1 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! Neumann boundary condition at k=nzb is explicitly set for better reading, |
---|
7 | ! although this has been already done in boundary_conds |
---|
8 | ! |
---|
9 | ! Former revisions: |
---|
10 | ! ----------------- |
---|
11 | ! $Id: advec_s_bc.f90 216 2008-11-25 07:12:43Z raasch $ |
---|
12 | ! |
---|
13 | ! 97 2007-06-21 08:23:15Z raasch |
---|
14 | ! Advection of salinity included |
---|
15 | ! Bugfix: Error in boundary condition for TKE removed |
---|
16 | ! |
---|
17 | ! 63 2007-03-13 03:52:49Z raasch |
---|
18 | ! Calculation extended for gridpoint nzt |
---|
19 | ! |
---|
20 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
21 | ! |
---|
22 | ! Revision 1.22 2006/02/23 09:42:08 raasch |
---|
23 | ! anz renamed ngp |
---|
24 | ! |
---|
25 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
26 | ! Initial revision |
---|
27 | ! |
---|
28 | ! |
---|
29 | ! Description: |
---|
30 | ! ------------ |
---|
31 | ! Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
32 | ! Computation in individual steps for each of the three dimensions. |
---|
33 | ! Limiting assumptions: |
---|
34 | ! So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
35 | ! the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
36 | ! a substitute for a constant grid length. This certainly causes incorrect |
---|
37 | ! results; however, it is hoped that they are not too apparent for weakly |
---|
38 | ! stretched grids. |
---|
39 | ! NOTE: This is a provisional, non-optimised version! |
---|
40 | !------------------------------------------------------------------------------! |
---|
41 | |
---|
42 | USE advection |
---|
43 | USE arrays_3d |
---|
44 | USE control_parameters |
---|
45 | USE cpulog |
---|
46 | USE grid_variables |
---|
47 | USE indices |
---|
48 | USE interfaces |
---|
49 | USE pegrid |
---|
50 | USE statistics |
---|
51 | |
---|
52 | IMPLICIT NONE |
---|
53 | |
---|
54 | CHARACTER (LEN=*) :: sk_char |
---|
55 | |
---|
56 | INTEGER :: i, ix, j, k, ngp, sr, type_xz_2 |
---|
57 | |
---|
58 | REAL :: cim, cimf, cip, cipf, d_new, ffmax, fminus, fplus, f2, f4, f8, & |
---|
59 | f12, f24, f48, f1920, im, ip, m2, m3, nenner, snenn, sterm, & |
---|
60 | tendenz, t1, t2, zaehler |
---|
61 | REAL :: fmax(2), fmax_l(2) |
---|
62 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
63 | |
---|
64 | REAL, DIMENSION(:,:), ALLOCATABLE :: a0, a1, a12, a2, a22, immb, imme, & |
---|
65 | impb, impe, ipmb, ipme, ippb, ippe |
---|
66 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: sk_p |
---|
67 | |
---|
68 | #if defined( __nec ) |
---|
69 | REAL (kind=4) :: m1n, m1z !Wichtig: Division |
---|
70 | REAL (kind=4), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
71 | #else |
---|
72 | REAL :: m1n, m1z |
---|
73 | REAL, DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
74 | #endif |
---|
75 | |
---|
76 | |
---|
77 | ! |
---|
78 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
79 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
80 | sk_p = 0.0 |
---|
81 | |
---|
82 | ! |
---|
83 | !-- Assign reciprocal values in order to avoid divisions later |
---|
84 | f2 = 0.5 |
---|
85 | f4 = 0.25 |
---|
86 | f8 = 0.125 |
---|
87 | f12 = 0.8333333333333333E-01 |
---|
88 | f24 = 0.4166666666666666E-01 |
---|
89 | f48 = 0.2083333333333333E-01 |
---|
90 | f1920 = 0.5208333333333333E-03 |
---|
91 | |
---|
92 | ! |
---|
93 | !-- Advection in x-direction: |
---|
94 | |
---|
95 | ! |
---|
96 | !-- Save the quantity to be advected in a local array |
---|
97 | !-- add an enlarged boundary in x-direction |
---|
98 | DO i = nxl-1, nxr+1 |
---|
99 | DO j = nys, nyn |
---|
100 | DO k = nzb, nzt+1 |
---|
101 | sk_p(k,j,i) = sk(k,j,i) |
---|
102 | ENDDO |
---|
103 | ENDDO |
---|
104 | ENDDO |
---|
105 | #if defined( __parallel ) |
---|
106 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
107 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
108 | ! |
---|
109 | !-- Send left boundary, receive right boundary |
---|
110 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
111 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
112 | comm2d, status, ierr ) |
---|
113 | ! |
---|
114 | !-- Send right boundary, receive left boundary |
---|
115 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
116 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
117 | comm2d, status, ierr ) |
---|
118 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
119 | #else |
---|
120 | |
---|
121 | ! |
---|
122 | !-- Cyclic boundary conditions |
---|
123 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
124 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
125 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
126 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
127 | #endif |
---|
128 | |
---|
129 | ! |
---|
130 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
131 | !-- of the temperature field at the left and right boundary of the total |
---|
132 | !-- domain must be adjusted by the temperature difference between this distance |
---|
133 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
134 | IF ( nxl == 0 ) THEN |
---|
135 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
136 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
137 | ENDIF |
---|
138 | IF ( nxr == nx ) THEN |
---|
139 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
140 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
141 | ENDIF |
---|
142 | ENDIF |
---|
143 | |
---|
144 | ! |
---|
145 | !-- Initialise control density |
---|
146 | d = 0.0 |
---|
147 | |
---|
148 | ! |
---|
149 | !-- Determine maxima of the first and second derivative in x-direction |
