporary arrays |
---|
264 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), a2(nzb+1:nzt,nxl-1:nxr+1),& |
---|
265 | a12(nzb+1:nzt,nxl-1:nxr+1), a22(nzb+1:nzt,nxl-1:nxr+1), & |
---|
266 | immb(nzb+1:nzt,nxl-1:nxr+1), imme(nzb+1:nzt,nxl-1:nxr+1), & |
---|
267 | impb(nzb+1:nzt,nxl-1:nxr+1), impe(nzb+1:nzt,nxl-1:nxr+1), & |
---|
268 | ipmb(nzb+1:nzt,nxl-1:nxr+1), ipme(nzb+1:nzt,nxl-1:nxr+1), & |
---|
269 | ippb(nzb+1:nzt,nxl-1:nxr+1), ippe(nzb+1:nzt,nxl-1:nxr+1), & |
---|
270 | m1(nzb+1:nzt,nxl-2:nxr+2), sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
271 | ) |
---|
272 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
273 | |
---|
274 | ! |
---|
275 | !-- Initialise point of time measuring of the exponential portion (this would not work if done |
---|
276 | !-- locally within the loop) |
---|
277 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
278 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
279 | |
---|
280 | DO j = nys, nyn |
---|
281 | |
---|
282 | ! |
---|
283 | !-- Compute polynomial coefficients |
---|
284 | DO i = nxl-1, nxr+1 |
---|
285 | DO k = nzb+1, nzt |
---|
286 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
287 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
288 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
289 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
290 | + 9.0_wp * sk_p(k,j,i-2) & |
---|
291 | ) * f1920 |
---|
292 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
293 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
294 | ) * f48 |
---|
295 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
296 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
297 | - 3.0_wp * sk_p(k,j,i-2) & |
---|
298 | ) * f48 |
---|
299 | ENDDO |
---|
300 | ENDDO |
---|
301 | |
---|
302 | ! |
---|
303 | !-- Fluxes using the Bott scheme |
---|
304 | DO i = nxl, nxr |
---|
305 | DO k = nzb+1, nzt |
---|
306 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
307 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
308 | cipf = 1.0_wp - 2.0_wp * cip |
---|
309 | cimf = 1.0_wp - 2.0_wp * cim |
---|
310 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
311 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
312 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
313 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
314 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
315 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
316 | ip = MAX( ip, 0.0_wp ) |
---|
317 | im = MAX( im, 0.0_wp ) |
---|
318 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
319 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
320 | |
---|
321 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
322 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
323 | cipf = 1.0_wp - 2.0_wp * cip |
---|
324 | cimf = 1.0_wp - 2.0_wp * cim |
---|
325 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
326 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
327 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
328 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
329 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
330 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
331 | ip = MAX( ip, 0.0_wp ) |
---|
332 | im = MAX( im, 0.0_wp ) |
---|
333 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
334 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
335 | ENDDO |
---|
336 | ENDDO |
---|
337 | |
---|
338 | ! |
---|
339 | !-- Compute monitor function m1 |
---|
340 | DO i = nxl-2, nxr+2 |
---|
341 | DO k = nzb+1, nzt |
---|
342 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
343 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
344 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
345 | m1(k,i) = m1z / m1n |
---|
346 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
347 | ELSEIF ( m1n < m1z ) THEN |
---|
348 | m1(k,i) = -1.0_wp |
---|
349 | ELSE |
---|
350 | m1(k,i) = 0.0_wp |
---|
351 | ENDIF |
---|
352 | ENDDO |
---|
353 | ENDDO |
---|
354 | |
---|
355 | ! |
---|
356 | !-- Compute switch sw |
---|
357 | sw = 0.0_wp |
---|
358 | DO i = nxl-1, nxr+1 |
---|
359 | DO k = nzb+1, nzt |
---|
360 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
361 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
362 | |
---|
363 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
364 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
365 | |
---|
366 | t1 = 0.35_wp |
---|
367 | t2 = 0.35_wp |
---|
368 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
369 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp .OR. m1(k,i+1) == 1.0_wp .OR. & |
---|
370 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
371 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
372 | ) sw(k,i) = 1.0_wp |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | |
---|
376 | ! |
---|
377 | !-- Fluxes using the exponential scheme |
---|
378 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
379 | DO i = nxl, nxr |
---|
380 | DO k = nzb+1, nzt |
---|
381 | |
---|
382 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
383 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
384 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
385 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
386 | sterm = MIN( sterm, 0.9999_wp ) |
---|
387 | sterm = MAX( sterm, 0.0001_wp ) |
---|
388 | |
---|
389 | ix = INT( sterm * 1000 ) + 1 |
---|
390 | |
---|
391 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
