[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[4488] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4488] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4488] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4488] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4488] | 17 | ! -------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[247] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1354] | 21 | ! |
---|
[2001] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: advec_s_bc.f90 4502 2020-04-17 16:14:16Z oliver.maas $ |
---|
[4502] | 26 | ! Implementation of ice microphysics |
---|
| 27 | ! |
---|
| 28 | ! 4488 2020-04-03 11:34:29Z raasch |
---|
[4488] | 29 | ! file re-formatted to follow the PALM coding standard |
---|
| 30 | ! |
---|
| 31 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
[4429] | 32 | ! bugfix: cpp-directives added for serial mode |
---|
[4488] | 33 | ! |
---|
[4429] | 34 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 35 | ! Corrected "Former revisions" section |
---|
[4488] | 36 | ! |
---|
[4182] | 37 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 38 | ! unused variables removed |
---|
[4488] | 39 | ! |
---|
[3761] | 40 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3636] | 41 | ! nopointer option removed |
---|
[4182] | 42 | ! |
---|
| 43 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 44 | ! Initial revision |
---|
| 45 | ! |
---|
| 46 | ! |
---|
[1] | 47 | ! Description: |
---|
| 48 | ! ------------ |
---|
[1682] | 49 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 50 | !> Computation in individual steps for each of the three dimensions. |
---|
| 51 | !> Limiting assumptions: |
---|
[4488] | 52 | !> So far the scheme has been assuming equidistant grid spacing. As this is not the case in the |
---|
| 53 | !> stretched portion of the z-direction, there dzw(k) is used as a substitute for a constant grid |
---|
| 54 | !> length. This certainly causes incorrect results; however, it is hoped that they are not too |
---|
| 55 | !> apparent for weakly stretched grids. |
---|
[1682] | 56 | !> NOTE: This is a provisional, non-optimised version! |
---|
[4488] | 57 | !--------------------------------------------------------------------------------------------------! |
---|
| 58 | MODULE advec_s_bc_mod |
---|
[1] | 59 | |
---|
[4488] | 60 | |
---|
[1517] | 61 | PRIVATE |
---|
| 62 | PUBLIC advec_s_bc |
---|
[1320] | 63 | |
---|
[1517] | 64 | INTERFACE advec_s_bc |
---|
| 65 | MODULE PROCEDURE advec_s_bc |
---|
| 66 | END INTERFACE advec_s_bc |
---|
[1320] | 67 | |
---|
[1517] | 68 | CONTAINS |
---|
[1320] | 69 | |
---|
[4488] | 70 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 71 | ! Description: |
---|
| 72 | ! ------------ |
---|
| 73 | !> @todo Missing subroutine description. |
---|
[4488] | 74 | !--------------------------------------------------------------------------------------------------! |
---|
[1517] | 75 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 76 | |
---|
[4488] | 77 | USE advection, & |
---|
[1517] | 78 | ONLY: aex, bex, dex, eex |
---|
[1320] | 79 | |
---|
[4488] | 80 | USE arrays_3d, & |
---|
[1517] | 81 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 82 | |
---|
[4488] | 83 | USE control_parameters, & |
---|
| 84 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, dt_3d, ibc_pt_b, ibc_pt_t, ibc_q_t, ibc_s_t,& |
---|
| 85 | message_string, pt_slope_offset, sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 86 | |
---|
[4488] | 87 | USE cpulog, & |
---|
[1517] | 88 | ONLY: cpu_log, log_point_s |
---|
[1] | 89 | |
---|
[4488] | 90 | USE grid_variables, & |
---|
[1517] | 91 | ONLY: ddx, ddy |
---|
[1320] | 92 | |
---|
[4488] | 93 | USE indices, & |
---|
[3761] | 94 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
[1320] | 95 | |
---|
[1517] | 96 | USE kinds |
---|
[1] | 97 | |
---|
[1517] | 98 | USE pegrid |
---|
[1] | 99 | |
---|
[4488] | 100 | USE statistics, & |
---|
[1517] | 101 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 102 | |
---|
[1320] | 103 | |
---|
[1517] | 104 | IMPLICIT NONE |
---|
| 105 | |
---|
[1682] | 106 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 107 | |
---|
[1682] | 108 | INTEGER(iwp) :: i !< |
---|
| 109 | INTEGER(iwp) :: ix !< |
---|
| 110 | INTEGER(iwp) :: j !< |
---|
| 111 | INTEGER(iwp) :: k !< |
---|
[4429] | 112 | INTEGER(iwp) :: sr !< |
---|
| 113 | #if defined( __parallel ) |
---|
[1682] | 114 | INTEGER(iwp) :: ngp !< |
---|
| 115 | INTEGER(iwp) :: type_xz_2 !< |
---|
[4429] | 116 | #endif |
---|
[4488] | 117 | REAL(wp) :: cim !< |
---|
| 118 | REAL(wp) :: cimf !< |
---|
| 119 | REAL(wp) :: cip !< |
---|
| 120 | REAL(wp) :: cipf !< |
---|
| 121 | REAL(wp) :: d_new !< |
---|
| 122 | REAL(wp) :: denomi !< denominator |
---|
| 123 | REAL(wp) :: fminus !< |
---|
| 124 | REAL(wp) :: fplus !< |
---|
| 125 | REAL(wp) :: f2 !< |
---|
| 126 | REAL(wp) :: f4 !< |
---|
| 127 | REAL(wp) :: f8 !< |
---|
| 128 | REAL(wp) :: f12 !< |
---|
| 129 | REAL(wp) :: f24 !< |
---|
| 130 | REAL(wp) :: f48 !< |
---|
| 131 | REAL(wp) :: f1920 !< |
---|
| 132 | REAL(wp) :: im !< |
---|
| 133 | REAL(wp) :: ip !< |
---|
| 134 | REAL(wp) :: m1n !< |
---|
| 135 | REAL(wp) :: m1z !< |
---|
| 136 | REAL(wp) :: m2 !< |
---|
| 137 | REAL(wp) :: m3 !< |
---|
| 138 | REAL(wp) :: numera !< numerator |
---|
| 139 | REAL(wp) :: snenn !< |
---|
| 140 | REAL(wp) :: sterm !< |
---|
| 141 | REAL(wp) :: tendcy !< |
---|
| 142 | REAL(wp) :: t1 !< |
---|
| 143 | REAL(wp) :: t2 !< |
---|
[1517] | 144 | |
---|
[1682] | 145 | REAL(wp) :: fmax(2) !< |
---|
| 146 | REAL(wp) :: fmax_l(2) !< |
---|
[1] | 147 | |
---|
[1682] | 148 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 149 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 150 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 158 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 159 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 160 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 162 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[4488] | 163 | |
---|
[1682] | 164 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 165 | |
---|
[4488] | 166 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk !< |
---|
| 167 | |
---|
| 168 | |
---|
[1] | 169 | ! |
---|
[1517] | 170 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 171 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 172 | sk_p = 0.0_wp |
---|
[1] | 173 | |
---|
| 174 | ! |
---|
[1517] | 175 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 176 | f2 = 0.5_wp |
---|
| 177 | f4 = 0.25_wp |
---|
| 178 | f8 = 0.125_wp |
---|
| 179 | f12 = 0.8333333333333333E-01_wp |
---|
| 180 | f24 = 0.4166666666666666E-01_wp |
---|
| 181 | f48 = 0.2083333333333333E-01_wp |
---|
| 182 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 183 | |
---|
| 184 | ! |
---|
[1517] | 185 | !-- Advection in x-direction: |
---|
[1] | 186 | |
---|
| 187 | ! |
---|
[1517] | 188 | !-- Save the quantity to be advected in a local array |
---|
| 189 | !-- add an enlarged boundary in x-direction |
---|
| 190 | DO i = nxl-1, nxr+1 |
---|
| 191 | DO j = nys, nyn |
---|
| 192 | DO k = nzb, nzt+1 |
---|