---|
150 | fmax_l = 0.0 |
---|
151 | DO i = nxl, nxr |
---|
152 | DO j = nys, nyn |
---|
153 | DO k = nzb+1, nzt |
---|
154 | zaehler = ABS( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
155 | nenner = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
156 | fmax_l(1) = MAX( fmax_l(1) , zaehler ) |
---|
157 | fmax_l(2) = MAX( fmax_l(2) , nenner ) |
---|
158 | ENDDO |
---|
159 | ENDDO |
---|
160 | ENDDO |
---|
161 | #if defined( __parallel ) |
---|
162 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
163 | #else |
---|
164 | fmax = fmax_l |
---|
165 | #endif |
---|
166 | |
---|
167 | fmax = 0.04 * fmax |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Allocate temporary arrays |
---|
171 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
172 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
173 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
174 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
175 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
176 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
177 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
178 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
179 | ) |
---|
180 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
181 | |
---|
182 | ! |
---|
183 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
184 | !-- not work if done locally within the loop) |
---|
185 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
186 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Outer loop of all j |
---|
190 | DO j = nys, nyn |
---|
191 | |
---|
192 | ! |
---|
193 | !-- Compute polynomial coefficients |
---|
194 | DO i = nxl-1, nxr+1 |
---|
195 | DO k = nzb+1, nzt |
---|
196 | a12(k,i) = 0.5 * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
197 | a22(k,i) = 0.5 * ( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) & |
---|
198 | + sk_p(k,j,i-1) ) |
---|
199 | a0(k,i) = ( 9.0 * sk_p(k,j,i+2) - 116.0 * sk_p(k,j,i+1) & |
---|
200 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k,j,i-1) & |
---|
201 | + 9.0 * sk_p(k,j,i-2) ) * f1920 |
---|
202 | a1(k,i) = ( -5.0 * sk_p(k,j,i+2) + 34.0 * sk_p(k,j,i+1) & |
---|
203 | - 34.0 * sk_p(k,j,i-1) + 5.0 * sk_p(k,j,i-2) & |
---|
204 | ) * f48 |
---|
205 | a2(k,i) = ( -3.0 * sk_p(k,j,i+2) + 36.0 * sk_p(k,j,i+1) & |
---|
206 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k,j,i-1) & |
---|
207 | - 3.0 * sk_p(k,j,i-2) ) * f48 |
---|
208 | ENDDO |
---|
209 | ENDDO |
---|
210 | |
---|
211 | ! |
---|
212 | !-- Fluxes using the Bott scheme |
---|
213 | !-- *VOCL LOOP,UNROLL(2) |
---|
214 | DO i = nxl, nxr |
---|
215 | DO k = nzb+1, nzt |
---|
216 | cip = MAX( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
217 | cim = -MIN( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
218 | cipf = 1.0 - 2.0 * cip |
---|
219 | cimf = 1.0 - 2.0 * cim |
---|
220 | ip = a0(k,i) * f2 * ( 1.0 - cipf ) & |
---|
221 | + a1(k,i) * f8 * ( 1.0 - cipf*cipf ) & |
---|
222 | + a2(k,i) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
223 | im = a0(k,i+1) * f2 * ( 1.0 - cimf ) & |
---|
224 | - a1(k,i+1) * f8 * ( 1.0 - cimf*cimf ) & |
---|
225 | + a2(k,i+1) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
226 | ip = MAX( ip, 0.0 ) |
---|
227 | im = MAX( im, 0.0 ) |
---|
228 | ippb(k,i) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
229 | impb(k,i) = im * MIN( 1.0, sk_p(k,j,i+1) / (ip+im+1E-15) ) |
---|
230 | |
---|
231 | cip = MAX( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
232 | cim = -MIN( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
233 | cipf = 1.0 - 2.0 * cip |
---|
234 | cimf = 1.0 - 2.0 * cim |
---|
235 | ip = a0(k,i-1) * f2 * ( 1.0 - cipf ) & |
---|
236 | + a1(k,i-1) * f8 * ( 1.0 - cipf*cipf ) & |
---|
237 | + a2(k,i-1) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
238 | im = a0(k,i) * f2 * ( 1.0 - cimf ) & |
---|
239 | - a1(k,i) * f8 * ( 1.0 - cimf*cimf ) & |
---|
240 | + a2(k,i) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
241 | ip = MAX( ip, 0.0 ) |
---|
242 | im = MAX( im, 0.0 ) |
---|
243 | ipmb(k,i) = ip * MIN( 1.0, sk_p(k,j,i-1) / (ip+im+1E-15) ) |
---|
244 | immb(k,i) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
245 | ENDDO |
---|
246 | ENDDO |
---|
247 | |
---|
248 | ! |
---|
249 | !-- Compute monitor function m1 |
---|
250 | DO i = nxl-2, nxr+2 |
---|
251 | DO k = nzb+1, nzt |
---|
252 | m1z = ABS( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
253 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
254 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
255 | m1(k,i) = m1z / m1n |
---|
256 | IF ( m1(k,i) /= 2.0 .AND. m1n < fmax(2) ) m1(k,i) = 0.0 |
---|
257 | ELSEIF ( m1n < m1z ) THEN |
---|
258 | m1(k,i) = -1.0 |
---|
259 | ELSE |
---|
260 | m1(k,i) = 0.0 |
---|
261 | ENDIF |
---|
262 | ENDDO |
---|
263 | ENDDO |
---|
264 | |
---|
265 | ! |
---|
266 | !-- Compute switch sw |
---|
267 | sw = 0.0 |
---|
268 | DO i = nxl-1, nxr+1 |
---|
269 | DO k = nzb+1, nzt |
---|
270 | m2 = 2.0 * ABS( a1(k,i) - a12(k,i) ) / & |
---|
271 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35 ) |
---|
272 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0 |
---|
273 | |
---|
274 | m3 = 2.0 * ABS( a2(k,i) - a22(k,i) ) / & |
---|
275 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35 ) |
---|
276 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0 |
---|
277 | |
---|
278 | t1 = 0.35 |
---|
279 | t2 = 0.35 |
---|
280 | IF ( m1(k,i) == -1.0 ) t2 = 0.12 |
---|
281 | |
---|
282 | !-- *VOCL STMT,IF(10) |
---|
283 | IF ( m1(k,i-1) == 1.0 .OR. m1(k,i) == 1.0 .OR. m1(k,i+1) == 1.0 & |
---|
284 | .OR. m2 > t2 .OR. m3 > T2 .OR. & |
---|
