[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 4182 2019-08-22 15:20:23Z scharf $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 30 | ! unused variables removed |
---|
| 31 | ! |
---|
| 32 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3636] | 33 | ! nopointer option removed |
---|
[4182] | 34 | ! |
---|
| 35 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 36 | ! Initial revision |
---|
| 37 | ! |
---|
| 38 | ! |
---|
[1] | 39 | ! Description: |
---|
| 40 | ! ------------ |
---|
[1682] | 41 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 42 | !> Computation in individual steps for each of the three dimensions. |
---|
| 43 | !> Limiting assumptions: |
---|
| 44 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 45 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 46 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 47 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 48 | !> stretched grids. |
---|
| 49 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 50 | !------------------------------------------------------------------------------! |
---|
[1682] | 51 | MODULE advec_s_bc_mod |
---|
| 52 | |
---|
[1] | 53 | |
---|
[1517] | 54 | PRIVATE |
---|
| 55 | PUBLIC advec_s_bc |
---|
[1320] | 56 | |
---|
[1517] | 57 | INTERFACE advec_s_bc |
---|
| 58 | MODULE PROCEDURE advec_s_bc |
---|
| 59 | END INTERFACE advec_s_bc |
---|
[1320] | 60 | |
---|
[1517] | 61 | CONTAINS |
---|
[1320] | 62 | |
---|
[1682] | 63 | !------------------------------------------------------------------------------! |
---|
| 64 | ! Description: |
---|
| 65 | ! ------------ |
---|
| 66 | !> @todo Missing subroutine description. |
---|
| 67 | !------------------------------------------------------------------------------! |
---|
[1517] | 68 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 69 | |
---|
[1517] | 70 | USE advection, & |
---|
| 71 | ONLY: aex, bex, dex, eex |
---|
[1320] | 72 | |
---|
[1517] | 73 | USE arrays_3d, & |
---|
| 74 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 75 | |
---|
[1517] | 76 | USE control_parameters, & |
---|
[1960] | 77 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 78 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 79 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 80 | |
---|
[1517] | 81 | USE cpulog, & |
---|
| 82 | ONLY: cpu_log, log_point_s |
---|
[1] | 83 | |
---|
[1517] | 84 | USE grid_variables, & |
---|
| 85 | ONLY: ddx, ddy |
---|
[1320] | 86 | |
---|
[1517] | 87 | USE indices, & |
---|
[3761] | 88 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
[1320] | 89 | |
---|
[1517] | 90 | USE kinds |
---|
[1] | 91 | |
---|
[1517] | 92 | USE pegrid |
---|
[1] | 93 | |
---|
[1517] | 94 | USE statistics, & |
---|
| 95 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 96 | |
---|
[1320] | 97 | |
---|
[1517] | 98 | IMPLICIT NONE |
---|
| 99 | |
---|
[1682] | 100 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 101 | |
---|
[1682] | 102 | INTEGER(iwp) :: i !< |
---|
| 103 | INTEGER(iwp) :: ix !< |
---|
| 104 | INTEGER(iwp) :: j !< |
---|
| 105 | INTEGER(iwp) :: k !< |
---|
| 106 | INTEGER(iwp) :: ngp !< |
---|
| 107 | INTEGER(iwp) :: sr !< |
---|
| 108 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 109 | |
---|
[1682] | 110 | REAL(wp) :: cim !< |
---|
| 111 | REAL(wp) :: cimf !< |
---|
| 112 | REAL(wp) :: cip !< |
---|
| 113 | REAL(wp) :: cipf !< |
---|
| 114 | REAL(wp) :: d_new !< |
---|
| 115 | REAL(wp) :: denomi !< denominator |
---|
| 116 | REAL(wp) :: fminus !< |
---|
| 117 | REAL(wp) :: fplus !< |
---|
| 118 | REAL(wp) :: f2 !< |
---|
| 119 | REAL(wp) :: f4 !< |
---|
| 120 | REAL(wp) :: f8 !< |
---|
| 121 | REAL(wp) :: f12 !< |
---|
| 122 | REAL(wp) :: f24 !< |
---|
| 123 | REAL(wp) :: f48 !< |
---|
| 124 | REAL(wp) :: f1920 !< |
---|
| 125 | REAL(wp) :: im !< |
---|
| 126 | REAL(wp) :: ip !< |
---|
[2300] | 127 | REAL(wp) :: m1n !< |
---|
| 128 | REAL(wp) :: m1z !< |
---|
[1682] | 129 | REAL(wp) :: m2 !< |
---|
| 130 | REAL(wp) :: m3 !< |
---|
| 131 | REAL(wp) :: numera !< numerator |
---|
| 132 | REAL(wp) :: snenn !< |
---|
| 133 | REAL(wp) :: sterm !< |
---|
| 134 | REAL(wp) :: tendcy !< |
---|
| 135 | REAL(wp) :: t1 !< |
---|
| 136 | REAL(wp) :: t2 !< |
---|
[1517] | 137 | |
---|
[1682] | 138 | REAL(wp) :: fmax(2) !< |
---|
| 139 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 140 | |
---|
| 141 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1] | 142 | |
---|
[1682] | 143 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 144 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 145 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 146 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 147 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 148 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 149 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 150 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[1517] | 158 | |
---|
[1682] | 159 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 160 | |
---|
| 161 | ! |
---|
[1517] | 162 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 163 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 164 | sk_p = 0.0_wp |
---|
[1] | 165 | |
---|
| 166 | ! |
---|
[1517] | 167 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 168 | f2 = 0.5_wp |
---|
| 169 | f4 = 0.25_wp |
---|
| 170 | f8 = 0.125_wp |
---|
| 171 | f12 = 0.8333333333333333E-01_wp |
---|
| 172 | f24 = 0.4166666666666666E-01_wp |
---|
| 173 | f48 = 0.2083333333333333E-01_wp |
---|
| 174 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 175 | |
---|
| 176 | ! |
---|
[1517] | 177 | !-- Advection in x-direction: |
---|
[1] | 178 | |
---|
| 179 | ! |
---|
[1517] | 180 | !-- Save the quantity to be advected in a local array |
---|
| 181 | !-- add an enlarged boundary in x-direction |
---|
| 182 | DO i = nxl-1, nxr+1 |
---|
| 183 | DO j = nys, nyn |
---|
| 184 | DO k = nzb, nzt+1 |
---|
| 185 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 186 | ENDDO |
---|
[1] | 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | #if defined( __parallel ) |
---|
[1517] | 190 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 191 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 192 | ! |
---|
[1517] | 193 | !-- Send left boundary, receive right boundary |
---|
| 194 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 195 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 196 | comm2d, status, ierr ) |
---|
[1] | 197 | ! |