392 | |
---|
393 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
394 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
395 | eex(ix) - & |
---|
396 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
397 | ) & |
---|
398 | ) |
---|
399 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
400 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
401 | |
---|
402 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
403 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
404 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
405 | sterm = MIN( sterm, 0.9999_wp ) |
---|
406 | sterm = MAX( sterm, 0.0001_wp ) |
---|
407 | |
---|
408 | ix = INT( sterm * 1000 ) + 1 |
---|
409 | |
---|
410 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
411 | |
---|
412 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
413 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
414 | eex(ix) - & |
---|
415 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
416 | ) & |
---|
417 | ) |
---|
418 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
419 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
420 | ENDIF |
---|
421 | |
---|
422 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
423 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
424 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
425 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
426 | sterm = MIN( sterm, 0.9999_wp ) |
---|
427 | sterm = MAX( sterm, 0.0001_wp ) |
---|
428 | |
---|
429 | ix = INT( sterm * 1000 ) + 1 |
---|
430 | |
---|
431 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
432 | |
---|
433 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
434 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
435 | eex(ix) - & |
---|
436 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
437 | ) & |
---|
438 | ) |
---|
439 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
440 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
441 | ENDIF |
---|
442 | |
---|
443 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
444 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
445 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
446 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
447 | sterm = MIN( sterm, 0.9999_wp ) |
---|
448 | sterm = MAX( sterm, 0.0001_wp ) |
---|
449 | |
---|
450 | ix = INT( sterm * 1000 ) + 1 |
---|
451 | |
---|
452 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
453 | |
---|
454 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
455 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
456 | eex(ix) - & |
---|
457 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
458 | ) & |
---|
459 | ) |
---|
460 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
461 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
462 | ENDIF |
---|
463 | |
---|
464 | ENDDO |
---|
465 | ENDDO |
---|
466 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
467 | |
---|
468 | ! |
---|
469 | !-- Prognostic equation |
---|
470 | DO i = nxl, nxr |
---|
471 | DO k = nzb+1, nzt |
---|
472 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
473 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
474 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
475 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
476 | tendcy = fplus - fminus |
---|
477 | ! |
---|
478 | !-- Removed in order to optimize speed |
---|
479 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
480 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
481 | ! |
---|
482 | !-- Density correction because of possible remaining divergences |
---|
483 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
484 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
485 | d(k,j,i) = d_new |
---|
486 | ENDDO |
---|
487 | ENDDO |
---|
488 | |
---|
489 | ENDDO ! End of the advection in x-direction |
---|
490 | |
---|
491 | ! |
---|
492 | !-- Deallocate temporary arrays |
---|
493 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
494 | |
---|
495 | |
---|
496 | ! |
---|
497 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
498 | #if defined( __parallel ) |
---|
499 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
500 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
501 | type_xz_2, ierr ) |
---|
502 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
503 | ! |
---|
504 | !-- Send front boundary, receive rear boundary |
---|
505 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
506 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
507 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
508 | comm2d, status, ierr ) |
---|
509 | ! |
---|
510 | !-- Send rear boundary, receive front boundary |
---|
511 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
512 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
513 | comm2d, status, ierr ) |
---|
514 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
515 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
516 | #else |
---|
517 | DO i = nxl, nxr |
---|
518 | DO k = nzb+1, nzt |
---|
519 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
520 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
521 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
522 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
523 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
524 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
525 | ENDDO |
---|
526 | ENDDO |
---|
527 | #endif |