| 193 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 194 | ENDDO |
---|
[1] | 195 | ENDDO |
---|
| 196 | ENDDO |
---|
| 197 | #if defined( __parallel ) |
---|
[1517] | 198 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 199 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 200 | ! |
---|
[1517] | 201 | !-- Send left boundary, receive right boundary |
---|
[4488] | 202 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 203 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
[1517] | 204 | comm2d, status, ierr ) |
---|
[1] | 205 | ! |
---|
[1517] | 206 | !-- Send right boundary, receive left boundary |
---|
[4488] | 207 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 208 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
[1517] | 209 | comm2d, status, ierr ) |
---|
| 210 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 211 | #else |
---|
| 212 | |
---|
| 213 | ! |
---|
[1517] | 214 | !-- Cyclic boundary conditions |
---|
| 215 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 216 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 217 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 218 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 219 | #endif |
---|
| 220 | |
---|
| 221 | ! |
---|
[4488] | 222 | !-- In case of a sloping surface, the additional gridpoints in x-direction of the temperature |
---|
| 223 | !-- field at the left and right boundary of the total domain must be adjusted by the temperature |
---|
| 224 | !-- difference between this distance |
---|
[1517] | 225 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 226 | IF ( nxl == 0 ) THEN |
---|
| 227 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 228 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 229 | ENDIF |
---|
| 230 | IF ( nxr == nx ) THEN |
---|
| 231 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 232 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 233 | ENDIF |
---|
[1] | 234 | ENDIF |
---|
| 235 | |
---|
| 236 | ! |
---|
[1517] | 237 | !-- Initialise control density |
---|
| 238 | d = 0.0_wp |
---|
[1] | 239 | |
---|
| 240 | ! |
---|
[1517] | 241 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 242 | fmax_l = 0.0_wp |
---|
| 243 | DO i = nxl, nxr |
---|
| 244 | DO j = nys, nyn |
---|
| 245 | DO k = nzb+1, nzt |
---|
[4488] | 246 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
[1517] | 247 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 248 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 249 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 250 | ENDDO |
---|
[1] | 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | #if defined( __parallel ) |
---|
[1517] | 254 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 255 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 256 | #else |
---|
[1517] | 257 | fmax = fmax_l |
---|
[1] | 258 | #endif |
---|
| 259 | |
---|
[1517] | 260 | fmax = 0.04_wp * fmax |
---|
[1] | 261 | |
---|
| 262 | ! |
---|
[1517] | 263 | !-- Allocate temporary arrays |
---|
[4488] | 264 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), a2(nzb+1:nzt,nxl-1:nxr+1),& |
---|
| 265 | a12(nzb+1:nzt,nxl-1:nxr+1), a22(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 266 | immb(nzb+1:nzt,nxl-1:nxr+1), imme(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 267 | impb(nzb+1:nzt,nxl-1:nxr+1), impe(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 268 | ipmb(nzb+1:nzt,nxl-1:nxr+1), ipme(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 269 | ippb(nzb+1:nzt,nxl-1:nxr+1), ippe(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 270 | m1(nzb+1:nzt,nxl-2:nxr+2), sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
[1517] | 271 | ) |
---|
| 272 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 273 | |
---|
| 274 | ! |
---|
[4488] | 275 | !-- Initialise point of time measuring of the exponential portion (this would not work if done |
---|
| 276 | !-- locally within the loop) |
---|
[1517] | 277 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 278 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 279 | |
---|
[1517] | 280 | DO j = nys, nyn |
---|
[1] | 281 | |
---|
| 282 | ! |
---|
[1517] | 283 | !-- Compute polynomial coefficients |
---|
| 284 | DO i = nxl-1, nxr+1 |
---|
| 285 | DO k = nzb+1, nzt |
---|
| 286 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
[4488] | 287 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 288 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 289 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 290 | + 9.0_wp * sk_p(k,j,i-2) & |
---|
| 291 | ) * f1920 |
---|
| 292 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 293 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
[1517] | 294 | ) * f48 |
---|
[4488] | 295 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 296 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 297 | - 3.0_wp * sk_p(k,j,i-2) & |
---|
| 298 | ) * f48 |
---|
[1517] | 299 | ENDDO |
---|
[1] | 300 | ENDDO |
---|
| 301 | |
---|
| 302 | ! |
---|
[1517] | 303 | !-- Fluxes using the Bott scheme |
---|
| 304 | DO i = nxl, nxr |
---|
| 305 | DO k = nzb+1, nzt |
---|
| 306 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 307 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 308 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 309 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 310 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 311 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 312 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 313 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 314 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 315 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 316 | ip = MAX( ip, 0.0_wp ) |
---|
| 317 | im = MAX( im, 0.0_wp ) |
---|
| 318 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 319 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 320 | |
---|
[1517] | 321 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 322 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 323 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 324 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 325 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 326 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 327 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 328 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 329 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 330 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 331 | ip = MAX( ip, 0.0_wp ) |
---|
| 332 | im = MAX( im, 0.0_wp ) |
---|
| 333 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 334 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 335 | ENDDO |
---|
[1] | 336 | ENDDO |
---|
| 337 | |
---|
| 338 | ! |
---|
[1517] | 339 | !-- Compute monitor function m1 |
---|
| 340 | DO i = nxl-2, nxr+2 |
---|
| 341 | DO k = nzb+1, nzt |
---|
| 342 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 343 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 344 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 345 | m1(k,i) = m1z / m1n |
---|
| 346 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 347 | ELSEIF ( m1n < m1z ) THEN |
---|