---|
[1517] | 198 | !-- Send right boundary, receive left boundary |
---|
| 199 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 200 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 201 | comm2d, status, ierr ) |
---|
| 202 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 203 | #else |
---|
| 204 | |
---|
| 205 | ! |
---|
[1517] | 206 | !-- Cyclic boundary conditions |
---|
| 207 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 208 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 209 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 210 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 211 | #endif |
---|
| 212 | |
---|
| 213 | ! |
---|
[1517] | 214 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 215 | !-- of the temperature field at the left and right boundary of the total |
---|
| 216 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 217 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 218 | IF ( nxl == 0 ) THEN |
---|
| 219 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 220 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 221 | ENDIF |
---|
| 222 | IF ( nxr == nx ) THEN |
---|
| 223 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 224 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 225 | ENDIF |
---|
[1] | 226 | ENDIF |
---|
| 227 | |
---|
| 228 | ! |
---|
[1517] | 229 | !-- Initialise control density |
---|
| 230 | d = 0.0_wp |
---|
[1] | 231 | |
---|
| 232 | ! |
---|
[1517] | 233 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 234 | fmax_l = 0.0_wp |
---|
| 235 | DO i = nxl, nxr |
---|
| 236 | DO j = nys, nyn |
---|
| 237 | DO k = nzb+1, nzt |
---|
| 238 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 239 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 240 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 241 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 242 | ENDDO |
---|
[1] | 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | #if defined( __parallel ) |
---|
[1517] | 246 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 247 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 248 | #else |
---|
[1517] | 249 | fmax = fmax_l |
---|
[1] | 250 | #endif |
---|
| 251 | |
---|
[1517] | 252 | fmax = 0.04_wp * fmax |
---|
[1] | 253 | |
---|
| 254 | ! |
---|
[1517] | 255 | !-- Allocate temporary arrays |
---|
| 256 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 257 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 258 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 259 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 260 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 261 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 262 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 263 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 264 | ) |
---|
| 265 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 266 | |
---|
| 267 | ! |
---|
[1517] | 268 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 269 | !-- not work if done locally within the loop) |
---|
| 270 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 271 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 272 | |
---|
| 273 | ! |
---|
[1517] | 274 | !-- Outer loop of all j |
---|
| 275 | DO j = nys, nyn |
---|
[1] | 276 | |
---|
| 277 | ! |
---|
[1517] | 278 | !-- Compute polynomial coefficients |
---|
| 279 | DO i = nxl-1, nxr+1 |
---|
| 280 | DO k = nzb+1, nzt |
---|
| 281 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 282 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 283 | + sk_p(k,j,i-1) ) |
---|
| 284 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 285 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 286 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 287 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 288 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 289 | ) * f48 |
---|
| 290 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 291 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 292 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 293 | ENDDO |
---|
[1] | 294 | ENDDO |
---|
| 295 | |
---|
| 296 | ! |
---|
[1517] | 297 | !-- Fluxes using the Bott scheme |
---|
| 298 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 299 | DO i = nxl, nxr |
---|
| 300 | DO k = nzb+1, nzt |
---|
| 301 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 302 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 303 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 304 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 305 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 306 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 307 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 308 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 309 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 310 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 311 | ip = MAX( ip, 0.0_wp ) |
---|
| 312 | im = MAX( im, 0.0_wp ) |
---|
| 313 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 314 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 315 | |
---|
[1517] | 316 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 317 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 318 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 319 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 320 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 321 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 322 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 323 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 324 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 325 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 326 | ip = MAX( ip, 0.0_wp ) |
---|
| 327 | im = MAX( im, 0.0_wp ) |
---|
| 328 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 329 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 330 | ENDDO |
---|
[1] | 331 | ENDDO |
---|
| 332 | |
---|
| 333 | ! |
---|
[1517] | 334 | !-- Compute monitor function m1 |
---|
| 335 | DO i = nxl-2, nxr+2 |
---|
| 336 | DO k = nzb+1, nzt |
---|
| 337 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 338 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 339 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 340 | m1(k,i) = m1z / m1n |
---|
| 341 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 342 | ELSEIF ( m1n < m1z ) THEN |
---|
| 343 | m1(k,i) = -1.0_wp |
---|
| 344 | ELSE |
---|
| 345 | m1(k,i) = 0.0_wp |