---|
528 | |
---|
529 | ! |
---|
530 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
531 | fmax_l = 0.0_wp |
---|
532 | DO i = nxl, nxr |
---|
533 | DO j = nys, nyn |
---|
534 | DO k = nzb+1, nzt |
---|
535 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
536 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
537 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
538 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
539 | ENDDO |
---|
540 | ENDDO |
---|
541 | ENDDO |
---|
542 | #if defined( __parallel ) |
---|
543 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
544 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
545 | #else |
---|
546 | fmax = fmax_l |
---|
547 | #endif |
---|
548 | |
---|
549 | fmax = 0.04_wp * fmax |
---|
550 | |
---|
551 | ! |
---|
552 | !-- Allocate temporary arrays |
---|
553 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), a2(nzb+1:nzt,nys-1:nyn+1),& |
---|
554 | a12(nzb+1:nzt,nys-1:nyn+1), a22(nzb+1:nzt,nys-1:nyn+1), & |
---|
555 | immb(nzb+1:nzt,nys-1:nyn+1), imme(nzb+1:nzt,nys-1:nyn+1), & |
---|
556 | impb(nzb+1:nzt,nys-1:nyn+1), impe(nzb+1:nzt,nys-1:nyn+1), & |
---|
557 | ipmb(nzb+1:nzt,nys-1:nyn+1), ipme(nzb+1:nzt,nys-1:nyn+1), & |
---|
558 | ippb(nzb+1:nzt,nys-1:nyn+1), ippe(nzb+1:nzt,nys-1:nyn+1), & |
---|
559 | m1(nzb+1:nzt,nys-2:nyn+2), sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
560 | ) |
---|
561 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
562 | |
---|
563 | DO i = nxl, nxr |
---|
564 | |
---|
565 | ! |
---|
566 | !-- Compute polynomial coefficients |
---|
567 | DO j = nys-1, nyn+1 |
---|
568 | DO k = nzb+1, nzt |
---|
569 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
570 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
571 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
572 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
573 | + 9.0_wp * sk_p(k,j-2,i) & |
---|
574 | ) * f1920 |
---|
575 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
576 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
577 | ) * f48 |
---|
578 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
579 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
580 | - 3.0_wp * sk_p(k,j-2,i) & |
---|
581 | ) * f48 |
---|
582 | ENDDO |
---|
583 | ENDDO |
---|
584 | |
---|
585 | ! |
---|
586 | !-- Fluxes using the Bott scheme |
---|
587 | DO j = nys, nyn |
---|
588 | DO k = nzb+1, nzt |
---|
589 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
590 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
591 | cipf = 1.0_wp - 2.0_wp * cip |
---|
592 | cimf = 1.0_wp - 2.0_wp * cim |
---|
593 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
594 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
595 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
596 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
597 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
598 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
599 | ip = MAX( ip, 0.0_wp ) |
---|
600 | im = MAX( im, 0.0_wp ) |
---|
601 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
602 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
603 | |
---|
604 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
605 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
606 | cipf = 1.0_wp - 2.0_wp * cip |
---|
607 | cimf = 1.0_wp - 2.0_wp * cim |
---|
608 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
609 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
610 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
611 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
612 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
613 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
614 | ip = MAX( ip, 0.0_wp ) |
---|
615 | im = MAX( im, 0.0_wp ) |
---|
616 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
617 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
618 | ENDDO |
---|
619 | ENDDO |
---|
620 | |
---|
621 | ! |
---|
622 | !-- Compute monitor function m1 |
---|
623 | DO j = nys-2, nyn+2 |
---|
624 | DO k = nzb+1, nzt |
---|
625 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
626 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
627 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
628 | m1(k,j) = m1z / m1n |
---|
629 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
630 | ELSEIF ( m1n < m1z ) THEN |
---|
631 | m1(k,j) = -1.0_wp |
---|
632 | ELSE |
---|
633 | m1(k,j) = 0.0_wp |
---|
634 | ENDIF |
---|
635 | ENDDO |
---|
636 | ENDDO |
---|
637 | |
---|
638 | ! |
---|
639 | !-- Compute switch sw |
---|
640 | sw = 0.0_wp |
---|
641 | DO j = nys-1, nyn+1 |
---|
642 | DO k = nzb+1, nzt |
---|
643 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
644 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
645 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
646 | |
---|
647 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
648 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
649 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
650 | |
---|
651 | t1 = 0.35_wp |
---|
652 | t2 = 0.35_wp |
---|
653 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
654 | |
---|
655 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp .OR. m1(k,j+1) == 1.0_wp .OR. & |
---|
656 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
657 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
658 | ) sw(k,j) = 1.0_wp |
---|
659 | ENDDO |
---|
660 | ENDDO |
---|
