[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 4429 2020-02-27 15:24:30Z oliver.maas $ |
---|
[4429] | 27 | ! bugfix: cpp-directives added for serial mode |
---|
| 28 | ! |
---|
| 29 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 30 | ! Corrected "Former revisions" section |
---|
| 31 | ! |
---|
| 32 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 33 | ! unused variables removed |
---|
| 34 | ! |
---|
| 35 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3636] | 36 | ! nopointer option removed |
---|
[4182] | 37 | ! |
---|
| 38 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 39 | ! Initial revision |
---|
| 40 | ! |
---|
| 41 | ! |
---|
[1] | 42 | ! Description: |
---|
| 43 | ! ------------ |
---|
[1682] | 44 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 45 | !> Computation in individual steps for each of the three dimensions. |
---|
| 46 | !> Limiting assumptions: |
---|
| 47 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 48 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 49 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 50 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 51 | !> stretched grids. |
---|
| 52 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 53 | !------------------------------------------------------------------------------! |
---|
[1682] | 54 | MODULE advec_s_bc_mod |
---|
| 55 | |
---|
[1] | 56 | |
---|
[1517] | 57 | PRIVATE |
---|
| 58 | PUBLIC advec_s_bc |
---|
[1320] | 59 | |
---|
[1517] | 60 | INTERFACE advec_s_bc |
---|
| 61 | MODULE PROCEDURE advec_s_bc |
---|
| 62 | END INTERFACE advec_s_bc |
---|
[1320] | 63 | |
---|
[1517] | 64 | CONTAINS |
---|
[1320] | 65 | |
---|
[1682] | 66 | !------------------------------------------------------------------------------! |
---|
| 67 | ! Description: |
---|
| 68 | ! ------------ |
---|
| 69 | !> @todo Missing subroutine description. |
---|
| 70 | !------------------------------------------------------------------------------! |
---|
[1517] | 71 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 72 | |
---|
[1517] | 73 | USE advection, & |
---|
| 74 | ONLY: aex, bex, dex, eex |
---|
[1320] | 75 | |
---|
[1517] | 76 | USE arrays_3d, & |
---|
| 77 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 78 | |
---|
[1517] | 79 | USE control_parameters, & |
---|
[1960] | 80 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 81 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 82 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 83 | |
---|
[1517] | 84 | USE cpulog, & |
---|
| 85 | ONLY: cpu_log, log_point_s |
---|
[1] | 86 | |
---|
[1517] | 87 | USE grid_variables, & |
---|
| 88 | ONLY: ddx, ddy |
---|
[1320] | 89 | |
---|
[1517] | 90 | USE indices, & |
---|
[3761] | 91 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
[1320] | 92 | |
---|
[1517] | 93 | USE kinds |
---|
[1] | 94 | |
---|
[1517] | 95 | USE pegrid |
---|
[1] | 96 | |
---|
[1517] | 97 | USE statistics, & |
---|
| 98 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 99 | |
---|
[1320] | 100 | |
---|
[1517] | 101 | IMPLICIT NONE |
---|
| 102 | |
---|
[1682] | 103 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 104 | |
---|
[1682] | 105 | INTEGER(iwp) :: i !< |
---|
| 106 | INTEGER(iwp) :: ix !< |
---|
| 107 | INTEGER(iwp) :: j !< |
---|
| 108 | INTEGER(iwp) :: k !< |
---|
[4429] | 109 | INTEGER(iwp) :: sr !< |
---|
| 110 | #if defined( __parallel ) |
---|
[1682] | 111 | INTEGER(iwp) :: ngp !< |
---|
| 112 | INTEGER(iwp) :: type_xz_2 !< |
---|
[4429] | 113 | #endif |
---|
[1517] | 114 | |
---|
[1682] | 115 | REAL(wp) :: cim !< |
---|
| 116 | REAL(wp) :: cimf !< |
---|
| 117 | REAL(wp) :: cip !< |
---|
| 118 | REAL(wp) :: cipf !< |
---|
| 119 | REAL(wp) :: d_new !< |
---|
| 120 | REAL(wp) :: denomi !< denominator |
---|
| 121 | REAL(wp) :: fminus !< |
---|
| 122 | REAL(wp) :: fplus !< |
---|
| 123 | REAL(wp) :: f2 !< |
---|
| 124 | REAL(wp) :: f4 !< |
---|
| 125 | REAL(wp) :: f8 !< |
---|
| 126 | REAL(wp) :: f12 !< |
---|
| 127 | REAL(wp) :: f24 !< |
---|
| 128 | REAL(wp) :: f48 !< |
---|
| 129 | REAL(wp) :: f1920 !< |
---|
| 130 | REAL(wp) :: im !< |
---|
| 131 | REAL(wp) :: ip !< |
---|
[2300] | 132 | REAL(wp) :: m1n !< |
---|
| 133 | REAL(wp) :: m1z !< |
---|
[1682] | 134 | REAL(wp) :: m2 !< |
---|
| 135 | REAL(wp) :: m3 !< |
---|
| 136 | REAL(wp) :: numera !< numerator |
---|
| 137 | REAL(wp) :: snenn !< |
---|
| 138 | REAL(wp) :: sterm !< |
---|
| 139 | REAL(wp) :: tendcy !< |
---|
| 140 | REAL(wp) :: t1 !< |
---|
| 141 | REAL(wp) :: t2 !< |
---|
[1517] | 142 | |
---|
[1682] | 143 | REAL(wp) :: fmax(2) !< |
---|
| 144 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 145 | |
---|
| 146 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1] | 147 | |
---|
[1682] | 148 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 149 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 150 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 158 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 159 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 160 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 162 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[1517] | 163 | |
---|
[1682] | 164 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 165 | |
---|
| 166 | ! |
---|
[1517] | 167 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 168 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 169 | sk_p = 0.0_wp |
---|
[1] | 170 | |
---|
| 171 | ! |
---|
[1517] | 172 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 173 | f2 = 0.5_wp |
---|
| 174 | f4 = 0.25_wp |
---|
| 175 | f8 = 0.125_wp |
---|
| 176 | f12 = 0.8333333333333333E-01_wp |
---|
| 177 | f24 = 0.4166666666666666E-01_wp |
---|
| 178 | f48 = 0.2083333333333333E-01_wp |
---|
| 179 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 180 | |
---|
| 181 | ! |
---|
[1517] | 182 | !-- Advection in x-direction: |
---|
[1] | 183 | |
---|
| 184 | ! |
---|
[1517] | 185 | !-- Save the quantity to be advected in a local array |
---|
| 186 | !-- add an enlarged boundary in x-direction |
---|
| 187 | DO i = nxl-1, nxr+1 |
---|
| 188 | DO j = nys, nyn |
---|
| 189 | DO k = nzb, nzt+1 |
---|
| 190 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 191 | ENDDO |
---|
[1] | 192 | ENDDO |
---|
| 193 | ENDDO |
---|
| 194 | #if defined( __parallel ) |
---|
[1517] | 195 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 196 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 197 | ! |
---|
[1517] | 198 | !-- Send left boundary, receive right boundary |
---|
| 199 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 200 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 201 | comm2d, status, ierr ) |
---|
[1] | 202 | ! |
---|
[1517] | 203 | !-- Send right boundary, receive left boundary |
---|