---|
| 346 | ENDIF |
---|
| 347 | ENDDO |
---|
[1] | 348 | ENDDO |
---|
| 349 | |
---|
| 350 | ! |
---|
[1517] | 351 | !-- Compute switch sw |
---|
| 352 | sw = 0.0_wp |
---|
| 353 | DO i = nxl-1, nxr+1 |
---|
| 354 | DO k = nzb+1, nzt |
---|
| 355 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 356 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 357 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 358 | |
---|
[1517] | 359 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 360 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 361 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 362 | |
---|
[1517] | 363 | t1 = 0.35_wp |
---|
| 364 | t2 = 0.35_wp |
---|
| 365 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 366 | |
---|
[1517] | 367 | !-- *VOCL STMT,IF(10) |
---|
| 368 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 369 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 370 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 371 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 372 | ) sw(k,i) = 1.0_wp |
---|
| 373 | ENDDO |
---|
[1] | 374 | ENDDO |
---|
| 375 | |
---|
| 376 | ! |
---|
[1517] | 377 | !-- Fluxes using the exponential scheme |
---|
| 378 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 379 | DO i = nxl, nxr |
---|
| 380 | DO k = nzb+1, nzt |
---|
[1] | 381 | |
---|
[1517] | 382 | !-- *VOCL STMT,IF(10) |
---|
| 383 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 384 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 385 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 386 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 387 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 388 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 389 | |
---|
[1517] | 390 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 391 | |
---|
[1517] | 392 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 393 | |
---|
[1517] | 394 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 395 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 396 | eex(ix) - & |
---|
| 397 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 398 | ) & |
---|
| 399 | ) |
---|
| 400 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 401 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 402 | |
---|
[1517] | 403 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 404 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 405 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 406 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 407 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 408 | |
---|
[1517] | 409 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 410 | |
---|
[1517] | 411 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 412 | |
---|
[1517] | 413 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 414 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 415 | eex(ix) - & |
---|
| 416 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 417 | ) & |
---|
| 418 | ) |
---|
| 419 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 420 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 421 | ENDIF |
---|
[1] | 422 | |
---|
[1517] | 423 | !-- *VOCL STMT,IF(10) |
---|
| 424 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 425 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 426 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 427 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 428 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 429 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 430 | |
---|
[1517] | 431 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 432 | |
---|
[1517] | 433 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 434 | |
---|
[1517] | 435 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 436 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 437 | eex(ix) - & |
---|
| 438 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 439 | ) & |
---|
| 440 | ) |
---|
| 441 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 442 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 443 | ENDIF |
---|
[1] | 444 | |
---|
[1517] | 445 | !-- *VOCL STMT,IF(10) |
---|
| 446 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 447 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 448 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 449 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 450 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 451 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 452 | |
---|
[1517] | 453 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 454 | |
---|
[1517] | 455 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 456 | |
---|
[1517] | 457 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 458 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 459 | eex(ix) - & |
---|
| 460 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 461 | ) & |
---|
| 462 | ) |
---|
| 463 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 464 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 465 | ENDIF |
---|
[1] | 466 | |
---|
[1517] | 467 | ENDDO |
---|
[1] | 468 | ENDDO |
---|
[1517] | 469 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 470 | |
---|
| 471 | ! |
---|
[1517] | 472 | !-- Prognostic equation |
---|
| 473 | DO i = nxl, nxr |
---|
| 474 | DO k = nzb+1, nzt |
---|
| 475 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 476 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 477 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 478 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 479 | tendcy = fplus - fminus |
---|
[1] | 480 | ! |
---|
[1517] | 481 | !-- Removed in order to optimize speed |
---|
| 482 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 483 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 484 | ! |
---|
[1517] | 485 | !-- Density correction because of possible remaining divergences |
---|
| 486 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 487 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 488 | ( 1.0_wp + d_new ) |
---|
| 489 | d(k,j,i) = d_new |
---|
| 490 | ENDDO |
---|
[1] | 491 | ENDDO |
---|
| 492 | |
---|
[1517] | 493 | ENDDO ! End of the advection in x-direction |
---|
[1] | 494 | |
---|
| 495 | ! |
---|
[1517] | 496 | !-- Deallocate temporary arrays |
---|
| 497 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 498 | ippb, ippe, m1, sw ) |
---|
[1] | 499 | |
---|
| 500 | |
---|
| 501 | ! |
---|