| 348 | m1(k,i) = -1.0_wp |
---|
| 349 | ELSE |
---|
| 350 | m1(k,i) = 0.0_wp |
---|
| 351 | ENDIF |
---|
| 352 | ENDDO |
---|
[1] | 353 | ENDDO |
---|
| 354 | |
---|
| 355 | ! |
---|
[1517] | 356 | !-- Compute switch sw |
---|
| 357 | sw = 0.0_wp |
---|
| 358 | DO i = nxl-1, nxr+1 |
---|
| 359 | DO k = nzb+1, nzt |
---|
[4488] | 360 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
[1517] | 361 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 362 | |
---|
[4488] | 363 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
[1517] | 364 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 365 | |
---|
[1517] | 366 | t1 = 0.35_wp |
---|
| 367 | t2 = 0.35_wp |
---|
| 368 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[4488] | 369 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp .OR. m1(k,i+1) == 1.0_wp .OR. & |
---|
| 370 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 371 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
[1517] | 372 | ) sw(k,i) = 1.0_wp |
---|
| 373 | ENDDO |
---|
[1] | 374 | ENDDO |
---|
| 375 | |
---|
| 376 | ! |
---|
[1517] | 377 | !-- Fluxes using the exponential scheme |
---|
| 378 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 379 | DO i = nxl, nxr |
---|
| 380 | DO k = nzb+1, nzt |
---|
[1] | 381 | |
---|
[1517] | 382 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 383 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 384 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 385 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 386 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 387 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 388 | |
---|
[1517] | 389 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 390 | |
---|
[1517] | 391 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 392 | |
---|
[4488] | 393 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 394 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 395 | eex(ix) - & |
---|
| 396 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 397 | ) & |
---|
[1517] | 398 | ) |
---|
| 399 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 400 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 401 | |
---|
[1517] | 402 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 403 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 404 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 405 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 406 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 407 | |
---|
[1517] | 408 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 409 | |
---|
[1517] | 410 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 411 | |
---|
[4488] | 412 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 413 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 414 | eex(ix) - & |
---|
| 415 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 416 | ) & |
---|
[1517] | 417 | ) |
---|
| 418 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 419 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 420 | ENDIF |
---|
[1] | 421 | |
---|
[1517] | 422 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 423 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 424 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 425 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 426 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 427 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 428 | |
---|
[1517] | 429 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 430 | |
---|
[1517] | 431 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 432 | |
---|
[4488] | 433 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 434 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 435 | eex(ix) - & |
---|
| 436 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 437 | ) & |
---|
[1517] | 438 | ) |
---|
| 439 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 440 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 441 | ENDIF |
---|
[1] | 442 | |
---|
[1517] | 443 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 444 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 445 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 446 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 447 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 448 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 449 | |
---|
[1517] | 450 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 451 | |
---|
[1517] | 452 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 453 | |
---|
[4488] | 454 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 455 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 456 | eex(ix) - & |
---|
| 457 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 458 | ) & |
---|
[1517] | 459 | ) |
---|
| 460 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 461 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 462 | ENDIF |
---|
[1] | 463 | |
---|
[1517] | 464 | ENDDO |
---|
[1] | 465 | ENDDO |
---|
[1517] | 466 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 467 | |
---|
| 468 | ! |
---|
[1517] | 469 | !-- Prognostic equation |
---|
| 470 | DO i = nxl, nxr |
---|
| 471 | DO k = nzb+1, nzt |
---|
[4488] | 472 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 473 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 474 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 475 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
[1517] | 476 | tendcy = fplus - fminus |
---|
[1] | 477 | ! |
---|
[1517] | 478 | !-- Removed in order to optimize speed |
---|
| 479 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 480 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 481 | ! |
---|
[1517] | 482 | !-- Density correction because of possible remaining divergences |
---|
| 483 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
[4488] | 484 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
[1517] | 485 | d(k,j,i) = d_new |
---|
| 486 | ENDDO |
---|
[1] | 487 | ENDDO |
---|
| 488 | |
---|
[1517] | 489 | ENDDO ! End of the advection in x-direction |
---|
[1] | 490 | |
---|
| 491 | ! |
---|
[1517] | 492 | !-- Deallocate temporary arrays |
---|
[4488] | 493 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
[1] | 494 | |
---|
| 495 | |
---|
| 496 | ! |
---|
[1517] | 497 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 498 | #if defined( __parallel ) |
---|
[1517] | 499 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[4488] | 500 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
[1517] | 501 | type_xz_2, ierr ) |
---|
| 502 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 503 | ! |
---|
[1517] | 504 | !-- Send front boundary, receive rear boundary |
---|
| 505 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
[4488] | 506 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 507 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
[1517] | 508 | comm2d, status, ierr ) |
---|
[1] | 509 | ! |
---|
[1517] | 510 | !-- Send rear boundary, receive front boundary |
---|
[4488] | 511 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 512 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
[1517] | 513 | comm2d, status, ierr ) |