| 204 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 205 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 206 | comm2d, status, ierr ) |
---|
| 207 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 208 | #else |
---|
| 209 | |
---|
| 210 | ! |
---|
[1517] | 211 | !-- Cyclic boundary conditions |
---|
| 212 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 213 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 214 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 215 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 216 | #endif |
---|
| 217 | |
---|
| 218 | ! |
---|
[1517] | 219 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 220 | !-- of the temperature field at the left and right boundary of the total |
---|
| 221 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 222 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 223 | IF ( nxl == 0 ) THEN |
---|
| 224 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 225 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 226 | ENDIF |
---|
| 227 | IF ( nxr == nx ) THEN |
---|
| 228 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 229 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 230 | ENDIF |
---|
[1] | 231 | ENDIF |
---|
| 232 | |
---|
| 233 | ! |
---|
[1517] | 234 | !-- Initialise control density |
---|
| 235 | d = 0.0_wp |
---|
[1] | 236 | |
---|
| 237 | ! |
---|
[1517] | 238 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 239 | fmax_l = 0.0_wp |
---|
| 240 | DO i = nxl, nxr |
---|
| 241 | DO j = nys, nyn |
---|
| 242 | DO k = nzb+1, nzt |
---|
| 243 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 244 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 245 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 246 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 247 | ENDDO |
---|
[1] | 248 | ENDDO |
---|
| 249 | ENDDO |
---|
| 250 | #if defined( __parallel ) |
---|
[1517] | 251 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 252 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 253 | #else |
---|
[1517] | 254 | fmax = fmax_l |
---|
[1] | 255 | #endif |
---|
| 256 | |
---|
[1517] | 257 | fmax = 0.04_wp * fmax |
---|
[1] | 258 | |
---|
| 259 | ! |
---|
[1517] | 260 | !-- Allocate temporary arrays |
---|
| 261 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 262 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 263 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 264 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 265 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 266 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 267 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 268 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 269 | ) |
---|
| 270 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 271 | |
---|
| 272 | ! |
---|
[1517] | 273 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 274 | !-- not work if done locally within the loop) |
---|
| 275 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 276 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 277 | |
---|
| 278 | ! |
---|
[1517] | 279 | !-- Outer loop of all j |
---|
| 280 | DO j = nys, nyn |
---|
[1] | 281 | |
---|
| 282 | ! |
---|
[1517] | 283 | !-- Compute polynomial coefficients |
---|
| 284 | DO i = nxl-1, nxr+1 |
---|
| 285 | DO k = nzb+1, nzt |
---|
| 286 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 287 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 288 | + sk_p(k,j,i-1) ) |
---|
| 289 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 290 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 291 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 292 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 293 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 294 | ) * f48 |
---|
| 295 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 296 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 297 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 298 | ENDDO |
---|
[1] | 299 | ENDDO |
---|
| 300 | |
---|
| 301 | ! |
---|
[1517] | 302 | !-- Fluxes using the Bott scheme |
---|
| 303 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 304 | DO i = nxl, nxr |
---|
| 305 | DO k = nzb+1, nzt |
---|
| 306 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 307 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 308 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 309 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 310 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 311 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 312 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 313 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 314 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 315 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 316 | ip = MAX( ip, 0.0_wp ) |
---|
| 317 | im = MAX( im, 0.0_wp ) |
---|
| 318 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 319 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 320 | |
---|
[1517] | 321 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 322 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 323 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 324 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 325 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 326 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 327 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 328 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 329 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 330 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 331 | ip = MAX( ip, 0.0_wp ) |
---|
| 332 | im = MAX( im, 0.0_wp ) |
---|
| 333 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 334 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 335 | ENDDO |
---|
[1] | 336 | ENDDO |
---|
| 337 | |
---|
| 338 | ! |
---|
[1517] | 339 | !-- Compute monitor function m1 |
---|
| 340 | DO i = nxl-2, nxr+2 |
---|
| 341 | DO k = nzb+1, nzt |
---|
| 342 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 343 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 344 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 345 | m1(k,i) = m1z / m1n |
---|
| 346 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 347 | ELSEIF ( m1n < m1z ) THEN |
---|
| 348 | m1(k,i) = -1.0_wp |
---|
| 349 | ELSE |
---|
| 350 | m1(k,i) = 0.0_wp |
---|
| 351 | ENDIF |
---|
| 352 | ENDDO |
---|
[1] | 353 | ENDDO |
---|
| 354 | |
---|
| 355 | ! |
---|
[1517] | 356 | !-- Compute switch sw |
---|
| 357 | sw = 0.0_wp |
---|
| 358 | DO i = nxl-1, nxr+1 |
---|
| 359 | DO k = nzb+1, nzt |
---|
| 360 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 361 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 362 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 363 | |
---|
[1517] | 364 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 365 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 366 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 367 | |