[1517] | 502 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 503 | #if defined( __parallel ) |
---|
[1517] | 504 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 505 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 506 | type_xz_2, ierr ) |
---|
| 507 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 508 | ! |
---|
[1517] | 509 | !-- Send front boundary, receive rear boundary |
---|
| 510 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 511 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 512 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 513 | comm2d, status, ierr ) |
---|
[1] | 514 | ! |
---|
[1517] | 515 | !-- Send rear boundary, receive front boundary |
---|
| 516 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 517 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 518 | comm2d, status, ierr ) |
---|
| 519 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 520 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 521 | #else |
---|
[1517] | 522 | DO i = nxl, nxr |
---|
| 523 | DO k = nzb+1, nzt |
---|
| 524 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 525 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 526 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 527 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 528 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 529 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 530 | ENDDO |
---|
[1] | 531 | ENDDO |
---|
| 532 | #endif |
---|
| 533 | |
---|
| 534 | ! |
---|
[1517] | 535 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 536 | fmax_l = 0.0_wp |
---|
| 537 | DO i = nxl, nxr |
---|
| 538 | DO j = nys, nyn |
---|
| 539 | DO k = nzb+1, nzt |
---|
| 540 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 541 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 542 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 543 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 544 | ENDDO |
---|
[1] | 545 | ENDDO |
---|
| 546 | ENDDO |
---|
| 547 | #if defined( __parallel ) |
---|
[1517] | 548 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 549 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 550 | #else |
---|
[1517] | 551 | fmax = fmax_l |
---|
[1] | 552 | #endif |
---|
| 553 | |
---|
[1517] | 554 | fmax = 0.04_wp * fmax |
---|
[1] | 555 | |
---|
| 556 | ! |
---|
[1517] | 557 | !-- Allocate temporary arrays |
---|
| 558 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 559 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 560 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 561 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 562 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 563 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 564 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 565 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 566 | ) |
---|
| 567 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 568 | |
---|
| 569 | ! |
---|
[1517] | 570 | !-- Outer loop of all i |
---|
| 571 | DO i = nxl, nxr |
---|
[1] | 572 | |
---|
| 573 | ! |
---|
[1517] | 574 | !-- Compute polynomial coefficients |
---|
| 575 | DO j = nys-1, nyn+1 |
---|
| 576 | DO k = nzb+1, nzt |
---|
| 577 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 578 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 579 | + sk_p(k,j-1,i) ) |
---|
| 580 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 581 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 582 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 583 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 584 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 585 | ) * f48 |
---|
| 586 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 587 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 588 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 589 | ENDDO |
---|
[1] | 590 | ENDDO |
---|
| 591 | |
---|
| 592 | ! |
---|
[1517] | 593 | !-- Fluxes using the Bott scheme |
---|
| 594 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 595 | DO j = nys, nyn |
---|
| 596 | DO k = nzb+1, nzt |
---|
| 597 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 598 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 599 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 600 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 601 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 602 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 603 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 604 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 605 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 606 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 607 | ip = MAX( ip, 0.0_wp ) |
---|
| 608 | im = MAX( im, 0.0_wp ) |
---|
| 609 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 610 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 611 | |
---|
[1517] | 612 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 613 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 614 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 615 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 616 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 617 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 618 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 619 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 620 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 621 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 622 | ip = MAX( ip, 0.0_wp ) |
---|
| 623 | im = MAX( im, 0.0_wp ) |
---|
| 624 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 625 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 626 | ENDDO |
---|
[1] | 627 | ENDDO |
---|
| 628 | |
---|
| 629 | ! |
---|
[1517] | 630 | !-- Compute monitor function m1 |
---|
| 631 | DO j = nys-2, nyn+2 |
---|
| 632 | DO k = nzb+1, nzt |
---|
| 633 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 634 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 635 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 636 | m1(k,j) = m1z / m1n |
---|
| 637 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 638 | ELSEIF ( m1n < m1z ) THEN |
---|
| 639 | m1(k,j) = -1.0_wp |
---|
| 640 | ELSE |
---|
| 641 | m1(k,j) = 0.0_wp |
---|
| 642 | ENDIF |
---|
| 643 | ENDDO |
---|
[1] | 644 | ENDDO |
---|
| 645 | |
---|
| 646 | ! |
---|
[1517] | 647 | !-- Compute switch sw |
---|
| 648 | sw = 0.0_wp |
---|
| 649 | DO j = nys-1, nyn+1 |
---|
| 650 | DO k = nzb+1, nzt |