---|
| 514 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 515 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 516 | #else |
---|
[1517] | 517 | DO i = nxl, nxr |
---|
| 518 | DO k = nzb+1, nzt |
---|
| 519 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 520 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 521 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 522 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 523 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 524 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 525 | ENDDO |
---|
[1] | 526 | ENDDO |
---|
| 527 | #endif |
---|
| 528 | |
---|
| 529 | ! |
---|
[1517] | 530 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 531 | fmax_l = 0.0_wp |
---|
| 532 | DO i = nxl, nxr |
---|
| 533 | DO j = nys, nyn |
---|
| 534 | DO k = nzb+1, nzt |
---|
| 535 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 536 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 537 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 538 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 539 | ENDDO |
---|
[1] | 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | #if defined( __parallel ) |
---|
[1517] | 543 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 544 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 545 | #else |
---|
[1517] | 546 | fmax = fmax_l |
---|
[1] | 547 | #endif |
---|
| 548 | |
---|
[1517] | 549 | fmax = 0.04_wp * fmax |
---|
[1] | 550 | |
---|
| 551 | ! |
---|
[1517] | 552 | !-- Allocate temporary arrays |
---|
[4488] | 553 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), a2(nzb+1:nzt,nys-1:nyn+1),& |
---|
| 554 | a12(nzb+1:nzt,nys-1:nyn+1), a22(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 555 | immb(nzb+1:nzt,nys-1:nyn+1), imme(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 556 | impb(nzb+1:nzt,nys-1:nyn+1), impe(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 557 | ipmb(nzb+1:nzt,nys-1:nyn+1), ipme(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 558 | ippb(nzb+1:nzt,nys-1:nyn+1), ippe(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 559 | m1(nzb+1:nzt,nys-2:nyn+2), sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
[1517] | 560 | ) |
---|
| 561 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 562 | |
---|
[1517] | 563 | DO i = nxl, nxr |
---|
[1] | 564 | |
---|
| 565 | ! |
---|
[1517] | 566 | !-- Compute polynomial coefficients |
---|
| 567 | DO j = nys-1, nyn+1 |
---|
| 568 | DO k = nzb+1, nzt |
---|
| 569 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
[4488] | 570 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 571 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 572 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 573 | + 9.0_wp * sk_p(k,j-2,i) & |
---|
| 574 | ) * f1920 |
---|
| 575 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 576 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
[1517] | 577 | ) * f48 |
---|
[4488] | 578 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 579 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 580 | - 3.0_wp * sk_p(k,j-2,i) & |
---|
| 581 | ) * f48 |
---|
[1517] | 582 | ENDDO |
---|
[1] | 583 | ENDDO |
---|
| 584 | |
---|
| 585 | ! |
---|
[1517] | 586 | !-- Fluxes using the Bott scheme |
---|
| 587 | DO j = nys, nyn |
---|
| 588 | DO k = nzb+1, nzt |
---|
| 589 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 590 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 591 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 592 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 593 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 594 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 595 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 596 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 597 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 598 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 599 | ip = MAX( ip, 0.0_wp ) |
---|
| 600 | im = MAX( im, 0.0_wp ) |
---|
| 601 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 602 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 603 | |
---|
[1517] | 604 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 605 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 606 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 607 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 608 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 609 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 610 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 611 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 612 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 613 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 614 | ip = MAX( ip, 0.0_wp ) |
---|
| 615 | im = MAX( im, 0.0_wp ) |
---|
| 616 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 617 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 618 | ENDDO |
---|
[1] | 619 | ENDDO |
---|
| 620 | |
---|
| 621 | ! |
---|
[1517] | 622 | !-- Compute monitor function m1 |
---|
| 623 | DO j = nys-2, nyn+2 |
---|
| 624 | DO k = nzb+1, nzt |
---|
| 625 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 626 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 627 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 628 | m1(k,j) = m1z / m1n |
---|
| 629 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 630 | ELSEIF ( m1n < m1z ) THEN |
---|
| 631 | m1(k,j) = -1.0_wp |
---|
| 632 | ELSE |
---|
| 633 | m1(k,j) = 0.0_wp |
---|
| 634 | ENDIF |
---|
| 635 | ENDDO |
---|
[1] | 636 | ENDDO |
---|
| 637 | |
---|
| 638 | ! |
---|
[1517] | 639 | !-- Compute switch sw |
---|
| 640 | sw = 0.0_wp |
---|
| 641 | DO j = nys-1, nyn+1 |
---|
| 642 | DO k = nzb+1, nzt |
---|
[4488] | 643 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1517] | 644 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 645 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 646 | |
---|
[4488] | 647 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1517] | 648 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 649 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 650 | |
---|
[1517] | 651 | t1 = 0.35_wp |
---|
| 652 | t2 = 0.35_wp |
---|
| 653 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 654 | |
---|
[4488] | 655 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp .OR. m1(k,j+1) == 1.0_wp .OR. & |
---|
| 656 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 657 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
[1517] | 658 | ) sw(k,j) = 1.0_wp |
---|
| 659 | ENDDO |
---|
[1] | 660 | ENDDO |
---|
| 661 | |
---|
| 662 | ! |
---|
[1517] | 663 | !-- Fluxes using exponential scheme |
---|
| 664 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 665 | DO j = nys, nyn |
---|
| 666 | DO k = nzb+1, nzt |
---|
[1] | 667 | |
---|
[1517] | 668 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 669 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 670 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 671 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 672 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 673 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 674 | |