---|
[1517] | 368 | t1 = 0.35_wp |
---|
| 369 | t2 = 0.35_wp |
---|
| 370 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 371 | |
---|
[1517] | 372 | !-- *VOCL STMT,IF(10) |
---|
| 373 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 374 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 375 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 376 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 377 | ) sw(k,i) = 1.0_wp |
---|
| 378 | ENDDO |
---|
[1] | 379 | ENDDO |
---|
| 380 | |
---|
| 381 | ! |
---|
[1517] | 382 | !-- Fluxes using the exponential scheme |
---|
| 383 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 384 | DO i = nxl, nxr |
---|
| 385 | DO k = nzb+1, nzt |
---|
[1] | 386 | |
---|
[1517] | 387 | !-- *VOCL STMT,IF(10) |
---|
| 388 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 389 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 390 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 391 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 392 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 393 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 394 | |
---|
[1517] | 395 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 396 | |
---|
[1517] | 397 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 398 | |
---|
[1517] | 399 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 400 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 401 | eex(ix) - & |
---|
| 402 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 403 | ) & |
---|
| 404 | ) |
---|
| 405 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 406 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 407 | |
---|
[1517] | 408 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 409 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 410 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 411 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 412 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 413 | |
---|
[1517] | 414 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 415 | |
---|
[1517] | 416 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 417 | |
---|
[1517] | 418 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 419 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 420 | eex(ix) - & |
---|
| 421 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 422 | ) & |
---|
| 423 | ) |
---|
| 424 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 425 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 426 | ENDIF |
---|
[1] | 427 | |
---|
[1517] | 428 | !-- *VOCL STMT,IF(10) |
---|
| 429 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 430 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 431 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 432 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 433 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 434 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 435 | |
---|
[1517] | 436 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 437 | |
---|
[1517] | 438 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 439 | |
---|
[1517] | 440 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 441 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 442 | eex(ix) - & |
---|
| 443 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 444 | ) & |
---|
| 445 | ) |
---|
| 446 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 447 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 448 | ENDIF |
---|
[1] | 449 | |
---|
[1517] | 450 | !-- *VOCL STMT,IF(10) |
---|
| 451 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 452 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 453 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 454 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 455 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 456 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 457 | |
---|
[1517] | 458 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 459 | |
---|
[1517] | 460 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 461 | |
---|
[1517] | 462 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 463 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 464 | eex(ix) - & |
---|
| 465 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 466 | ) & |
---|
| 467 | ) |
---|
| 468 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 469 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 470 | ENDIF |
---|
[1] | 471 | |
---|
[1517] | 472 | ENDDO |
---|
[1] | 473 | ENDDO |
---|
[1517] | 474 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 475 | |
---|
| 476 | ! |
---|
[1517] | 477 | !-- Prognostic equation |
---|
| 478 | DO i = nxl, nxr |
---|
| 479 | DO k = nzb+1, nzt |
---|
| 480 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 481 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 482 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 483 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 484 | tendcy = fplus - fminus |
---|
[1] | 485 | ! |
---|
[1517] | 486 | !-- Removed in order to optimize speed |
---|
| 487 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 488 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 489 | ! |
---|
[1517] | 490 | !-- Density correction because of possible remaining divergences |
---|
| 491 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 492 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 493 | ( 1.0_wp + d_new ) |
---|
| 494 | d(k,j,i) = d_new |
---|
| 495 | ENDDO |
---|
[1] | 496 | ENDDO |
---|
| 497 | |
---|
[1517] | 498 | ENDDO ! End of the advection in x-direction |
---|
[1] | 499 | |
---|
| 500 | ! |
---|
[1517] | 501 | !-- Deallocate temporary arrays |
---|
| 502 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 503 | ippb, ippe, m1, sw ) |
---|
[1] | 504 | |
---|
| 505 | |
---|
| 506 | ! |
---|
[1517] | 507 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 508 | #if defined( __parallel ) |
---|
[1517] | 509 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 510 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 511 | type_xz_2, ierr ) |
---|
| 512 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 513 | ! |
---|
[1517] | 514 | !-- Send front boundary, receive rear boundary |
---|
| 515 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 516 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 517 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 518 | comm2d, status, ierr ) |
---|
[1] | 519 | ! |
---|
[1517] | 520 | !-- Send rear boundary, receive front boundary |
---|
| 521 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 522 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 523 | comm2d, status, ierr ) |
---|