---|
| 651 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 652 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 653 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 654 | |
---|
[1517] | 655 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 656 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 657 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 658 | |
---|
[1517] | 659 | t1 = 0.35_wp |
---|
| 660 | t2 = 0.35_wp |
---|
| 661 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 662 | |
---|
[1517] | 663 | !-- *VOCL STMT,IF(10) |
---|
| 664 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 665 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 666 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 667 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 668 | ) sw(k,j) = 1.0_wp |
---|
| 669 | ENDDO |
---|
[1] | 670 | ENDDO |
---|
| 671 | |
---|
| 672 | ! |
---|
[1517] | 673 | !-- Fluxes using exponential scheme |
---|
| 674 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 675 | DO j = nys, nyn |
---|
| 676 | DO k = nzb+1, nzt |
---|
[1] | 677 | |
---|
[1517] | 678 | !-- *VOCL STMT,IF(10) |
---|
| 679 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 680 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 681 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 682 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 683 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 684 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 685 | |
---|
[1517] | 686 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 687 | |
---|
[1517] | 688 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 689 | |
---|
[1517] | 690 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 691 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 692 | eex(ix) - & |
---|
| 693 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 694 | ) & |
---|
| 695 | ) |
---|
| 696 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 697 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 698 | |
---|
[1517] | 699 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 700 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 701 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 702 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 703 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 704 | |
---|
[1517] | 705 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 706 | |
---|
[1517] | 707 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 708 | |
---|
[1517] | 709 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 710 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 711 | eex(ix) - & |
---|
| 712 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 713 | ) & |
---|
| 714 | ) |
---|
| 715 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 716 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 717 | ENDIF |
---|
[1] | 718 | |
---|
[1517] | 719 | !-- *VOCL STMT,IF(10) |
---|
| 720 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 721 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 722 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 723 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 724 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 725 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 726 | |
---|
[1517] | 727 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 728 | |
---|
[1517] | 729 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 730 | |
---|
[1517] | 731 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 732 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 733 | eex(ix) - & |
---|
| 734 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 735 | ) & |
---|
| 736 | ) |
---|
| 737 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 738 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 739 | ENDIF |
---|
[1] | 740 | |
---|
[1517] | 741 | !-- *VOCL STMT,IF(10) |
---|
| 742 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 743 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 744 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 745 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 746 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 747 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 748 | |
---|
[1517] | 749 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 750 | |
---|
[1517] | 751 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 752 | |
---|
[1517] | 753 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 754 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 755 | eex(ix) - & |
---|
| 756 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 757 | ) & |
---|
| 758 | ) |
---|
| 759 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 760 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 761 | ENDIF |
---|
[1] | 762 | |
---|
[1517] | 763 | ENDDO |
---|
[1] | 764 | ENDDO |
---|
[1517] | 765 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 766 | |
---|
| 767 | ! |
---|
[1517] | 768 | !-- Prognostic equation |
---|
| 769 | DO j = nys, nyn |
---|
| 770 | DO k = nzb+1, nzt |
---|
| 771 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 772 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 773 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 774 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 775 | tendcy = fplus - fminus |
---|
[1] | 776 | ! |
---|
[1517] | 777 | !-- Removed in order to optimise speed |
---|
| 778 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 779 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 780 | ! |
---|
[1517] | 781 | !-- Density correction because of possible remaining divergences |
---|
| 782 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 783 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 784 | ( 1.0_wp + d_new ) |
---|
| 785 | d(k,j,i) = d_new |
---|
| 786 | ENDDO |
---|
[1] | 787 | ENDDO |
---|
| 788 | |
---|
[1517] | 789 | ENDDO ! End of the advection in y-direction |
---|
| 790 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 791 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 792 | |
---|
| 793 | ! |
---|
[1517] | 794 | !-- Deallocate temporary arrays |
---|
| 795 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 796 | ippb, ippe, m1, sw ) |
---|
[1] | 797 | |
---|
| 798 | |
---|
| 799 | ! |
---|
[1517] | 800 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 801 | !-- UP flow_statistics) |
---|