---|
[1517] | 675 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 676 | |
---|
[1517] | 677 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 678 | |
---|
[4488] | 679 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 680 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 681 | eex(ix) - & |
---|
| 682 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 683 | ) & |
---|
[1517] | 684 | ) |
---|
| 685 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 686 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 687 | |
---|
[1517] | 688 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 689 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 690 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 691 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 692 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 693 | |
---|
[1517] | 694 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 695 | |
---|
[1517] | 696 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 697 | |
---|
[4488] | 698 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 699 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 700 | eex(ix) - & |
---|
| 701 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 702 | ) & |
---|
[1517] | 703 | ) |
---|
| 704 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 705 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 706 | ENDIF |
---|
[1] | 707 | |
---|
[1517] | 708 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 709 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 710 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 711 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 712 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 713 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 714 | |
---|
[1517] | 715 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 716 | |
---|
[1517] | 717 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 718 | |
---|
[4488] | 719 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 720 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 721 | eex(ix) - & |
---|
| 722 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 723 | ) & |
---|
[1517] | 724 | ) |
---|
| 725 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 726 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 727 | ENDIF |
---|
[1] | 728 | |
---|
[1517] | 729 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 730 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 731 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 732 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 733 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 734 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 735 | |
---|
[1517] | 736 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 737 | |
---|
[1517] | 738 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 739 | |
---|
[4488] | 740 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 741 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 742 | eex(ix) - & |
---|
| 743 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 744 | ) & |
---|
[1517] | 745 | ) |
---|
| 746 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 747 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 748 | ENDIF |
---|
[1] | 749 | |
---|
[1517] | 750 | ENDDO |
---|
[1] | 751 | ENDDO |
---|
[1517] | 752 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 753 | |
---|
| 754 | ! |
---|
[1517] | 755 | !-- Prognostic equation |
---|
| 756 | DO j = nys, nyn |
---|
| 757 | DO k = nzb+1, nzt |
---|
[4488] | 758 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 759 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 760 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 761 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1517] | 762 | tendcy = fplus - fminus |
---|
[1] | 763 | ! |
---|
[1517] | 764 | !-- Removed in order to optimise speed |
---|
| 765 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 766 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 767 | ! |
---|
[1517] | 768 | !-- Density correction because of possible remaining divergences |
---|
| 769 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
[4488] | 770 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
| 771 | d(k,j,i) = d_new |
---|
[1517] | 772 | ENDDO |
---|
[1] | 773 | ENDDO |
---|
| 774 | |
---|
[1517] | 775 | ENDDO ! End of the advection in y-direction |
---|
[4488] | 776 | |
---|
| 777 | |
---|
[1517] | 778 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 779 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 780 | |
---|
| 781 | ! |
---|
[1517] | 782 | !-- Deallocate temporary arrays |
---|
[4488] | 783 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
[1] | 784 | |
---|
| 785 | |
---|
| 786 | ! |
---|
[1517] | 787 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 788 | !-- UP flow_statistics) |
---|
| 789 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 790 | |
---|
| 791 | ! |
---|
[1517] | 792 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 793 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 794 | |
---|
| 795 | ! |
---|
[1517] | 796 | !-- Temperature boundary condition at the bottom boundary |
---|
| 797 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 798 | ! |
---|
| 799 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 800 | DO i = nxl, nxr |
---|
| 801 | DO j = nys, nyn |
---|
| 802 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 803 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 804 | ENDDO |
---|
[1] | 805 | ENDDO |
---|
| 806 | |
---|
[1517] | 807 | ELSE |
---|
[1] | 808 | ! |
---|
[1517] | 809 | !-- Neumann (i.e. here zero gradient) |
---|
| 810 | DO i = nxl, nxr |
---|
| 811 | DO j = nys, nyn |
---|
| 812 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 813 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 814 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 815 | ENDDO |
---|
| 816 | ENDDO |
---|
| 817 | |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- Temperature boundary condition at the top boundary |
---|
| 822 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 823 | ! |
---|
| 824 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 825 | DO i = nxl, nxr |
---|
| 826 | DO j = nys, nyn |
---|
| 827 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 828 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 829 | ENDDO |
---|
| 830 | ENDDO |
---|
| 831 | |
---|
| 832 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 833 | ! |
---|
| 834 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 835 | DO i = nxl, nxr |
---|
| 836 | DO j = nys, nyn |
---|
| 837 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 838 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 839 | ENDDO |
---|
| 840 | ENDDO |
---|
| 841 | |
---|
| 842 | ENDIF |
---|
| 843 | |
---|
| 844 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 845 | |
---|
| 846 | ! |
---|
| 847 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 848 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 849 | DO i = nxl, nxr |
---|
| 850 | DO j = nys, nyn |
---|