| 524 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 525 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 526 | #else |
---|
[1517] | 527 | DO i = nxl, nxr |
---|
| 528 | DO k = nzb+1, nzt |
---|
| 529 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 530 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 531 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 532 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 533 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 534 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 535 | ENDDO |
---|
[1] | 536 | ENDDO |
---|
| 537 | #endif |
---|
| 538 | |
---|
| 539 | ! |
---|
[1517] | 540 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 541 | fmax_l = 0.0_wp |
---|
| 542 | DO i = nxl, nxr |
---|
| 543 | DO j = nys, nyn |
---|
| 544 | DO k = nzb+1, nzt |
---|
| 545 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 546 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 547 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 548 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 549 | ENDDO |
---|
[1] | 550 | ENDDO |
---|
| 551 | ENDDO |
---|
| 552 | #if defined( __parallel ) |
---|
[1517] | 553 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 554 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 555 | #else |
---|
[1517] | 556 | fmax = fmax_l |
---|
[1] | 557 | #endif |
---|
| 558 | |
---|
[1517] | 559 | fmax = 0.04_wp * fmax |
---|
[1] | 560 | |
---|
| 561 | ! |
---|
[1517] | 562 | !-- Allocate temporary arrays |
---|
| 563 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 564 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 565 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 566 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 567 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 568 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 569 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 570 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 571 | ) |
---|
| 572 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 573 | |
---|
| 574 | ! |
---|
[1517] | 575 | !-- Outer loop of all i |
---|
| 576 | DO i = nxl, nxr |
---|
[1] | 577 | |
---|
| 578 | ! |
---|
[1517] | 579 | !-- Compute polynomial coefficients |
---|
| 580 | DO j = nys-1, nyn+1 |
---|
| 581 | DO k = nzb+1, nzt |
---|
| 582 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 583 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 584 | + sk_p(k,j-1,i) ) |
---|
| 585 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 586 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 587 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 588 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 589 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 590 | ) * f48 |
---|
| 591 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 592 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 593 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 594 | ENDDO |
---|
[1] | 595 | ENDDO |
---|
| 596 | |
---|
| 597 | ! |
---|
[1517] | 598 | !-- Fluxes using the Bott scheme |
---|
| 599 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 600 | DO j = nys, nyn |
---|
| 601 | DO k = nzb+1, nzt |
---|
| 602 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 603 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 604 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 605 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 606 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 607 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 608 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 609 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 610 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 611 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 612 | ip = MAX( ip, 0.0_wp ) |
---|
| 613 | im = MAX( im, 0.0_wp ) |
---|
| 614 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 615 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 616 | |
---|
[1517] | 617 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 618 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 619 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 620 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 621 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 622 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 623 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 624 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 625 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 626 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 627 | ip = MAX( ip, 0.0_wp ) |
---|
| 628 | im = MAX( im, 0.0_wp ) |
---|
| 629 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 630 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 631 | ENDDO |
---|
[1] | 632 | ENDDO |
---|
| 633 | |
---|
| 634 | ! |
---|
[1517] | 635 | !-- Compute monitor function m1 |
---|
| 636 | DO j = nys-2, nyn+2 |
---|
| 637 | DO k = nzb+1, nzt |
---|
| 638 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 639 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 640 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 641 | m1(k,j) = m1z / m1n |
---|
| 642 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 643 | ELSEIF ( m1n < m1z ) THEN |
---|
| 644 | m1(k,j) = -1.0_wp |
---|
| 645 | ELSE |
---|
| 646 | m1(k,j) = 0.0_wp |
---|
| 647 | ENDIF |
---|
| 648 | ENDDO |
---|
[1] | 649 | ENDDO |
---|
| 650 | |
---|
| 651 | ! |
---|
[1517] | 652 | !-- Compute switch sw |
---|
| 653 | sw = 0.0_wp |
---|
| 654 | DO j = nys-1, nyn+1 |
---|
| 655 | DO k = nzb+1, nzt |
---|
| 656 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 657 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 658 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 659 | |
---|
[1517] | 660 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 661 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 662 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 663 | |
---|
[1517] | 664 | t1 = 0.35_wp |
---|
| 665 | t2 = 0.35_wp |
---|
| 666 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 667 | |
---|
[1517] | 668 | !-- *VOCL STMT,IF(10) |
---|
| 669 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 670 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 671 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 672 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 673 | ) sw(k,j) = 1.0_wp |
---|
| 674 | ENDDO |
---|
[1] | 675 | ENDDO |
---|
| 676 | |
---|
| 677 | ! |
---|
[1517] | 678 | !-- Fluxes using exponential scheme |
---|
| 679 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 680 | DO j = nys, nyn |
---|
| 681 | DO k = nzb+1, nzt |
---|
[1] | 682 | |
---|
[1517] | 683 | !-- *VOCL STMT,IF(10) |
---|