| 802 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 803 | |
---|
| 804 | ! |
---|
[1517] | 805 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 806 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 807 | |
---|
| 808 | ! |
---|
[1517] | 809 | !-- Temperature boundary condition at the bottom boundary |
---|
| 810 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 811 | ! |
---|
| 812 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 813 | DO i = nxl, nxr |
---|
| 814 | DO j = nys, nyn |
---|
| 815 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 816 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 817 | ENDDO |
---|
[1] | 818 | ENDDO |
---|
| 819 | |
---|
[1517] | 820 | ELSE |
---|
[1] | 821 | ! |
---|
[1517] | 822 | !-- Neumann (i.e. here zero gradient) |
---|
| 823 | DO i = nxl, nxr |
---|
| 824 | DO j = nys, nyn |
---|
| 825 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 826 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 827 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 828 | ENDDO |
---|
| 829 | ENDDO |
---|
| 830 | |
---|
| 831 | ENDIF |
---|
| 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Temperature boundary condition at the top boundary |
---|
| 835 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 836 | ! |
---|
| 837 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 838 | DO i = nxl, nxr |
---|
| 839 | DO j = nys, nyn |
---|
| 840 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 841 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 842 | ENDDO |
---|
| 843 | ENDDO |
---|
| 844 | |
---|
| 845 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 846 | ! |
---|
| 847 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 848 | DO i = nxl, nxr |
---|
| 849 | DO j = nys, nyn |
---|
| 850 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 851 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 852 | ENDDO |
---|
| 853 | ENDDO |
---|
| 854 | |
---|
| 855 | ENDIF |
---|
| 856 | |
---|
| 857 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 858 | |
---|
| 859 | ! |
---|
| 860 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 861 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 862 | DO i = nxl, nxr |
---|
| 863 | DO j = nys, nyn |
---|
[216] | 864 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 865 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 866 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 867 | ENDDO |
---|
| 868 | ENDDO |
---|
| 869 | |
---|
| 870 | ! |
---|
[1517] | 871 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 872 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 873 | DO i = nxl, nxr |
---|
| 874 | DO j = nys, nyn |
---|
[63] | 875 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 876 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 877 | ENDDO |
---|
| 878 | ENDDO |
---|
| 879 | |
---|
[1517] | 880 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 881 | |
---|
[1] | 882 | ! |
---|
[1517] | 883 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 884 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 885 | DO i = nxl, nxr |
---|
| 886 | DO j = nys, nyn |
---|
[1517] | 887 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 888 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 889 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 890 | ENDDO |
---|
| 891 | ENDDO |
---|
| 892 | |
---|
| 893 | ! |
---|
[1517] | 894 | !-- Specific humidity boundary condition at the top boundary |
---|
| 895 | IF ( ibc_q_t == 0 ) THEN |
---|
| 896 | ! |
---|
| 897 | !-- Dirichlet |
---|
| 898 | DO i = nxl, nxr |
---|
| 899 | DO j = nys, nyn |
---|
| 900 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 901 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 902 | ENDDO |
---|
| 903 | ENDDO |
---|
[1] | 904 | |
---|
[1517] | 905 | ELSE |
---|
[1] | 906 | ! |
---|
[1517] | 907 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 908 | DO i = nxl, nxr |
---|
| 909 | DO j = nys, nyn |
---|
| 910 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 911 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
[1] | 914 | |
---|
[1517] | 915 | ENDIF |
---|
[1] | 916 | |
---|
[1960] | 917 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 918 | ! |
---|
| 919 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 920 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 921 | DO i = nxl, nxr |
---|
| 922 | DO j = nys, nyn |
---|
| 923 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 924 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 925 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 926 | ENDDO |
---|
| 927 | ENDDO |
---|
| 928 | |
---|
| 929 | ! |
---|
| 930 | !-- Specific scalar boundary condition at the top boundary |
---|
| 931 | IF ( ibc_s_t == 0 ) THEN |
---|
| 932 | ! |
---|
| 933 | !-- Dirichlet |
---|
| 934 | DO i = nxl, nxr |
---|
| 935 | DO j = nys, nyn |
---|
| 936 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 937 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 938 | ENDDO |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
| 941 | ELSE |
---|
| 942 | ! |
---|
| 943 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 944 | DO i = nxl, nxr |
---|
| 945 | DO j = nys, nyn |
---|
| 946 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 947 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 948 | ENDDO |
---|
| 949 | ENDDO |
---|
| 950 | |
---|
| 951 | ENDIF |
---|
| 952 | |
---|
[2292] | 953 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
| 954 | |
---|
| 955 | ! |
---|
| 956 | !-- Cloud water content boundary condition at the bottom boundary: |
---|
| 957 | !-- Dirichlet (fixed surface rain water content). |
---|
| 958 | DO i = nxl, nxr |
---|
| 959 | DO j = nys, nyn |
---|
| 960 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 961 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 962 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 963 | ENDDO |
---|
| 964 | ENDDO |
---|
| 965 | |
---|
| 966 | ! |
---|
| 967 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
| 968 | DO i = nxl, nxr |
---|
| 969 | DO j = nys, nyn |
---|
| 970 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 971 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | |
---|
[1517] | 975 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 976 | |
---|
[1] | 977 | ! |
---|
[1517] | 978 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 979 | !-- Dirichlet (fixed surface rain water content). |
---|