285 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0 .AND. & |
---|
286 | m1(k,i) /= -1.0 .AND. m1(k,i+1) /= -1.0 ) & |
---|
287 | ) sw(k,i) = 1.0 |
---|
288 | ENDDO |
---|
289 | ENDDO |
---|
290 | |
---|
291 | ! |
---|
292 | !-- Fluxes using the exponential scheme |
---|
293 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
294 | DO i = nxl, nxr |
---|
295 | DO k = nzb+1, nzt |
---|
296 | |
---|
297 | !-- *VOCL STMT,IF(10) |
---|
298 | IF ( sw(k,i) == 1.0 ) THEN |
---|
299 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
300 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
301 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
302 | sterm = MIN( sterm, 0.9999 ) |
---|
303 | sterm = MAX( sterm, 0.0001 ) |
---|
304 | |
---|
305 | ix = INT( sterm * 1000 ) + 1 |
---|
306 | |
---|
307 | cip = MAX( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
308 | |
---|
309 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
310 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
311 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
312 | ) & |
---|
313 | ) |
---|
314 | IF ( sterm == 0.0001 ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
315 | IF ( sterm == 0.9999 ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
316 | |
---|
317 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
318 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
319 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
320 | sterm = MIN( sterm, 0.9999 ) |
---|
321 | sterm = MAX( sterm, 0.0001 ) |
---|
322 | |
---|
323 | ix = INT( sterm * 1000 ) + 1 |
---|
324 | |
---|
325 | cim = -MIN( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
326 | |
---|
327 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
328 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
329 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
330 | ) & |
---|
331 | ) |
---|
332 | IF ( sterm == 0.0001 ) imme(k,i) = sk_p(k,j,i) * cim |
---|
333 | IF ( sterm == 0.9999 ) imme(k,i) = sk_p(k,j,i) * cim |
---|
334 | ENDIF |
---|
335 | |
---|
336 | !-- *VOCL STMT,IF(10) |
---|
337 | IF ( sw(k,i+1) == 1.0 ) THEN |
---|
338 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
339 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
340 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
341 | sterm = MIN( sterm, 0.9999 ) |
---|
342 | sterm = MAX( sterm, 0.0001 ) |
---|
343 | |
---|
344 | ix = INT( sterm * 1000 ) + 1 |
---|
345 | |
---|
346 | cim = -MIN( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
347 | |
---|
348 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
349 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
350 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
351 | ) & |
---|
352 | ) |
---|
353 | IF ( sterm == 0.0001 ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
354 | IF ( sterm == 0.9999 ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
355 | ENDIF |
---|
356 | |
---|
357 | !-- *VOCL STMT,IF(10) |
---|
358 | IF ( sw(k,i-1) == 1.0 ) THEN |
---|
359 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
360 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
361 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
362 | sterm = MIN( sterm, 0.9999 ) |
---|
363 | sterm = MAX( sterm, 0.0001 ) |
---|
364 | |
---|
365 | ix = INT( sterm * 1000 ) + 1 |
---|
366 | |
---|
367 | cip = MAX( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
368 | |
---|
369 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
370 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
371 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
372 | ) & |
---|
373 | ) |
---|
374 | IF ( sterm == 0.0001 ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
375 | IF ( sterm == 0.9999 ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
376 | ENDIF |
---|
377 | |
---|
378 | ENDDO |
---|
379 | ENDDO |
---|
380 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
381 | |
---|
382 | ! |
---|
383 | !-- Prognostic equation |
---|
384 | DO i = nxl, nxr |
---|
385 | DO k = nzb+1, nzt |
---|
386 | fplus = ( 1.0 - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
387 | - ( 1.0 - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
388 | fminus = ( 1.0 - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
389 | - ( 1.0 - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
390 | tendenz = fplus - fminus |
---|
391 | ! |
---|
392 | !-- Removed in order to optimize speed |
---|
393 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
394 | ! IF ( ( ABS( tendenz ) / ffmax ) < 1E-7 ) tendenz = 0.0 |
---|
395 | ! |
---|
396 | !-- Density correction because of possible remaining divergences |
---|
397 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
398 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendenz ) / & |
---|
399 | ( 1.0 + d_new ) |
---|
400 | d(k,j,i) = d_new |
---|
401 | ENDDO |
---|
402 | ENDDO |
---|
403 | |
---|
404 | ENDDO ! End of the advection in x-direction |
---|
405 | |
---|
406 | ! |
---|
407 | !-- Deallocate temporary arrays |
---|
408 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
409 | ippb, ippe, m1, sw ) |
---|
410 | |
---|
411 | |
---|
412 | ! |
---|
413 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
414 | #if defined( __parallel ) |
---|
415 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
416 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
417 | type_xz_2, ierr ) |
---|
418 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
419 | ! |
---|
420 | !-- Send front boundary, receive rear boundary |
---|
421 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
422 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