661 | |
---|
662 | ! |
---|
663 | !-- Fluxes using exponential scheme |
---|
664 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
665 | DO j = nys, nyn |
---|
666 | DO k = nzb+1, nzt |
---|
667 | |
---|
668 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
669 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
670 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
671 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
672 | sterm = MIN( sterm, 0.9999_wp ) |
---|
673 | sterm = MAX( sterm, 0.0001_wp ) |
---|
674 | |
---|
675 | ix = INT( sterm * 1000 ) + 1 |
---|
676 | |
---|
677 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
678 | |
---|
679 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
680 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
681 | eex(ix) - & |
---|
682 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
683 | ) & |
---|
684 | ) |
---|
685 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
686 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
687 | |
---|
688 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
689 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
690 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
691 | sterm = MIN( sterm, 0.9999_wp ) |
---|
692 | sterm = MAX( sterm, 0.0001_wp ) |
---|
693 | |
---|
694 | ix = INT( sterm * 1000 ) + 1 |
---|
695 | |
---|
696 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
697 | |
---|
698 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
699 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
700 | eex(ix) - & |
---|
701 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
702 | ) & |
---|
703 | ) |
---|
704 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
705 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
706 | ENDIF |
---|
707 | |
---|
708 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
709 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
710 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
711 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
712 | sterm = MIN( sterm, 0.9999_wp ) |
---|
713 | sterm = MAX( sterm, 0.0001_wp ) |
---|
714 | |
---|
715 | ix = INT( sterm * 1000 ) + 1 |
---|
716 | |
---|
717 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
718 | |
---|
719 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
720 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
721 | eex(ix) - & |
---|
722 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
723 | ) & |
---|
724 | ) |
---|
725 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
726 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
727 | ENDIF |
---|
728 | |
---|
729 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
730 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
731 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
732 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
733 | sterm = MIN( sterm, 0.9999_wp ) |
---|
734 | sterm = MAX( sterm, 0.0001_wp ) |
---|
735 | |
---|
736 | ix = INT( sterm * 1000 ) + 1 |
---|
737 | |
---|
738 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
739 | |
---|
740 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
741 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
742 | eex(ix) - & |
---|
743 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
744 | ) & |
---|
745 | ) |
---|
746 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
747 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
748 | ENDIF |
---|
749 | |
---|
750 | ENDDO |
---|
751 | ENDDO |
---|
752 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
753 | |
---|
754 | ! |
---|
755 | !-- Prognostic equation |
---|
756 | DO j = nys, nyn |
---|
757 | DO k = nzb+1, nzt |
---|
758 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
759 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
760 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
761 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
762 | tendcy = fplus - fminus |
---|
763 | ! |
---|
764 | !-- Removed in order to optimise speed |
---|
765 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
766 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
767 | ! |
---|
768 | !-- Density correction because of possible remaining divergences |
---|
769 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
770 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
771 | d(k,j,i) = d_new |
---|
772 | ENDDO |
---|
773 | ENDDO |
---|
774 | |
---|
775 | ENDDO ! End of the advection in y-direction |
---|
776 | |
---|
777 | |
---|
778 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
779 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
780 | |
---|
781 | ! |
---|
782 | !-- Deallocate temporary arrays |
---|
783 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
784 | |
---|
785 | |
---|
786 | ! |
---|
787 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
788 | !-- UP flow_statistics) |
---|
789 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
790 | |
---|
791 | ! |
---|
792 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
793 | IF ( sk_char == 'pt' ) THEN |
---|
794 | |
---|
795 | ! |
---|
796 | !-- Temperature boundary condition at the bottom boundary |
---|
797 | IF ( ibc_pt_b == 0 ) THEN |
---|
798 | ! |
---|
799 | !-- Dirichlet (fixed surface temperature) |
---|
800 | DO i = nxl, nxr |
---|
801 | DO j = nys, nyn |
---|
802 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