[216] | 851 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 852 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 853 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 854 | ENDDO |
---|
| 855 | ENDDO |
---|
| 856 | |
---|
| 857 | ! |
---|
[1517] | 858 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 859 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 860 | DO i = nxl, nxr |
---|
| 861 | DO j = nys, nyn |
---|
[63] | 862 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 863 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 864 | ENDDO |
---|
| 865 | ENDDO |
---|
| 866 | |
---|
[1517] | 867 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 868 | |
---|
[1] | 869 | ! |
---|
[1517] | 870 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 871 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 872 | DO i = nxl, nxr |
---|
| 873 | DO j = nys, nyn |
---|
[1517] | 874 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 875 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 876 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 877 | ENDDO |
---|
| 878 | ENDDO |
---|
| 879 | |
---|
| 880 | ! |
---|
[1517] | 881 | !-- Specific humidity boundary condition at the top boundary |
---|
| 882 | IF ( ibc_q_t == 0 ) THEN |
---|
| 883 | ! |
---|
| 884 | !-- Dirichlet |
---|
| 885 | DO i = nxl, nxr |
---|
| 886 | DO j = nys, nyn |
---|
| 887 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 888 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
[1] | 891 | |
---|
[1517] | 892 | ELSE |
---|
[1] | 893 | ! |
---|
[1517] | 894 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 895 | DO i = nxl, nxr |
---|
| 896 | DO j = nys, nyn |
---|
| 897 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 898 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 899 | ENDDO |
---|
| 900 | ENDDO |
---|
[1] | 901 | |
---|
[1517] | 902 | ENDIF |
---|
[1] | 903 | |
---|
[1960] | 904 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 905 | ! |
---|
| 906 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 907 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 908 | DO i = nxl, nxr |
---|
| 909 | DO j = nys, nyn |
---|
| 910 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 911 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 912 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | |
---|
| 916 | ! |
---|
| 917 | !-- Specific scalar boundary condition at the top boundary |
---|
| 918 | IF ( ibc_s_t == 0 ) THEN |
---|
| 919 | ! |
---|
| 920 | !-- Dirichlet |
---|
| 921 | DO i = nxl, nxr |
---|
| 922 | DO j = nys, nyn |
---|
| 923 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 924 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 925 | ENDDO |
---|
| 926 | ENDDO |
---|
| 927 | |
---|
| 928 | ELSE |
---|
| 929 | ! |
---|
| 930 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 931 | DO i = nxl, nxr |
---|
| 932 | DO j = nys, nyn |
---|
| 933 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 934 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 935 | ENDDO |
---|
| 936 | ENDDO |
---|
| 937 | |
---|
| 938 | ENDIF |
---|
| 939 | |
---|
[2292] | 940 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
| 941 | |
---|
| 942 | ! |
---|
[4488] | 943 | !-- Cloud water content boundary condition at the bottom boundary: Dirichlet (fixed surface |
---|
| 944 | !-- rain water content). |
---|
[2292] | 945 | DO i = nxl, nxr |
---|
| 946 | DO j = nys, nyn |
---|
| 947 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 948 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 949 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 950 | ENDDO |
---|
| 951 | ENDDO |
---|
| 952 | |
---|
| 953 | ! |
---|
| 954 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
| 955 | DO i = nxl, nxr |
---|
| 956 | DO j = nys, nyn |
---|
| 957 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 958 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 959 | ENDDO |
---|
| 960 | ENDDO |
---|
| 961 | |
---|
[4502] | 962 | ELSEIF ( sk_char == 'qi' ) THEN |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- Ice crystal content boundary condition at the bottom boundary: |
---|
| 966 | !-- Dirichlet (fixed surface rain water content). |
---|
| 967 | DO i = nxl, nxr |
---|
| 968 | DO j = nys, nyn |
---|
| 969 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 970 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 971 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | |
---|
| 975 | ! |
---|
| 976 | !-- Ice crystal content boundary condition at the top boundary: Dirichlet |
---|
| 977 | DO i = nxl, nxr |
---|
| 978 | DO j = nys, nyn |
---|
| 979 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 980 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 981 | ENDDO |
---|
| 982 | ENDDO |
---|
| 983 | |
---|
[1517] | 984 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 985 | |
---|
[1] | 986 | ! |
---|
[4488] | 987 | !-- Rain water content boundary condition at the bottom boundary: Dirichlet (fixed surface |
---|
| 988 | !-- rain water content). |
---|
[1517] | 989 | DO i = nxl, nxr |
---|
| 990 | DO j = nys, nyn |
---|
| 991 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 992 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 993 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 994 | ENDDO |
---|
[97] | 995 | ENDDO |
---|
| 996 | |
---|
| 997 | ! |
---|
[1517] | 998 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 999 | DO i = nxl, nxr |
---|
| 1000 | DO j = nys, nyn |
---|
[63] | 1001 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1002 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 1003 | ENDDO |
---|
| 1004 | ENDDO |
---|
| 1005 | |
---|
[2292] | 1006 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
| 1007 | |
---|
| 1008 | ! |
---|
[4488] | 1009 | !-- Cloud drop concentration boundary condition at the bottom boundary: Dirichlet (fixed |
---|
| 1010 | !-- surface cloud drop concentration). |
---|
[2292] | 1011 | DO i = nxl, nxr |
---|
| 1012 | DO j = nys, nyn |
---|
| 1013 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1014 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1015 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1021 | DO i = nxl, nxr |
---|
| 1022 | DO j = nys, nyn |
---|
| 1023 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1024 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
| 1027 | |
---|
[4502] | 1028 | ELSEIF ( sk_char == 'ni' ) THEN |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Ice crystal concentration boundary condition at the bottom boundary: |
---|
| 1032 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
| 1033 | DO i = nxl, nxr |
---|
| 1034 | DO j = nys, nyn |
---|
| 1035 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1036 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1037 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1038 | ENDDO |
---|
| 1039 | ENDDO |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- Ice crystal concentration boundary condition at the top boundary: Dirichlet |
---|
| 1043 | DO i = nxl, nxr |
---|
| 1044 | DO j = nys, nyn |
---|
| 1045 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1046 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1047 | ENDDO |