423 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
424 | comm2d, status, ierr ) |
---|
425 | ! |
---|
426 | !-- Send rear boundary, receive front boundary |
---|
427 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
428 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
429 | comm2d, status, ierr ) |
---|
430 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
431 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
432 | #else |
---|
433 | DO i = nxl, nxr |
---|
434 | DO k = nzb+1, nzt |
---|
435 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
436 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
437 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
438 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
439 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
440 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
441 | ENDDO |
---|
442 | ENDDO |
---|
443 | #endif |
---|
444 | |
---|
445 | ! |
---|
446 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
447 | fmax_l = 0.0 |
---|
448 | DO i = nxl, nxr |
---|
449 | DO j = nys, nyn |
---|
450 | DO k = nzb+1, nzt |
---|
451 | zaehler = ABS( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
452 | nenner = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
453 | fmax_l(1) = MAX( fmax_l(1) , zaehler ) |
---|
454 | fmax_l(2) = MAX( fmax_l(2) , nenner ) |
---|
455 | ENDDO |
---|
456 | ENDDO |
---|
457 | ENDDO |
---|
458 | #if defined( __parallel ) |
---|
459 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
460 | #else |
---|
461 | fmax = fmax_l |
---|
462 | #endif |
---|
463 | |
---|
464 | fmax = 0.04 * fmax |
---|
465 | |
---|
466 | ! |
---|
467 | !-- Allocate temporary arrays |
---|
468 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
469 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
470 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
471 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
472 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
473 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
474 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
475 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
476 | ) |
---|
477 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
478 | |
---|
479 | ! |
---|
480 | !-- Outer loop of all i |
---|
481 | DO i = nxl, nxr |
---|
482 | |
---|
483 | ! |
---|
484 | !-- Compute polynomial coefficients |
---|
485 | DO j = nys-1, nyn+1 |
---|
486 | DO k = nzb+1, nzt |
---|
487 | a12(k,j) = 0.5 * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
488 | a22(k,j) = 0.5 * ( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) & |
---|
489 | + sk_p(k,j-1,i) ) |
---|
490 | a0(k,j) = ( 9.0 * sk_p(k,j+2,i) - 116.0 * sk_p(k,j+1,i) & |
---|
491 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k,j-1,i) & |
---|
492 | + 9.0 * sk_p(k,j-2,i) ) * f1920 |
---|
493 | a1(k,j) = ( -5.0 * sk_p(k,j+2,i) + 34.0 * sk_p(k,j+1,i) & |
---|
494 | - 34.0 * sk_p(k,j-1,i) + 5.0 * sk_p(k,j-2,i) & |
---|
495 | ) * f48 |
---|
496 | a2(k,j) = ( -3.0 * sk_p(k,j+2,i) + 36.0 * sk_p(k,j+1,i) & |
---|
497 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k,j-1,i) & |
---|
498 | - 3.0 * sk_p(k,j-2,i) ) * f48 |
---|
499 | ENDDO |
---|
500 | ENDDO |
---|
501 | |
---|
502 | ! |
---|
503 | !-- Fluxes using the Bott scheme |
---|
504 | !-- *VOCL LOOP,UNROLL(2) |
---|
505 | DO j = nys, nyn |
---|
506 | DO k = nzb+1, nzt |
---|
507 | cip = MAX( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
508 | cim = -MIN( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
509 | cipf = 1.0 - 2.0 * cip |
---|
510 | cimf = 1.0 - 2.0 * cim |
---|
511 | ip = a0(k,j) * f2 * ( 1.0 - cipf ) & |
---|
512 | + a1(k,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
513 | + a2(k,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
514 | im = a0(k,j+1) * f2 * ( 1.0 - cimf ) & |
---|
515 | - a1(k,j+1) * f8 * ( 1.0 - cimf*cimf ) & |
---|
516 | + a2(k,j+1) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
517 | ip = MAX( ip, 0.0 ) |
---|
518 | im = MAX( im, 0.0 ) |
---|
519 | ippb(k,j) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
520 | impb(k,j) = im * MIN( 1.0, sk_p(k,j+1,i) / (ip+im+1E-15) ) |
---|
521 | |
---|
522 | cip = MAX( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
523 | cim = -MIN( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
524 | cipf = 1.0 - 2.0 * cip |
---|
525 | cimf = 1.0 - 2.0 * cim |
---|
526 | ip = a0(k,j-1) * f2 * ( 1.0 - cipf ) & |
---|
527 | + a1(k,j-1) * f8 * ( 1.0 - cipf*cipf ) & |
---|
528 | + a2(k,j-1) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
529 | im = a0(k,j) * f2 * ( 1.0 - cimf ) & |
---|
530 | - a1(k,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
531 | + a2(k,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
532 | ip = MAX( ip, 0.0 ) |
---|
533 | im = MAX( im, 0.0 ) |
---|
534 | ipmb(k,j) = ip * MIN( 1.0, sk_p(k,j-1,i) / (ip+im+1E-15) ) |
---|
535 | immb(k,j) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
536 | ENDDO |
---|
537 | ENDDO |
---|
538 | |
---|
539 | ! |
---|
540 | !-- Compute monitor function m1 |
---|
541 | DO j = nys-2, nyn+2 |
---|
542 | DO k = nzb+1, nzt |
---|
543 | m1z = ABS( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
544 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
545 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
546 | m1(k,j) = m1z / m1n |
---|
547 | IF ( m1(k,j) /= 2.0 .AND. m1n < fmax(2) ) m1(k,j) = 0.0 |
---|
548 | ELSEIF ( m1n < m1z ) THEN |
---|
549 | m1(k,j) = -1.0 |
---|
550 | ELSE |
---|
551 | m1(k,j) = 0.0 |
---|
552 | ENDIF |
---|
553 | ENDDO |
---|
554 | ENDDO |
---|
555 | |
---|
556 | ! |
---|
557 | !-- Compute switch sw |
---|