803 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
804 | ENDDO |
---|
805 | ENDDO |
---|
806 | |
---|
807 | ELSE |
---|
808 | ! |
---|
809 | !-- Neumann (i.e. here zero gradient) |
---|
810 | DO i = nxl, nxr |
---|
811 | DO j = nys, nyn |
---|
812 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
813 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
814 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
815 | ENDDO |
---|
816 | ENDDO |
---|
817 | |
---|
818 | ENDIF |
---|
819 | |
---|
820 | ! |
---|
821 | !-- Temperature boundary condition at the top boundary |
---|
822 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
823 | ! |
---|
824 | !-- Dirichlet or Neumann (zero gradient) |
---|
825 | DO i = nxl, nxr |
---|
826 | DO j = nys, nyn |
---|
827 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
828 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
829 | ENDDO |
---|
830 | ENDDO |
---|
831 | |
---|
832 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
833 | ! |
---|
834 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
835 | DO i = nxl, nxr |
---|
836 | DO j = nys, nyn |
---|
837 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
838 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
839 | ENDDO |
---|
840 | ENDDO |
---|
841 | |
---|
842 | ENDIF |
---|
843 | |
---|
844 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
845 | |
---|
846 | ! |
---|
847 | !-- Salinity boundary condition at the bottom boundary. |
---|
848 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
849 | DO i = nxl, nxr |
---|
850 | DO j = nys, nyn |
---|
851 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
852 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
853 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
854 | ENDDO |
---|
855 | ENDDO |
---|
856 | |
---|
857 | ! |
---|
858 | !-- Salinity boundary condition at the top boundary. |
---|
859 | !-- Dirichlet or Neumann (zero gradient) |
---|
860 | DO i = nxl, nxr |
---|
861 | DO j = nys, nyn |
---|
862 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
863 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
864 | ENDDO |
---|
865 | ENDDO |
---|
866 | |
---|
867 | ELSEIF ( sk_char == 'q' ) THEN |
---|
868 | |
---|
869 | ! |
---|
870 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
871 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
872 | DO i = nxl, nxr |
---|
873 | DO j = nys, nyn |
---|
874 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
875 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
876 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
877 | ENDDO |
---|
878 | ENDDO |
---|
879 | |
---|
880 | ! |
---|
881 | !-- Specific humidity boundary condition at the top boundary |
---|
882 | IF ( ibc_q_t == 0 ) THEN |
---|
883 | ! |
---|
884 | !-- Dirichlet |
---|
885 | DO i = nxl, nxr |
---|
886 | DO j = nys, nyn |
---|
887 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
888 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
889 | ENDDO |
---|
890 | ENDDO |
---|
891 | |
---|
892 | ELSE |
---|
893 | ! |
---|
894 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
895 | DO i = nxl, nxr |
---|
896 | DO j = nys, nyn |
---|
897 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
898 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
899 | ENDDO |
---|
900 | ENDDO |
---|
901 | |
---|
902 | ENDIF |
---|
903 | |
---|
904 | ELSEIF ( sk_char == 's' ) THEN |
---|
905 | ! |
---|
906 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
907 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
908 | DO i = nxl, nxr |
---|
909 | DO j = nys, nyn |
---|
910 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
911 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
912 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
913 | ENDDO |
---|
914 | ENDDO |
---|
915 | |
---|
916 | ! |
---|
917 | !-- Specific scalar boundary condition at the top boundary |
---|
918 | IF ( ibc_s_t == 0 ) THEN |
---|
919 | ! |
---|
920 | !-- Dirichlet |
---|
921 | DO i = nxl, nxr |
---|
922 | DO j = nys, nyn |
---|
923 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
924 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
925 | ENDDO |
---|
926 | ENDDO |
---|
927 | |
---|
928 | ELSE |
---|
929 | ! |
---|
930 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
931 | DO i = nxl, nxr |
---|
932 | DO j = nys, nyn |
---|
933 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
934 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
935 | ENDDO |
---|
936 | ENDDO |
---|
937 | |
---|
938 | ENDIF |
---|
939 | |
---|
940 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
941 | |
---|
942 | ! |
---|
943 | !-- Cloud water content boundary condition at the bottom boundary: Dirichlet (fixed surface |
---|
944 | !-- rain water content). |
---|
945 | DO i = nxl, nxr |
---|
946 | DO j = nys, nyn |
---|
947 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
948 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
949 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
950 | ENDDO |
---|
951 | ENDDO |
---|
952 | |
---|
953 | ! |
---|
954 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
955 | DO i = nxl, nxr |
---|
956 | DO j = nys, nyn |
---|
957 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
958 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
959 | ENDDO |
---|
960 | ENDDO |
---|
961 | |
---|
962 | ELSEIF ( sk_char == 'qi' ) THEN |
---|
963 | |
---|
964 | ! |