| 980 | DO i = nxl, nxr |
---|
| 981 | DO j = nys, nyn |
---|
| 982 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 983 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 984 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 985 | ENDDO |
---|
[97] | 986 | ENDDO |
---|
| 987 | |
---|
| 988 | ! |
---|
[1517] | 989 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 990 | DO i = nxl, nxr |
---|
| 991 | DO j = nys, nyn |
---|
[63] | 992 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 993 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | |
---|
[2292] | 997 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
| 998 | |
---|
| 999 | ! |
---|
| 1000 | !-- Cloud drop concentration boundary condition at the bottom boundary: |
---|
| 1001 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
| 1002 | DO i = nxl, nxr |
---|
| 1003 | DO j = nys, nyn |
---|
| 1004 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1005 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1006 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1007 | ENDDO |
---|
| 1008 | ENDDO |
---|
| 1009 | |
---|
| 1010 | ! |
---|
| 1011 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1012 | DO i = nxl, nxr |
---|
| 1013 | DO j = nys, nyn |
---|
| 1014 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1015 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1016 | ENDDO |
---|
| 1017 | ENDDO |
---|
| 1018 | |
---|
[1517] | 1019 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1020 | |
---|
[1] | 1021 | ! |
---|
[1517] | 1022 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1023 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1024 | DO i = nxl, nxr |
---|
| 1025 | DO j = nys, nyn |
---|
[1517] | 1026 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1027 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1028 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1029 | ENDDO |
---|
| 1030 | ENDDO |
---|
| 1031 | |
---|
[1361] | 1032 | ! |
---|
[1517] | 1033 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1034 | DO i = nxl, nxr |
---|
| 1035 | DO j = nys, nyn |
---|
| 1036 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1037 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1038 | ENDDO |
---|
[1361] | 1039 | ENDDO |
---|
| 1040 | |
---|
[1517] | 1041 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1042 | |
---|
| 1043 | ! |
---|
[1517] | 1044 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1045 | DO i = nxl, nxr |
---|
| 1046 | DO j = nys, nyn |
---|
| 1047 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1048 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1049 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1050 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1051 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1052 | ENDDO |
---|
[1361] | 1053 | ENDDO |
---|
| 1054 | |
---|
[1517] | 1055 | ELSE |
---|
[1361] | 1056 | |
---|
[1517] | 1057 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1058 | 'tion for variable "', sk_char, '"' |
---|
| 1059 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1060 | |
---|
| 1061 | ENDIF |
---|
[1] | 1062 | |
---|
| 1063 | ! |
---|
[1517] | 1064 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1065 | fmax_l = 0.0_wp |
---|
[97] | 1066 | DO i = nxl, nxr |
---|
| 1067 | DO j = nys, nyn |
---|
[1517] | 1068 | DO k = nzb, nzt+1 |
---|
| 1069 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1070 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1071 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1072 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1073 | ENDDO |
---|
[97] | 1074 | ENDDO |
---|
| 1075 | ENDDO |
---|
[1] | 1076 | #if defined( __parallel ) |
---|
[1517] | 1077 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1078 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1079 | #else |
---|
[1517] | 1080 | fmax = fmax_l |
---|
[1] | 1081 | #endif |
---|
| 1082 | |
---|
[1517] | 1083 | fmax = 0.04_wp * fmax |
---|
[1] | 1084 | |
---|
| 1085 | ! |
---|
[1517] | 1086 | !-- Allocate temporary arrays |
---|
| 1087 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1088 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1089 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1090 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1091 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1092 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1093 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1094 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1095 | ) |
---|
| 1096 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1097 | |
---|
| 1098 | ! |
---|
[1517] | 1099 | !-- Outer loop of all i |
---|
| 1100 | DO i = nxl, nxr |
---|
[1] | 1101 | |
---|
| 1102 | ! |
---|
[1517] | 1103 | !-- Compute polynomial coefficients |
---|
| 1104 | DO j = nys, nyn |
---|
| 1105 | DO k = nzb, nzt+1 |
---|
| 1106 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1107 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1108 | + sk_p(k-1,j,i) ) |
---|
| 1109 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1110 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1111 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1112 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1113 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1114 | ) * f48 |
---|
| 1115 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1116 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1117 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1118 | ENDDO |
---|
[1] | 1119 | ENDDO |
---|
| 1120 | |
---|
| 1121 | ! |
---|
[1517] | 1122 | !-- Fluxes using the Bott scheme |
---|
| 1123 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1124 | DO j = nys, nyn |
---|
| 1125 | DO k = nzb+1, nzt |
---|
| 1126 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1127 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1128 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1129 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1130 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1131 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1132 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1133 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1134 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1135 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1136 | ip = MAX( ip, 0.0_wp ) |
---|
| 1137 | im = MAX( im, 0.0_wp ) |
---|