558 | sw = 0.0 |
---|
559 | DO j = nys-1, nyn+1 |
---|
560 | DO k = nzb+1, nzt |
---|
561 | m2 = 2.0 * ABS( a1(k,j) - a12(k,j) ) / & |
---|
562 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35 ) |
---|
563 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0 |
---|
564 | |
---|
565 | m3 = 2.0 * ABS( a2(k,j) - a22(k,j) ) / & |
---|
566 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35 ) |
---|
567 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0 |
---|
568 | |
---|
569 | t1 = 0.35 |
---|
570 | t2 = 0.35 |
---|
571 | IF ( m1(k,j) == -1.0 ) t2 = 0.12 |
---|
572 | |
---|
573 | !-- *VOCL STMT,IF(10) |
---|
574 | IF ( m1(k,j-1) == 1.0 .OR. m1(k,j) == 1.0 .OR. m1(k,j+1) == 1.0 & |
---|
575 | .OR. m2 > t2 .OR. m3 > T2 .OR. & |
---|
576 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0 .AND. & |
---|
577 | m1(k,j) /= -1.0 .AND. m1(k,j+1) /= -1.0 ) & |
---|
578 | ) sw(k,j) = 1.0 |
---|
579 | ENDDO |
---|
580 | ENDDO |
---|
581 | |
---|
582 | ! |
---|
583 | !-- Fluxes using exponential scheme |
---|
584 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
585 | DO j = nys, nyn |
---|
586 | DO k = nzb+1, nzt |
---|
587 | |
---|
588 | !-- *VOCL STMT,IF(10) |
---|
589 | IF ( sw(k,j) == 1.0 ) THEN |
---|
590 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
591 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
592 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
593 | sterm = MIN( sterm, 0.9999 ) |
---|
594 | sterm = MAX( sterm, 0.0001 ) |
---|
595 | |
---|
596 | ix = INT( sterm * 1000 ) + 1 |
---|
597 | |
---|
598 | cip = MAX( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
599 | |
---|
600 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
601 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
602 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
603 | ) & |
---|
604 | ) |
---|
605 | IF ( sterm == 0.0001 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
606 | IF ( sterm == 0.9999 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
607 | |
---|
608 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
609 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
610 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
611 | sterm = MIN( sterm, 0.9999 ) |
---|
612 | sterm = MAX( sterm, 0.0001 ) |
---|
613 | |
---|
614 | ix = INT( sterm * 1000 ) + 1 |
---|
615 | |
---|
616 | cim = -MIN( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
617 | |
---|
618 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
619 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
620 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
621 | ) & |
---|
622 | ) |
---|
623 | IF ( sterm == 0.0001 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
624 | IF ( sterm == 0.9999 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
625 | ENDIF |
---|
626 | |
---|
627 | !-- *VOCL STMT,IF(10) |
---|
628 | IF ( sw(k,j+1) == 1.0 ) THEN |
---|
629 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
630 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
631 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
632 | sterm = MIN( sterm, 0.9999 ) |
---|
633 | sterm = MAX( sterm, 0.0001 ) |
---|
634 | |
---|
635 | ix = INT( sterm * 1000 ) + 1 |
---|
636 | |
---|
637 | cim = -MIN( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
638 | |
---|
639 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
640 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
641 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
642 | ) & |
---|
643 | ) |
---|
644 | IF ( sterm == 0.0001 ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
645 | IF ( sterm == 0.9999 ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
646 | ENDIF |
---|
647 | |
---|
648 | !-- *VOCL STMT,IF(10) |
---|
649 | IF ( sw(k,j-1) == 1.0 ) THEN |
---|
650 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
651 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
652 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
653 | sterm = MIN( sterm, 0.9999 ) |
---|
654 | sterm = MAX( sterm, 0.0001 ) |
---|
655 | |
---|
656 | ix = INT( sterm * 1000 ) + 1 |
---|
657 | |
---|
658 | cip = MAX( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
659 | |
---|
660 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
661 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
662 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
663 | ) & |
---|
664 | ) |
---|
665 | IF ( sterm == 0.0001 ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
666 | IF ( sterm == 0.9999 ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
667 | ENDIF |
---|
668 | |
---|
669 | ENDDO |
---|
670 | ENDDO |
---|
671 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
672 | |
---|
673 | ! |
---|
674 | !-- Prognostic equation |
---|
675 | DO j = nys, nyn |
---|
676 | DO k = nzb+1, nzt |
---|
677 | fplus = ( 1.0 - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
678 | - ( 1.0 - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
679 | fminus = ( 1.0 - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
680 | - ( 1.0 - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
681 | tendenz = fplus - fminus |
---|
682 | ! |
---|
683 | !-- Removed in order to optimise speed |
---|
684 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
685 | ! IF ( ( ABS( tendenz ) / ffmax ) < 1E-7 ) tendenz = 0.0 |
---|
686 | ! |
---|
687 | !-- Density correction because of possible remaining divergences |
---|
688 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
689 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendenz ) / & |
---|
690 | ( 1.0 + d_new ) |
---|
691 | d(k,j,i) = d_new |
---|
692 | ENDDO |
---|
693 | ENDDO |