| 684 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 685 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 686 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 687 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 688 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 689 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 690 | |
---|
[1517] | 691 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 692 | |
---|
[1517] | 693 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 694 | |
---|
[1517] | 695 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 696 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 697 | eex(ix) - & |
---|
| 698 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 699 | ) & |
---|
| 700 | ) |
---|
| 701 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 702 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 703 | |
---|
[1517] | 704 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 705 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 706 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 707 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 708 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 709 | |
---|
[1517] | 710 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 711 | |
---|
[1517] | 712 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 713 | |
---|
[1517] | 714 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 715 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 716 | eex(ix) - & |
---|
| 717 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 718 | ) & |
---|
| 719 | ) |
---|
| 720 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 721 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 722 | ENDIF |
---|
[1] | 723 | |
---|
[1517] | 724 | !-- *VOCL STMT,IF(10) |
---|
| 725 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 726 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 727 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 728 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 729 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 730 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 731 | |
---|
[1517] | 732 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 733 | |
---|
[1517] | 734 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 735 | |
---|
[1517] | 736 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 737 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 738 | eex(ix) - & |
---|
| 739 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 740 | ) & |
---|
| 741 | ) |
---|
| 742 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 743 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 744 | ENDIF |
---|
[1] | 745 | |
---|
[1517] | 746 | !-- *VOCL STMT,IF(10) |
---|
| 747 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 748 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 749 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 750 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 751 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 752 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 753 | |
---|
[1517] | 754 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 755 | |
---|
[1517] | 756 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 757 | |
---|
[1517] | 758 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 759 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 760 | eex(ix) - & |
---|
| 761 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 762 | ) & |
---|
| 763 | ) |
---|
| 764 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 765 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 766 | ENDIF |
---|
[1] | 767 | |
---|
[1517] | 768 | ENDDO |
---|
[1] | 769 | ENDDO |
---|
[1517] | 770 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 771 | |
---|
| 772 | ! |
---|
[1517] | 773 | !-- Prognostic equation |
---|
| 774 | DO j = nys, nyn |
---|
| 775 | DO k = nzb+1, nzt |
---|
| 776 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 777 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 778 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 779 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 780 | tendcy = fplus - fminus |
---|
[1] | 781 | ! |
---|
[1517] | 782 | !-- Removed in order to optimise speed |
---|
| 783 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 784 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 785 | ! |
---|
[1517] | 786 | !-- Density correction because of possible remaining divergences |
---|
| 787 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 788 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 789 | ( 1.0_wp + d_new ) |
---|
| 790 | d(k,j,i) = d_new |
---|
| 791 | ENDDO |
---|
[1] | 792 | ENDDO |
---|
| 793 | |
---|
[1517] | 794 | ENDDO ! End of the advection in y-direction |
---|
| 795 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 796 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 797 | |
---|
| 798 | ! |
---|
[1517] | 799 | !-- Deallocate temporary arrays |
---|
| 800 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 801 | ippb, ippe, m1, sw ) |
---|
[1] | 802 | |
---|
| 803 | |
---|
| 804 | ! |
---|
[1517] | 805 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 806 | !-- UP flow_statistics) |
---|
| 807 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 808 | |
---|
| 809 | ! |
---|
[1517] | 810 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 811 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 812 | |
---|
| 813 | ! |
---|
[1517] | 814 | !-- Temperature boundary condition at the bottom boundary |
---|
| 815 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 816 | ! |
---|
| 817 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 818 | DO i = nxl, nxr |
---|
| 819 | DO j = nys, nyn |
---|
| 820 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 821 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 822 | ENDDO |
---|
[1] | 823 | ENDDO |
---|
| 824 | |
---|
[1517] | 825 | ELSE |
---|
[1] | 826 | ! |
---|
[1517] | 827 | !-- Neumann (i.e. here zero gradient) |
---|
| 828 | DO i = nxl, nxr |
---|
| 829 | DO j = nys, nyn |
---|
| 830 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 831 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 832 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 833 | ENDDO |
---|
| 834 | ENDDO |
---|
| 835 | |
---|
| 836 | ENDIF |
---|
| 837 | |
---|
| 838 | ! |
---|
| 839 | !-- Temperature boundary condition at the top boundary |
---|
| 840 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 841 | ! |
---|
| 842 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 843 | DO i = nxl, nxr |
---|
| 844 | DO j = nys, nyn |
---|
| 845 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 846 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 847 | ENDDO |
---|
| 848 | ENDDO |
---|
| 849 | |
---|
| 850 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 851 | ! |
---|
| 852 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 853 | DO i = nxl, nxr |