---|
965 | !-- Ice crystal content boundary condition at the bottom boundary: |
---|
966 | !-- Dirichlet (fixed surface rain water content). |
---|
967 | DO i = nxl, nxr |
---|
968 | DO j = nys, nyn |
---|
969 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
970 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
971 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
972 | ENDDO |
---|
973 | ENDDO |
---|
974 | |
---|
975 | ! |
---|
976 | !-- Ice crystal content boundary condition at the top boundary: Dirichlet |
---|
977 | DO i = nxl, nxr |
---|
978 | DO j = nys, nyn |
---|
979 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
980 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
981 | ENDDO |
---|
982 | ENDDO |
---|
983 | |
---|
984 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
985 | |
---|
986 | ! |
---|
987 | !-- Rain water content boundary condition at the bottom boundary: Dirichlet (fixed surface |
---|
988 | !-- rain water content). |
---|
989 | DO i = nxl, nxr |
---|
990 | DO j = nys, nyn |
---|
991 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
992 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
993 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
994 | ENDDO |
---|
995 | ENDDO |
---|
996 | |
---|
997 | ! |
---|
998 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
999 | DO i = nxl, nxr |
---|
1000 | DO j = nys, nyn |
---|
1001 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
1002 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
1003 | ENDDO |
---|
1004 | ENDDO |
---|
1005 | |
---|
1006 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
1007 | |
---|
1008 | ! |
---|
1009 | !-- Cloud drop concentration boundary condition at the bottom boundary: Dirichlet (fixed |
---|
1010 | !-- surface cloud drop concentration). |
---|
1011 | DO i = nxl, nxr |
---|
1012 | DO j = nys, nyn |
---|
1013 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
1014 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
1015 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
1016 | ENDDO |
---|
1017 | ENDDO |
---|
1018 | |
---|
1019 | ! |
---|
1020 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
1021 | DO i = nxl, nxr |
---|
1022 | DO j = nys, nyn |
---|
1023 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
1024 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
1025 | ENDDO |
---|
1026 | ENDDO |
---|
1027 | |
---|
1028 | ELSEIF ( sk_char == 'ni' ) THEN |
---|
1029 | |
---|
1030 | ! |
---|
1031 | !-- Ice crystal concentration boundary condition at the bottom boundary: |
---|
1032 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
1033 | DO i = nxl, nxr |
---|
1034 | DO j = nys, nyn |
---|
1035 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
1036 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
1037 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
1038 | ENDDO |
---|
1039 | ENDDO |
---|
1040 | |
---|
1041 | ! |
---|
1042 | !-- Ice crystal concentration boundary condition at the top boundary: Dirichlet |
---|
1043 | DO i = nxl, nxr |
---|
1044 | DO j = nys, nyn |
---|
1045 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
1046 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
1047 | ENDDO |
---|
1048 | ENDDO |
---|
1049 | |
---|
1050 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
1051 | |
---|
1052 | ! |
---|
1053 | !-- Rain drop concentration boundary condition at the bottom boundary: Dirichlet (fixed |
---|
1054 | !-- surface rain drop concentration). |
---|
1055 | DO i = nxl, nxr |
---|
1056 | DO j = nys, nyn |
---|
1057 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
1058 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
1059 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
1060 | ENDDO |
---|
1061 | ENDDO |
---|
1062 | |
---|
1063 | ! |
---|
1064 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
1065 | DO i = nxl, nxr |
---|
1066 | DO j = nys, nyn |
---|
1067 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
1068 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
1069 | ENDDO |
---|
1070 | ENDDO |
---|
1071 | |
---|
1072 | ELSEIF ( sk_char == 'e' ) THEN |
---|
1073 | |
---|
1074 | ! |
---|
1075 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
1076 | DO i = nxl, nxr |
---|
1077 | DO j = nys, nyn |
---|
1078 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
1079 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
1080 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
1081 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
1082 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
1083 | ENDDO |
---|
1084 | ENDDO |
---|
1085 | |
---|
1086 | ELSE |
---|
1087 | |
---|
1088 | WRITE( message_string, * ) 'no vertical boundary condition for variable "', sk_char, '"' |
---|
1089 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
1090 | |
---|
1091 | ENDIF |
---|
1092 | |
---|
1093 | ! |
---|
1094 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
1095 | fmax_l = 0.0_wp |
---|
1096 | DO i = nxl, nxr |
---|
1097 | DO j = nys, nyn |
---|
1098 | DO k = nzb, nzt+1 |
---|
1099 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
1100 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
1101 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
1102 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
1103 | ENDDO |
---|
1104 | ENDDO |
---|
1105 | ENDDO |
---|
1106 | #if defined( __parallel ) |
---|