---|
694 | |
---|
695 | ENDDO ! End of the advection in y-direction |
---|
696 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
697 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
698 | |
---|
699 | ! |
---|
700 | !-- Deallocate temporary arrays |
---|
701 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
702 | ippb, ippe, m1, sw ) |
---|
703 | |
---|
704 | |
---|
705 | ! |
---|
706 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
707 | !-- UP flow_statistics) |
---|
708 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0 |
---|
709 | |
---|
710 | ! |
---|
711 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
712 | IF ( sk_char == 'pt' ) THEN |
---|
713 | |
---|
714 | ! |
---|
715 | !-- Temperature boundary condition at the bottom boundary |
---|
716 | IF ( ibc_pt_b == 0 ) THEN |
---|
717 | ! |
---|
718 | !-- Dirichlet (fixed surface temperature) |
---|
719 | DO i = nxl, nxr |
---|
720 | DO j = nys, nyn |
---|
721 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
722 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
723 | ENDDO |
---|
724 | ENDDO |
---|
725 | |
---|
726 | ELSE |
---|
727 | ! |
---|
728 | !-- Neumann (i.e. here zero gradient) |
---|
729 | DO i = nxl, nxr |
---|
730 | DO j = nys, nyn |
---|
731 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
732 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
733 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
734 | ENDDO |
---|
735 | ENDDO |
---|
736 | |
---|
737 | ENDIF |
---|
738 | |
---|
739 | ! |
---|
740 | !-- Temperature boundary condition at the top boundary |
---|
741 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
742 | ! |
---|
743 | !-- Dirichlet or Neumann (zero gradient) |
---|
744 | DO i = nxl, nxr |
---|
745 | DO j = nys, nyn |
---|
746 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
747 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
748 | ENDDO |
---|
749 | ENDDO |
---|
750 | |
---|
751 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
752 | ! |
---|
753 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
754 | DO i = nxl, nxr |
---|
755 | DO j = nys, nyn |
---|
756 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
757 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
758 | ENDDO |
---|
759 | ENDDO |
---|
760 | |
---|
761 | ENDIF |
---|
762 | |
---|
763 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
764 | |
---|
765 | ! |
---|
766 | !-- Salinity boundary condition at the bottom boundary. |
---|
767 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
768 | DO i = nxl, nxr |
---|
769 | DO j = nys, nyn |
---|
770 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
771 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
772 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
773 | ENDDO |
---|
774 | ENDDO |
---|
775 | |
---|
776 | ! |
---|
777 | !-- Salinity boundary condition at the top boundary. |
---|
778 | !-- Dirichlet or Neumann (zero gradient) |
---|
779 | DO i = nxl, nxr |
---|
780 | DO j = nys, nyn |
---|
781 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
782 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
783 | ENDDO |
---|
784 | ENDDO |
---|
785 | |
---|
786 | ELSEIF ( sk_char == 'q' ) THEN |
---|
787 | |
---|
788 | ! |
---|
789 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
790 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
791 | DO i = nxl, nxr |
---|
792 | DO j = nys, nyn |
---|
793 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
794 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
795 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
796 | ENDDO |
---|
797 | ENDDO |
---|
798 | |
---|
799 | ! |
---|
800 | !-- Specific humidity boundary condition at the top boundary |
---|
801 | IF ( ibc_q_t == 0 ) THEN |
---|
802 | ! |
---|
803 | !-- Dirichlet |
---|
804 | DO i = nxl, nxr |
---|
805 | DO j = nys, nyn |
---|
806 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
807 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
808 | ENDDO |
---|
809 | ENDDO |
---|
810 | |
---|
811 | ELSE |
---|
812 | ! |
---|
813 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
814 | DO i = nxl, nxr |
---|
815 | DO j = nys, nyn |
---|
816 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
817 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
818 | ENDDO |
---|
819 | ENDDO |
---|
820 | |
---|
821 | ENDIF |
---|
822 | |
---|
823 | ELSEIF ( sk_char == 'e' ) THEN |
---|
824 | |
---|
825 | ! |
---|
826 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
827 | DO i = nxl, nxr |
---|
828 | DO j = nys, nyn |
---|
829 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
830 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
831 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
832 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
833 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
834 | ENDDO |
---|
835 | ENDDO |
---|
836 | |
---|
837 | ELSE |
---|
838 | |
---|
839 | IF ( myid == 0 ) PRINT*,'+++ advec_s_bc: no vertical boundary condi', & |
---|
840 | 'tion for variable "', sk_char, '"' |
---|
841 | CALL local_stop |
---|
842 | |
---|
843 | ENDIF |
---|
844 | |
---|
845 | ! |
---|
846 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
847 | fmax_l = 0.0 |
---|
848 | DO i = nxl, nxr |
---|
849 | DO j = nys, nyn |
---|
850 | DO k = nzb, nzt+1 |
---|
851 | zaehler = ABS( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
852 | nenner = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
853 | fmax_l(1) = MAX( fmax_l(1) , zaehler ) |
---|
854 | fmax_l(2) = MAX( fmax_l(2) , nenner ) |
---|
855 | ENDDO |
---|
856 | ENDDO |
---|
857 | ENDDO |
---|