---|
| 854 | DO j = nys, nyn |
---|
| 855 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 856 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 857 | ENDDO |
---|
| 858 | ENDDO |
---|
| 859 | |
---|
| 860 | ENDIF |
---|
| 861 | |
---|
| 862 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 863 | |
---|
| 864 | ! |
---|
| 865 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 866 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 867 | DO i = nxl, nxr |
---|
| 868 | DO j = nys, nyn |
---|
[216] | 869 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 870 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 871 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 872 | ENDDO |
---|
| 873 | ENDDO |
---|
| 874 | |
---|
| 875 | ! |
---|
[1517] | 876 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 877 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 878 | DO i = nxl, nxr |
---|
| 879 | DO j = nys, nyn |
---|
[63] | 880 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 881 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 882 | ENDDO |
---|
| 883 | ENDDO |
---|
| 884 | |
---|
[1517] | 885 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 886 | |
---|
[1] | 887 | ! |
---|
[1517] | 888 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 889 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 890 | DO i = nxl, nxr |
---|
| 891 | DO j = nys, nyn |
---|
[1517] | 892 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 893 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 894 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 895 | ENDDO |
---|
| 896 | ENDDO |
---|
| 897 | |
---|
| 898 | ! |
---|
[1517] | 899 | !-- Specific humidity boundary condition at the top boundary |
---|
| 900 | IF ( ibc_q_t == 0 ) THEN |
---|
| 901 | ! |
---|
| 902 | !-- Dirichlet |
---|
| 903 | DO i = nxl, nxr |
---|
| 904 | DO j = nys, nyn |
---|
| 905 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 906 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 907 | ENDDO |
---|
| 908 | ENDDO |
---|
[1] | 909 | |
---|
[1517] | 910 | ELSE |
---|
[1] | 911 | ! |
---|
[1517] | 912 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 913 | DO i = nxl, nxr |
---|
| 914 | DO j = nys, nyn |
---|
| 915 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 916 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 917 | ENDDO |
---|
| 918 | ENDDO |
---|
[1] | 919 | |
---|
[1517] | 920 | ENDIF |
---|
[1] | 921 | |
---|
[1960] | 922 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 923 | ! |
---|
| 924 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 925 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 926 | DO i = nxl, nxr |
---|
| 927 | DO j = nys, nyn |
---|
| 928 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 929 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 930 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 931 | ENDDO |
---|
| 932 | ENDDO |
---|
| 933 | |
---|
| 934 | ! |
---|
| 935 | !-- Specific scalar boundary condition at the top boundary |
---|
| 936 | IF ( ibc_s_t == 0 ) THEN |
---|
| 937 | ! |
---|
| 938 | !-- Dirichlet |
---|
| 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nys, nyn |
---|
| 941 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 942 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 943 | ENDDO |
---|
| 944 | ENDDO |
---|
| 945 | |
---|
| 946 | ELSE |
---|
| 947 | ! |
---|
| 948 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 949 | DO i = nxl, nxr |
---|
| 950 | DO j = nys, nyn |
---|
| 951 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 952 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 953 | ENDDO |
---|
| 954 | ENDDO |
---|
| 955 | |
---|
| 956 | ENDIF |
---|
| 957 | |
---|
[2292] | 958 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
| 959 | |
---|
| 960 | ! |
---|
| 961 | !-- Cloud water content boundary condition at the bottom boundary: |
---|
| 962 | !-- Dirichlet (fixed surface rain water content). |
---|
| 963 | DO i = nxl, nxr |
---|
| 964 | DO j = nys, nyn |
---|
| 965 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 966 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 967 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 968 | ENDDO |
---|
| 969 | ENDDO |
---|
| 970 | |
---|
| 971 | ! |
---|
| 972 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
| 973 | DO i = nxl, nxr |
---|
| 974 | DO j = nys, nyn |
---|
| 975 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 976 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 977 | ENDDO |
---|
| 978 | ENDDO |
---|
| 979 | |
---|
[1517] | 980 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 981 | |
---|
[1] | 982 | ! |
---|
[1517] | 983 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 984 | !-- Dirichlet (fixed surface rain water content). |
---|
| 985 | DO i = nxl, nxr |
---|
| 986 | DO j = nys, nyn |
---|
| 987 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 988 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 989 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 990 | ENDDO |
---|
[97] | 991 | ENDDO |
---|
| 992 | |
---|
| 993 | ! |
---|
[1517] | 994 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 995 | DO i = nxl, nxr |
---|
| 996 | DO j = nys, nyn |
---|
[63] | 997 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 998 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | |
---|
[2292] | 1002 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
| 1003 | |
---|
| 1004 | ! |
---|
| 1005 | !-- Cloud drop concentration boundary condition at the bottom boundary: |
---|
| 1006 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
| 1007 | DO i = nxl, nxr |
---|
| 1008 | DO j = nys, nyn |
---|
| 1009 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1010 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1011 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1012 | ENDDO |
---|
| 1013 | ENDDO |
---|
| 1014 | |
---|
| 1015 | ! |
---|
| 1016 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1017 | DO i = nxl, nxr |
---|
| 1018 | DO j = nys, nyn |
---|
| 1019 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1020 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1021 | ENDDO |
---|
| 1022 | ENDDO |
---|
| 1023 | |
---|
[1517] | 1024 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1025 | |
---|
[1] | 1026 | ! |
---|
[1517] | 1027 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1028 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1029 | DO i = nxl, nxr |
---|
| 1030 | DO j = nys, nyn |
---|
[1517] | 1031 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1032 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1033 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | |
---|
[1361] | 1037 | ! |
---|
[1517] | 1038 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1039 | DO i = nxl, nxr |