1107 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1108 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
1109 | #else |
---|
1110 | fmax = fmax_l |
---|
1111 | #endif |
---|
1112 | |
---|
1113 | fmax = 0.04_wp * fmax |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- Allocate temporary arrays |
---|
1117 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), a2(nzb:nzt+1,nys:nyn), & |
---|
1118 | a12(nzb:nzt+1,nys:nyn), a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
1119 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), impe(nzb+1:nzt,nys:nyn), & |
---|
1120 | ipmb(nzb+1:nzt,nys:nyn), ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
1121 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), sw(nzb:nzt+1,nys:nyn) & |
---|
1122 | ) |
---|
1123 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
1124 | |
---|
1125 | DO i = nxl, nxr |
---|
1126 | |
---|
1127 | ! |
---|
1128 | !-- Compute polynomial coefficients |
---|
1129 | DO j = nys, nyn |
---|
1130 | DO k = nzb, nzt+1 |
---|
1131 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
1132 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
1133 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
1134 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
1135 | + 9.0_wp * sk_p(k-2,j,i) & |
---|
1136 | ) * f1920 |
---|
1137 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
1138 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
1139 | ) * f48 |
---|
1140 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
1141 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
1142 | - 3.0_wp * sk_p(k-2,j,i) & |
---|
1143 | ) * f48 |
---|
1144 | ENDDO |
---|
1145 | ENDDO |
---|
1146 | |
---|
1147 | ! |
---|
1148 | !-- Fluxes using the Bott scheme |
---|
1149 | DO j = nys, nyn |
---|
1150 | DO k = nzb+1, nzt |
---|
1151 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
1152 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
1153 | cipf = 1.0_wp - 2.0_wp * cip |
---|
1154 | cimf = 1.0_wp - 2.0_wp * cim |
---|
1155 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
1156 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
1157 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
1158 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
1159 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
1160 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
1161 | ip = MAX( ip, 0.0_wp ) |
---|
1162 | im = MAX( im, 0.0_wp ) |
---|
1163 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
1164 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
1165 | |
---|
1166 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
1167 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
1168 | cipf = 1.0_wp - 2.0_wp * cip |
---|
1169 | cimf = 1.0_wp - 2.0_wp * cim |
---|
1170 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
1171 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
1172 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
1173 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
1174 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
1175 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
1176 | ip = MAX( ip, 0.0_wp ) |
---|
1177 | im = MAX( im, 0.0_wp ) |
---|
1178 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
1179 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
1180 | ENDDO |
---|
1181 | ENDDO |
---|
1182 | |
---|
1183 | ! |
---|
1184 | !-- Compute monitor function m1 |
---|
1185 | DO j = nys, nyn |
---|
1186 | DO k = nzb-1, nzt+2 |
---|
1187 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
1188 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
1189 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
1190 | m1(k,j) = m1z / m1n |
---|
1191 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
1192 | ELSEIF ( m1n < m1z ) THEN |
---|
1193 | m1(k,j) = -1.0_wp |
---|
1194 | ELSE |
---|
1195 | m1(k,j) = 0.0_wp |
---|
1196 | ENDIF |
---|
1197 | ENDDO |
---|
1198 | ENDDO |
---|
1199 | |
---|
1200 | ! |
---|
1201 | !-- Compute switch sw |
---|
1202 | sw = 0.0_wp |
---|
1203 | DO j = nys, nyn |
---|
1204 | DO k = nzb, nzt+1 |
---|
1205 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
1206 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
1207 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
1208 | |
---|
1209 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
1210 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
1211 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
1212 | |
---|
1213 | t1 = 0.35_wp |
---|
1214 | t2 = 0.35_wp |
---|
1215 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
1216 | |
---|
1217 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp .OR. m1(k+1,j) == 1.0_wp .OR. & |
---|
1218 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND.& |
---|
1219 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
1220 | ) sw(k,j) = 1.0_wp |
---|
1221 | ENDDO |
---|
1222 | ENDDO |
---|
1223 | |
---|
1224 | ! |
---|
1225 | !-- Fluxes using exponential scheme |
---|
1226 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
1227 | DO j = nys, nyn |
---|
1228 | DO k = nzb+1, nzt |
---|
1229 | |
---|
1230 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
1231 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
1232 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
1233 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
1234 | sterm = MIN( sterm, 0.9999_wp ) |
---|
1235 | sterm = MAX( sterm, 0.0001_wp ) |