858 | #if defined( __parallel ) |
---|
859 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
860 | #else |
---|
861 | fmax = fmax_l |
---|
862 | #endif |
---|
863 | |
---|
864 | fmax = 0.04 * fmax |
---|
865 | |
---|
866 | ! |
---|
867 | !-- Allocate temporary arrays |
---|
868 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
869 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
870 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
871 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
872 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
873 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
874 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
875 | sw(nzb:nzt+1,nys:nyn) & |
---|
876 | ) |
---|
877 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
878 | |
---|
879 | ! |
---|
880 | !-- Outer loop of all i |
---|
881 | DO i = nxl, nxr |
---|
882 | |
---|
883 | ! |
---|
884 | !-- Compute polynomial coefficients |
---|
885 | DO j = nys, nyn |
---|
886 | DO k = nzb, nzt+1 |
---|
887 | a12(k,j) = 0.5 * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
888 | a22(k,j) = 0.5 * ( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) & |
---|
889 | + sk_p(k-1,j,i) ) |
---|
890 | a0(k,j) = ( 9.0 * sk_p(k+2,j,i) - 116.0 * sk_p(k+1,j,i) & |
---|
891 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k-1,j,i) & |
---|
892 | + 9.0 * sk_p(k-2,j,i) ) * f1920 |
---|
893 | a1(k,j) = ( -5.0 * sk_p(k+2,j,i) + 34.0 * sk_p(k+1,j,i) & |
---|
894 | - 34.0 * sk_p(k-1,j,i) + 5.0 * sk_p(k-2,j,i) & |
---|
895 | ) * f48 |
---|
896 | a2(k,j) = ( -3.0 * sk_p(k+2,j,i) + 36.0 * sk_p(k+1,j,i) & |
---|
897 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k-1,j,i) & |
---|
898 | - 3.0 * sk_p(k-2,j,i) ) * f48 |
---|
899 | ENDDO |
---|
900 | ENDDO |
---|
901 | |
---|
902 | ! |
---|
903 | !-- Fluxes using the Bott scheme |
---|
904 | !-- *VOCL LOOP,UNROLL(2) |
---|
905 | DO j = nys, nyn |
---|
906 | DO k = nzb+1, nzt |
---|
907 | cip = MAX( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
908 | cim = -MIN( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
909 | cipf = 1.0 - 2.0 * cip |
---|
910 | cimf = 1.0 - 2.0 * cim |
---|
911 | ip = a0(k,j) * f2 * ( 1.0 - cipf ) & |
---|
912 | + a1(k,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
913 | + a2(k,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
914 | im = a0(k+1,j) * f2 * ( 1.0 - cimf ) & |
---|
915 | - a1(k+1,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
916 | + a2(k+1,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
917 | ip = MAX( ip, 0.0 ) |
---|
918 | im = MAX( im, 0.0 ) |
---|
919 | ippb(k,j) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
920 | impb(k,j) = im * MIN( 1.0, sk_p(k+1,j,i) / (ip+im+1E-15) ) |
---|
921 | |
---|
922 | cip = MAX( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
923 | cim = -MIN( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
924 | cipf = 1.0 - 2.0 * cip |
---|
925 | cimf = 1.0 - 2.0 * cim |
---|
926 | ip = a0(k-1,j) * f2 * ( 1.0 - cipf ) & |
---|
927 | + a1(k-1,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
928 | + a2(k-1,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
929 | im = a0(k,j) * f2 * ( 1.0 - cimf ) & |
---|
930 | - a1(k,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
931 | + a2(k,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
932 | ip = MAX( ip, 0.0 ) |
---|
933 | im = MAX( im, 0.0 ) |
---|
934 | ipmb(k,j) = ip * MIN( 1.0, sk_p(k-1,j,i) / (ip+im+1E-15) ) |
---|
935 | immb(k,j) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
936 | ENDDO |
---|
937 | ENDDO |
---|
938 | |
---|
939 | ! |
---|
940 | !-- Compute monitor function m1 |
---|
941 | DO j = nys, nyn |
---|
942 | DO k = nzb-1, nzt+2 |
---|
943 | m1z = ABS( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
944 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
945 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
946 | m1(k,j) = m1z / m1n |
---|
947 | IF ( m1(k,j) /= 2.0 .AND. m1n < fmax(2) ) m1(k,j) = 0.0 |
---|
948 | ELSEIF ( m1n < m1z ) THEN |
---|
949 | m1(k,j) = -1.0 |
---|
950 | ELSE |
---|
951 | m1(k,j) = 0.0 |
---|
952 | ENDIF |
---|
953 | ENDDO |
---|
954 | ENDDO |
---|
955 | |
---|
956 | ! |
---|
957 | !-- Compute switch sw |
---|
958 | sw = 0.0 |
---|
959 | DO j = nys, nyn |
---|
960 | DO k = nzb, nzt+1 |
---|
961 | m2 = 2.0 * ABS( a1(k,j) - a12(k,j) ) / & |
---|
962 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35 ) |
---|
963 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0 |
---|
964 | |
---|
965 | m3 = 2.0 * ABS( a2(k,j) - a22(k,j) ) / & |
---|
966 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35 ) |
---|
967 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0 |
---|
968 | |
---|
969 | t1 = 0.35 |
---|
970 | t2 = 0.35 |
---|
971 | IF ( m1(k,j) == -1.0 ) t2 = 0.12 |
---|
972 | |
---|
973 | !-- *VOCL STMT,IF(10) |
---|
974 | IF ( m1(k-1,j) == 1.0 .OR. m1(k,j) == 1.0 .OR. m1(k+1,j) == 1.0 & |
---|
975 | .OR. m2 > t2 .OR. m3 > T2 .OR. & |
---|
976 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0 .AND. & |
---|
977 | m1(k,j) /= -1.0 .AND. m1(k+1,j) /= -1.0 ) & |
---|
978 | ) sw(k,j) = 1.0 |
---|
979 | ENDDO |
---|
980 | ENDDO |
---|
981 | |
---|
982 | ! |
---|
983 | !-- Fluxes using exponential scheme |
---|
984 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
985 | DO j = nys, nyn |
---|
986 | DO k = nzb+1, nzt |
---|
987 | |
---|
988 | !-- *VOCL STMT,IF(10) |
---|
989 | IF ( sw(k,j) == 1.0 ) THEN |
---|
990 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
991 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
992 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