---|
| 1040 | DO j = nys, nyn |
---|
| 1041 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1042 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1043 | ENDDO |
---|
[1361] | 1044 | ENDDO |
---|
| 1045 | |
---|
[1517] | 1046 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1047 | |
---|
| 1048 | ! |
---|
[1517] | 1049 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1050 | DO i = nxl, nxr |
---|
| 1051 | DO j = nys, nyn |
---|
| 1052 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1053 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1054 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1055 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1056 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1057 | ENDDO |
---|
[1361] | 1058 | ENDDO |
---|
| 1059 | |
---|
[1517] | 1060 | ELSE |
---|
[1361] | 1061 | |
---|
[1517] | 1062 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1063 | 'tion for variable "', sk_char, '"' |
---|
| 1064 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1065 | |
---|
| 1066 | ENDIF |
---|
[1] | 1067 | |
---|
| 1068 | ! |
---|
[1517] | 1069 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1070 | fmax_l = 0.0_wp |
---|
[97] | 1071 | DO i = nxl, nxr |
---|
| 1072 | DO j = nys, nyn |
---|
[1517] | 1073 | DO k = nzb, nzt+1 |
---|
| 1074 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1075 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1076 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1077 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1078 | ENDDO |
---|
[97] | 1079 | ENDDO |
---|
| 1080 | ENDDO |
---|
[1] | 1081 | #if defined( __parallel ) |
---|
[1517] | 1082 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1083 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1084 | #else |
---|
[1517] | 1085 | fmax = fmax_l |
---|
[1] | 1086 | #endif |
---|
| 1087 | |
---|
[1517] | 1088 | fmax = 0.04_wp * fmax |
---|
[1] | 1089 | |
---|
| 1090 | ! |
---|
[1517] | 1091 | !-- Allocate temporary arrays |
---|
| 1092 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1093 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1094 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1095 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1096 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1097 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1098 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1099 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1100 | ) |
---|
| 1101 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1102 | |
---|
| 1103 | ! |
---|
[1517] | 1104 | !-- Outer loop of all i |
---|
| 1105 | DO i = nxl, nxr |
---|
[1] | 1106 | |
---|
| 1107 | ! |
---|
[1517] | 1108 | !-- Compute polynomial coefficients |
---|
| 1109 | DO j = nys, nyn |
---|
| 1110 | DO k = nzb, nzt+1 |
---|
| 1111 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1112 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1113 | + sk_p(k-1,j,i) ) |
---|
| 1114 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1115 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1116 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1117 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1118 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1119 | ) * f48 |
---|
| 1120 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1121 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1122 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1123 | ENDDO |
---|
[1] | 1124 | ENDDO |
---|
| 1125 | |
---|
| 1126 | ! |
---|
[1517] | 1127 | !-- Fluxes using the Bott scheme |
---|
| 1128 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1129 | DO j = nys, nyn |
---|
| 1130 | DO k = nzb+1, nzt |
---|
| 1131 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1132 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1133 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1134 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1135 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1136 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1137 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1138 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1139 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1140 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1141 | ip = MAX( ip, 0.0_wp ) |
---|
| 1142 | im = MAX( im, 0.0_wp ) |
---|
| 1143 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1144 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1145 | |
---|
[1517] | 1146 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1147 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1148 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1149 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1150 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1151 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1152 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1153 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1154 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1155 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1156 | ip = MAX( ip, 0.0_wp ) |
---|
| 1157 | im = MAX( im, 0.0_wp ) |
---|
| 1158 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1159 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1160 | ENDDO |
---|
[1] | 1161 | ENDDO |
---|
| 1162 | |
---|
| 1163 | ! |
---|
[1517] | 1164 | !-- Compute monitor function m1 |
---|
| 1165 | DO j = nys, nyn |
---|
| 1166 | DO k = nzb-1, nzt+2 |
---|
| 1167 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1168 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1169 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1170 | m1(k,j) = m1z / m1n |
---|
| 1171 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1172 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1173 | m1(k,j) = -1.0_wp |
---|
| 1174 | ELSE |
---|
| 1175 | m1(k,j) = 0.0_wp |
---|
| 1176 | ENDIF |
---|
| 1177 | ENDDO |
---|
[1] | 1178 | ENDDO |
---|
| 1179 | |
---|
| 1180 | ! |
---|
[1517] | 1181 | !-- Compute switch sw |
---|
| 1182 | sw = 0.0_wp |
---|
| 1183 | DO j = nys, nyn |
---|
| 1184 | DO k = nzb, nzt+1 |
---|
| 1185 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1186 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1187 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1188 | |
---|
[1517] | 1189 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1190 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1191 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1192 | |
---|
[1517] | 1193 | t1 = 0.35_wp |
---|
| 1194 | t2 = 0.35_wp |
---|
| 1195 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1196 | |
---|
[1517] | 1197 | !-- *VOCL STMT,IF(10) |
---|