---|
1236 | |
---|
1237 | ix = INT( sterm * 1000 ) + 1 |
---|
1238 | |
---|
1239 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
1240 | |
---|
1241 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
1242 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
1243 | eex(ix) - & |
---|
1244 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
1245 | ) & |
---|
1246 | ) |
---|
1247 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
1248 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
1249 | |
---|
1250 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
1251 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
1252 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
1253 | sterm = MIN( sterm, 0.9999_wp ) |
---|
1254 | sterm = MAX( sterm, 0.0001_wp ) |
---|
1255 | |
---|
1256 | ix = INT( sterm * 1000 ) + 1 |
---|
1257 | |
---|
1258 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
1259 | |
---|
1260 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
1261 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
1262 | eex(ix) - & |
---|
1263 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
1264 | ) & |
---|
1265 | ) |
---|
1266 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
1267 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
1268 | ENDIF |
---|
1269 | |
---|
1270 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
1271 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
1272 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
1273 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
1274 | sterm = MIN( sterm, 0.9999_wp ) |
---|
1275 | sterm = MAX( sterm, 0.0001_wp ) |
---|
1276 | |
---|
1277 | ix = INT( sterm * 1000 ) + 1 |
---|
1278 | |
---|
1279 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
1280 | |
---|
1281 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
1282 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
1283 | eex(ix) - & |
---|
1284 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
1285 | ) & |
---|
1286 | ) |
---|
1287 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
1288 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
1289 | ENDIF |
---|
1290 | |
---|
1291 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
1292 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
1293 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
1294 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
1295 | sterm = MIN( sterm, 0.9999_wp ) |
---|
1296 | sterm = MAX( sterm, 0.0001_wp ) |
---|
1297 | |
---|
1298 | ix = INT( sterm * 1000 ) + 1 |
---|
1299 | |
---|
1300 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
1301 | |
---|
1302 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
1303 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
1304 | eex(ix) - & |
---|
1305 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
1306 | ) & |
---|
1307 | ) |
---|
1308 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
1309 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
1310 | ENDIF |
---|
1311 | |
---|
1312 | ENDDO |
---|
1313 | ENDDO |
---|
1314 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
1315 | |
---|
1316 | ! |
---|
1317 | !-- Prognostic equation |
---|
1318 | DO j = nys, nyn |
---|
1319 | DO k = nzb+1, nzt |
---|
1320 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
1321 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
1322 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
1323 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
1324 | tendcy = fplus - fminus |
---|
1325 | ! |
---|
1326 | !-- Removed in order to optimise speed |
---|
1327 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
1328 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
1329 | ! |
---|
1330 | !-- Density correction because of possible remaining divergences |
---|
1331 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
1332 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
1333 | ! |
---|
1334 | !-- Store heat flux for subsequent statistics output. |
---|
1335 | !-- Array m1 is here used as temporary storage |
---|
1336 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
1337 | ENDDO |
---|
1338 | ENDDO |
---|
1339 | |
---|
1340 | ! |
---|
1341 | !-- Sum up heat flux in order to obtain horizontal averages |
---|
1342 | IF ( sk_char == 'pt' ) THEN |
---|
1343 | DO sr = 0, statistic_regions |
---|
1344 | DO j = nys, nyn |
---|
1345 | DO k = nzb+1, nzt |
---|
1346 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + m1(k,j) * rmask(j,i,sr) |
---|
1347 | ENDDO |
---|
1348 | ENDDO |
---|
1349 | ENDDO |
---|
1350 | ENDIF |
---|
1351 | |
---|
1352 | ENDDO |
---|
1353 | ! |
---|
1354 | !-- End of the advection in z-direction |
---|
1355 | |
---|
1356 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
1357 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
1358 | |
---|
1359 | ! |
---|
1360 | !-- Deallocate temporary arrays |
---|
1361 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
1362 | |
---|
1363 | ! |
---|
1364 | !-- Store results as tendency and deallocate local array |
---|
1365 | DO i = nxl, nxr |
---|
1366 | DO j = nys, nyn |
---|
1367 | DO k = nzb+1, nzt |
---|
1368 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
1369 | ENDDO |
---|
1370 | ENDDO |
---|
1371 | ENDDO |
---|
1372 | |
---|
1373 | DEALLOCATE( sk_p ) |
---|
1374 | |
---|
1375 | END SUBROUTINE advec_s_bc |
---|
1376 | |
---|
1377 | END MODULE advec_s_bc_mod |
---|