---|
| 1048 | ENDDO |
---|
| 1049 | |
---|
[1517] | 1050 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1051 | |
---|
[1] | 1052 | ! |
---|
[4488] | 1053 | !-- Rain drop concentration boundary condition at the bottom boundary: Dirichlet (fixed |
---|
| 1054 | !-- surface rain drop concentration). |
---|
[1] | 1055 | DO i = nxl, nxr |
---|
| 1056 | DO j = nys, nyn |
---|
[1517] | 1057 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1058 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1059 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1060 | ENDDO |
---|
| 1061 | ENDDO |
---|
| 1062 | |
---|
[1361] | 1063 | ! |
---|
[1517] | 1064 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1065 | DO i = nxl, nxr |
---|
| 1066 | DO j = nys, nyn |
---|
| 1067 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1068 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1069 | ENDDO |
---|
[1361] | 1070 | ENDDO |
---|
| 1071 | |
---|
[1517] | 1072 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1073 | |
---|
| 1074 | ! |
---|
[1517] | 1075 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1076 | DO i = nxl, nxr |
---|
| 1077 | DO j = nys, nyn |
---|
| 1078 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1079 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1080 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1081 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1082 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1083 | ENDDO |
---|
[1361] | 1084 | ENDDO |
---|
| 1085 | |
---|
[1517] | 1086 | ELSE |
---|
[1361] | 1087 | |
---|
[4488] | 1088 | WRITE( message_string, * ) 'no vertical boundary condition for variable "', sk_char, '"' |
---|
[1517] | 1089 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
[4488] | 1090 | |
---|
[1517] | 1091 | ENDIF |
---|
[1] | 1092 | |
---|
| 1093 | ! |
---|
[1517] | 1094 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1095 | fmax_l = 0.0_wp |
---|
[97] | 1096 | DO i = nxl, nxr |
---|
| 1097 | DO j = nys, nyn |
---|
[1517] | 1098 | DO k = nzb, nzt+1 |
---|
| 1099 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1100 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1101 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1102 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1103 | ENDDO |
---|
[97] | 1104 | ENDDO |
---|
| 1105 | ENDDO |
---|
[1] | 1106 | #if defined( __parallel ) |
---|
[1517] | 1107 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1108 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1109 | #else |
---|
[1517] | 1110 | fmax = fmax_l |
---|
[1] | 1111 | #endif |
---|
| 1112 | |
---|
[1517] | 1113 | fmax = 0.04_wp * fmax |
---|
[1] | 1114 | |
---|
| 1115 | ! |
---|
[1517] | 1116 | !-- Allocate temporary arrays |
---|
[4488] | 1117 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), a2(nzb:nzt+1,nys:nyn), & |
---|
| 1118 | a12(nzb:nzt+1,nys:nyn), a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1119 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), impe(nzb+1:nzt,nys:nyn), & |
---|
| 1120 | ipmb(nzb+1:nzt,nys:nyn), ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1121 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), sw(nzb:nzt+1,nys:nyn) & |
---|
[1517] | 1122 | ) |
---|
| 1123 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1124 | |
---|
[1517] | 1125 | DO i = nxl, nxr |
---|
[1] | 1126 | |
---|
| 1127 | ! |
---|
[1517] | 1128 | !-- Compute polynomial coefficients |
---|
| 1129 | DO j = nys, nyn |
---|
| 1130 | DO k = nzb, nzt+1 |
---|
| 1131 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
[4488] | 1132 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1133 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1134 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1135 | + 9.0_wp * sk_p(k-2,j,i) & |
---|
| 1136 | ) * f1920 |
---|
| 1137 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1138 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
[1517] | 1139 | ) * f48 |
---|
[4488] | 1140 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1141 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1142 | - 3.0_wp * sk_p(k-2,j,i) & |
---|
| 1143 | ) * f48 |
---|
[1517] | 1144 | ENDDO |
---|
[1] | 1145 | ENDDO |
---|
| 1146 | |
---|
| 1147 | ! |
---|
[1517] | 1148 | !-- Fluxes using the Bott scheme |
---|
| 1149 | DO j = nys, nyn |
---|
| 1150 | DO k = nzb+1, nzt |
---|
| 1151 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1152 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1153 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1154 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 1155 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1156 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 1157 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 1158 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1159 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 1160 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1161 | ip = MAX( ip, 0.0_wp ) |
---|
| 1162 | im = MAX( im, 0.0_wp ) |
---|
| 1163 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1164 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1165 | |
---|
[1517] | 1166 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1167 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1168 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1169 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 1170 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1171 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 1172 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 1173 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1174 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 1175 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1176 | ip = MAX( ip, 0.0_wp ) |
---|
| 1177 | im = MAX( im, 0.0_wp ) |
---|
| 1178 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1179 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1180 | ENDDO |
---|
[1] | 1181 | ENDDO |
---|
| 1182 | |
---|
| 1183 | ! |
---|
[1517] | 1184 | !-- Compute monitor function m1 |
---|
| 1185 | DO j = nys, nyn |
---|
| 1186 | DO k = nzb-1, nzt+2 |
---|
| 1187 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1188 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1189 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1190 | m1(k,j) = m1z / m1n |
---|
| 1191 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1192 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1193 | m1(k,j) = -1.0_wp |
---|
| 1194 | ELSE |
---|
| 1195 | m1(k,j) = 0.0_wp |
---|
| 1196 | ENDIF |
---|
| 1197 | ENDDO |
---|
[1] | 1198 | ENDDO |
---|
| 1199 | |
---|
| 1200 | ! |
---|
[1517] | 1201 | !-- Compute switch sw |
---|
| 1202 | sw = 0.0_wp |
---|
| 1203 | DO j = nys, nyn |
---|
| 1204 | DO k = nzb, nzt+1 |
---|
[4488] | 1205 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1517] | 1206 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1207 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1208 | |
---|
[4488] | 1209 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1517] | 1210 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1211 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1212 | |