993 | sterm = MIN( sterm, 0.9999 ) |
---|
994 | sterm = MAX( sterm, 0.0001 ) |
---|
995 | |
---|
996 | ix = INT( sterm * 1000 ) + 1 |
---|
997 | |
---|
998 | cip = MAX( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
999 | |
---|
1000 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
1001 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
1002 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
1003 | ) & |
---|
1004 | ) |
---|
1005 | IF ( sterm == 0.0001 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
1006 | IF ( sterm == 0.9999 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
1007 | |
---|
1008 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
1009 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
1010 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
1011 | sterm = MIN( sterm, 0.9999 ) |
---|
1012 | sterm = MAX( sterm, 0.0001 ) |
---|
1013 | |
---|
1014 | ix = INT( sterm * 1000 ) + 1 |
---|
1015 | |
---|
1016 | cim = -MIN( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
1017 | |
---|
1018 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
1019 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
1020 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
1021 | ) & |
---|
1022 | ) |
---|
1023 | IF ( sterm == 0.0001 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
1024 | IF ( sterm == 0.9999 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
1025 | ENDIF |
---|
1026 | |
---|
1027 | !-- *VOCL STMT,IF(10) |
---|
1028 | IF ( sw(k+1,j) == 1.0 ) THEN |
---|
1029 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
1030 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
1031 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
1032 | sterm = MIN( sterm, 0.9999 ) |
---|
1033 | sterm = MAX( sterm, 0.0001 ) |
---|
1034 | |
---|
1035 | ix = INT( sterm * 1000 ) + 1 |
---|
1036 | |
---|
1037 | cim = -MIN( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
1038 | |
---|
1039 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
1040 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
1041 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
1042 | ) & |
---|
1043 | ) |
---|
1044 | IF ( sterm == 0.0001 ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
1045 | IF ( sterm == 0.9999 ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
1046 | ENDIF |
---|
1047 | |
---|
1048 | !-- *VOCL STMT,IF(10) |
---|
1049 | IF ( sw(k-1,j) == 1.0 ) THEN |
---|
1050 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
1051 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
1052 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
1053 | sterm = MIN( sterm, 0.9999 ) |
---|
1054 | sterm = MAX( sterm, 0.0001 ) |
---|
1055 | |
---|
1056 | ix = INT( sterm * 1000 ) + 1 |
---|
1057 | |
---|
1058 | cip = MAX( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
1059 | |
---|
1060 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
1061 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
1062 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
1063 | ) & |
---|
1064 | ) |
---|
1065 | IF ( sterm == 0.0001 ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
1066 | IF ( sterm == 0.9999 ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
1067 | ENDIF |
---|
1068 | |
---|
1069 | ENDDO |
---|
1070 | ENDDO |
---|
1071 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
1072 | |
---|
1073 | ! |
---|
1074 | !-- Prognostic equation |
---|
1075 | DO j = nys, nyn |
---|
1076 | DO k = nzb+1, nzt |
---|
1077 | fplus = ( 1.0 - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
1078 | - ( 1.0 - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
1079 | fminus = ( 1.0 - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
1080 | - ( 1.0 - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
1081 | tendenz = fplus - fminus |
---|
1082 | ! |
---|
1083 | !-- Removed in order to optimise speed |
---|
1084 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
1085 | ! IF ( ( ABS( tendenz ) / ffmax ) < 1E-7 ) tendenz = 0.0 |
---|
1086 | ! |
---|
1087 | !-- Density correction because of possible remaining divergences |
---|
1088 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
1089 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendenz ) / & |
---|
1090 | ( 1.0 + d_new ) |
---|
1091 | ! |
---|
1092 | !-- Store heat flux for subsequent statistics output. |
---|
1093 | !-- array m1 is here used as temporary storage |
---|
1094 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
1095 | ENDDO |
---|
1096 | ENDDO |
---|
1097 | |
---|
1098 | ! |
---|
1099 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
1100 | IF ( sk_char == 'pt' ) THEN |
---|
1101 | DO sr = 0, statistic_regions |
---|
1102 | DO j = nys, nyn |
---|
1103 | DO k = nzb+1, nzt |
---|
1104 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
1105 | m1(k,j) * rmask(j,i,sr) |
---|
1106 | ENDDO |
---|
1107 | ENDDO |
---|
1108 | ENDDO |
---|
1109 | ENDIF |
---|
1110 | |
---|
1111 | ENDDO ! End of the advection in z-direction |
---|
1112 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
1113 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- Deallocate temporary arrays |
---|
1117 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
1118 | ippb, ippe, m1, sw ) |
---|
1119 | |
---|
1120 | ! |
---|
1121 | !-- Store results as tendency and deallocate local array |
---|
1122 | DO i = nxl, nxr |
---|
1123 | DO j = nys, nyn |
---|
1124 | DO k = nzb+1, nzt |
---|
1125 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
1126 | ENDDO |
---|
1127 | ENDDO |
---|
1128 | ENDDO |
---|
1129 | |
---|
1130 | DEALLOCATE( sk_p ) |
---|
1131 | |
---|
1132 | END SUBROUTINE advec_s_bc |
---|