| 1198 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1199 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1200 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1201 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1202 | ) sw(k,j) = 1.0_wp |
---|
| 1203 | ENDDO |
---|
[1] | 1204 | ENDDO |
---|
| 1205 | |
---|
| 1206 | ! |
---|
[1517] | 1207 | !-- Fluxes using exponential scheme |
---|
| 1208 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1209 | DO j = nys, nyn |
---|
| 1210 | DO k = nzb+1, nzt |
---|
[1] | 1211 | |
---|
[1517] | 1212 | !-- *VOCL STMT,IF(10) |
---|
| 1213 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1214 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1215 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1216 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1217 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1218 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1219 | |
---|
[1517] | 1220 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1221 | |
---|
[1517] | 1222 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1223 | |
---|
[1517] | 1224 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1225 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1226 | eex(ix) - & |
---|
| 1227 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1228 | ) & |
---|
| 1229 | ) |
---|
| 1230 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1231 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1232 | |
---|
[1517] | 1233 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1234 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1235 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1236 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1237 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1238 | |
---|
[1517] | 1239 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1240 | |
---|
[1517] | 1241 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1242 | |
---|
[1517] | 1243 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1244 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1245 | eex(ix) - & |
---|
| 1246 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1247 | ) & |
---|
| 1248 | ) |
---|
| 1249 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1250 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1251 | ENDIF |
---|
[1] | 1252 | |
---|
[1517] | 1253 | !-- *VOCL STMT,IF(10) |
---|
| 1254 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1255 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1256 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1257 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1258 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1259 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1260 | |
---|
[1517] | 1261 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1262 | |
---|
[1517] | 1263 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1264 | |
---|
[1517] | 1265 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1266 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1267 | eex(ix) - & |
---|
| 1268 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1269 | ) & |
---|
| 1270 | ) |
---|
| 1271 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1272 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1273 | ENDIF |
---|
[1] | 1274 | |
---|
[1517] | 1275 | !-- *VOCL STMT,IF(10) |
---|
| 1276 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1277 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1278 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1279 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1280 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1281 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1282 | |
---|
[1517] | 1283 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1284 | |
---|
[1517] | 1285 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1286 | |
---|
[1517] | 1287 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1288 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1289 | eex(ix) - & |
---|
| 1290 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1291 | ) & |
---|
| 1292 | ) |
---|
| 1293 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1294 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1295 | ENDIF |
---|
[1] | 1296 | |
---|
[1517] | 1297 | ENDDO |
---|
[1] | 1298 | ENDDO |
---|
[1517] | 1299 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1300 | |
---|
| 1301 | ! |
---|
[1517] | 1302 | !-- Prognostic equation |
---|
| 1303 | DO j = nys, nyn |
---|
| 1304 | DO k = nzb+1, nzt |
---|
| 1305 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1306 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1307 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1308 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1309 | tendcy = fplus - fminus |
---|
[1] | 1310 | ! |
---|
[1517] | 1311 | !-- Removed in order to optimise speed |
---|
| 1312 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1313 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1314 | ! |
---|
[1517] | 1315 | !-- Density correction because of possible remaining divergences |
---|
| 1316 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1317 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1318 | ( 1.0_wp + d_new ) |
---|
[1] | 1319 | ! |
---|
[1517] | 1320 | !-- Store heat flux for subsequent statistics output. |
---|
| 1321 | !-- array m1 is here used as temporary storage |
---|
| 1322 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1323 | ENDDO |
---|
[1] | 1324 | ENDDO |
---|
| 1325 | |
---|
| 1326 | ! |
---|
[1517] | 1327 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1328 | IF ( sk_char == 'pt' ) THEN |
---|
| 1329 | DO sr = 0, statistic_regions |
---|
| 1330 | DO j = nys, nyn |
---|
| 1331 | DO k = nzb+1, nzt |
---|
| 1332 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1333 | m1(k,j) * rmask(j,i,sr) |
---|
| 1334 | ENDDO |
---|
[1] | 1335 | ENDDO |
---|
| 1336 | ENDDO |
---|
[1517] | 1337 | ENDIF |
---|
[1] | 1338 | |
---|
[1517] | 1339 | ENDDO ! End of the advection in z-direction |
---|
| 1340 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1341 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1342 | |
---|
| 1343 | ! |
---|
[1517] | 1344 | !-- Deallocate temporary arrays |
---|
| 1345 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1346 | ippb, ippe, m1, sw ) |
---|
[1] | 1347 | |
---|
| 1348 | ! |
---|
[1517] | 1349 | !-- Store results as tendency and deallocate local array |
---|
| 1350 | DO i = nxl, nxr |
---|
| 1351 | DO j = nys, nyn |
---|
| 1352 | DO k = nzb+1, nzt |
---|
| 1353 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1354 | ENDDO |
---|
[1] | 1355 | ENDDO |
---|
| 1356 | ENDDO |
---|
| 1357 | |
---|
[1517] | 1358 | DEALLOCATE( sk_p ) |
---|
[1] | 1359 | |
---|
[1517] | 1360 | END SUBROUTINE advec_s_bc |
---|
| 1361 | |
---|
| 1362 | END MODULE advec_s_bc_mod |
---|