---|
[1517] | 1213 | t1 = 0.35_wp |
---|
| 1214 | t2 = 0.35_wp |
---|
| 1215 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1216 | |
---|
[4488] | 1217 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp .OR. m1(k+1,j) == 1.0_wp .OR. & |
---|
| 1218 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND.& |
---|
| 1219 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
[1517] | 1220 | ) sw(k,j) = 1.0_wp |
---|
| 1221 | ENDDO |
---|
[1] | 1222 | ENDDO |
---|
| 1223 | |
---|
| 1224 | ! |
---|
[1517] | 1225 | !-- Fluxes using exponential scheme |
---|
| 1226 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1227 | DO j = nys, nyn |
---|
| 1228 | DO k = nzb+1, nzt |
---|
[1] | 1229 | |
---|
[1517] | 1230 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1231 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1232 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1233 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1234 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1235 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1236 | |
---|
[1517] | 1237 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1238 | |
---|
[1517] | 1239 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1240 | |
---|
[4488] | 1241 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1242 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1243 | eex(ix) - & |
---|
| 1244 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1245 | ) & |
---|
[1517] | 1246 | ) |
---|
| 1247 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1248 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1249 | |
---|
[1517] | 1250 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1251 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1252 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1253 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1254 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1255 | |
---|
[1517] | 1256 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1257 | |
---|
[1517] | 1258 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1259 | |
---|
[4488] | 1260 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1261 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1262 | eex(ix) - & |
---|
| 1263 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1264 | ) & |
---|
[1517] | 1265 | ) |
---|
| 1266 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1267 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1268 | ENDIF |
---|
[1] | 1269 | |
---|
[1517] | 1270 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1271 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1272 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1273 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1274 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1275 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1276 | |
---|
[1517] | 1277 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1278 | |
---|
[1517] | 1279 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1280 | |
---|
[4488] | 1281 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1282 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1283 | eex(ix) - & |
---|
| 1284 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1285 | ) & |
---|
[1517] | 1286 | ) |
---|
| 1287 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1288 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1289 | ENDIF |
---|
[1] | 1290 | |
---|
[1517] | 1291 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1292 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1293 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1294 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1295 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1296 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1297 | |
---|
[1517] | 1298 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1299 | |
---|
[1517] | 1300 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1301 | |
---|
[4488] | 1302 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1303 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1304 | eex(ix) - & |
---|
| 1305 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1306 | ) & |
---|
[1517] | 1307 | ) |
---|
| 1308 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1309 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1310 | ENDIF |
---|
[1] | 1311 | |
---|
[1517] | 1312 | ENDDO |
---|
[1] | 1313 | ENDDO |
---|
[1517] | 1314 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1315 | |
---|
| 1316 | ! |
---|
[1517] | 1317 | !-- Prognostic equation |
---|
| 1318 | DO j = nys, nyn |
---|
| 1319 | DO k = nzb+1, nzt |
---|
[4488] | 1320 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1321 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1322 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1323 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1517] | 1324 | tendcy = fplus - fminus |
---|
[1] | 1325 | ! |
---|
[1517] | 1326 | !-- Removed in order to optimise speed |
---|
| 1327 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1328 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1329 | ! |
---|
[1517] | 1330 | !-- Density correction because of possible remaining divergences |
---|
| 1331 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
[4488] | 1332 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
[1] | 1333 | ! |
---|
[1517] | 1334 | !-- Store heat flux for subsequent statistics output. |
---|
[4488] | 1335 | !-- Array m1 is here used as temporary storage |
---|
[1517] | 1336 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1337 | ENDDO |
---|
[1] | 1338 | ENDDO |
---|
| 1339 | |
---|
| 1340 | ! |
---|
[4488] | 1341 | !-- Sum up heat flux in order to obtain horizontal averages |
---|
[1517] | 1342 | IF ( sk_char == 'pt' ) THEN |
---|
| 1343 | DO sr = 0, statistic_regions |
---|
| 1344 | DO j = nys, nyn |
---|
| 1345 | DO k = nzb+1, nzt |
---|
[4488] | 1346 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + m1(k,j) * rmask(j,i,sr) |
---|
[1517] | 1347 | ENDDO |
---|
[1] | 1348 | ENDDO |
---|
| 1349 | ENDDO |
---|
[1517] | 1350 | ENDIF |
---|
[1] | 1351 | |
---|
[4488] | 1352 | ENDDO |
---|
| 1353 | ! |
---|
| 1354 | !-- End of the advection in z-direction |
---|
| 1355 | |
---|
[1517] | 1356 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1357 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1358 | |
---|
| 1359 | ! |
---|
[1517] | 1360 | !-- Deallocate temporary arrays |
---|
[4488] | 1361 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
[1] | 1362 | |
---|
| 1363 | ! |
---|
[1517] | 1364 | !-- Store results as tendency and deallocate local array |
---|
| 1365 | DO i = nxl, nxr |
---|
| 1366 | DO j = nys, nyn |
---|
| 1367 | DO k = nzb+1, nzt |
---|
| 1368 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1369 | ENDDO |
---|
[1] | 1370 | ENDDO |
---|
| 1371 | ENDDO |
---|
| 1372 | |
---|
[1517] | 1373 | DEALLOCATE( sk_p ) |
---|
[1] | 1374 | |
---|
[1517] | 1375 | END SUBROUTINE advec_s_bc |
---|
| 1376 | |
---|
| 1377 | END MODULE advec_s_bc_mod |
---|