| 1138 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1139 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1140 | |
---|
[1517] | 1141 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1142 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1143 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1144 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1145 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1146 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1147 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1148 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1149 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1150 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1151 | ip = MAX( ip, 0.0_wp ) |
---|
| 1152 | im = MAX( im, 0.0_wp ) |
---|
| 1153 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1154 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1155 | ENDDO |
---|
[1] | 1156 | ENDDO |
---|
| 1157 | |
---|
| 1158 | ! |
---|
[1517] | 1159 | !-- Compute monitor function m1 |
---|
| 1160 | DO j = nys, nyn |
---|
| 1161 | DO k = nzb-1, nzt+2 |
---|
| 1162 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1163 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1164 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1165 | m1(k,j) = m1z / m1n |
---|
| 1166 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1167 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1168 | m1(k,j) = -1.0_wp |
---|
| 1169 | ELSE |
---|
| 1170 | m1(k,j) = 0.0_wp |
---|
| 1171 | ENDIF |
---|
| 1172 | ENDDO |
---|
[1] | 1173 | ENDDO |
---|
| 1174 | |
---|
| 1175 | ! |
---|
[1517] | 1176 | !-- Compute switch sw |
---|
| 1177 | sw = 0.0_wp |
---|
| 1178 | DO j = nys, nyn |
---|
| 1179 | DO k = nzb, nzt+1 |
---|
| 1180 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1181 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1182 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1183 | |
---|
[1517] | 1184 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1185 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1186 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1187 | |
---|
[1517] | 1188 | t1 = 0.35_wp |
---|
| 1189 | t2 = 0.35_wp |
---|
| 1190 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1191 | |
---|
[1517] | 1192 | !-- *VOCL STMT,IF(10) |
---|
| 1193 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1194 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1195 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1196 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1197 | ) sw(k,j) = 1.0_wp |
---|
| 1198 | ENDDO |
---|
[1] | 1199 | ENDDO |
---|
| 1200 | |
---|
| 1201 | ! |
---|
[1517] | 1202 | !-- Fluxes using exponential scheme |
---|
| 1203 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1204 | DO j = nys, nyn |
---|
| 1205 | DO k = nzb+1, nzt |
---|
[1] | 1206 | |
---|
[1517] | 1207 | !-- *VOCL STMT,IF(10) |
---|
| 1208 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1209 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1210 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1211 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1212 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1213 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1214 | |
---|
[1517] | 1215 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1216 | |
---|
[1517] | 1217 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1218 | |
---|
[1517] | 1219 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1220 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1221 | eex(ix) - & |
---|
| 1222 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1223 | ) & |
---|
| 1224 | ) |
---|
| 1225 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1226 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1227 | |
---|
[1517] | 1228 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1229 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1230 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1231 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1232 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1233 | |
---|
[1517] | 1234 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1235 | |
---|
[1517] | 1236 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1237 | |
---|
[1517] | 1238 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1239 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1240 | eex(ix) - & |
---|
| 1241 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1242 | ) & |
---|
| 1243 | ) |
---|
| 1244 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1245 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1246 | ENDIF |
---|
[1] | 1247 | |
---|
[1517] | 1248 | !-- *VOCL STMT,IF(10) |
---|
| 1249 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1250 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1251 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1252 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1253 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1254 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1255 | |
---|
[1517] | 1256 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1257 | |
---|
[1517] | 1258 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1259 | |
---|
[1517] | 1260 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1261 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1262 | eex(ix) - & |
---|
| 1263 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1264 | ) & |
---|
| 1265 | ) |
---|
| 1266 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1267 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1268 | ENDIF |
---|
[1] | 1269 | |
---|
[1517] | 1270 | !-- *VOCL STMT,IF(10) |
---|
| 1271 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1272 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1273 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1274 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1275 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1276 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1277 | |
---|
[1517] | 1278 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1279 | |
---|
[1517] | 1280 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1281 | |
---|
[1517] | 1282 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1283 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1284 | eex(ix) - & |
---|
| 1285 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1286 | ) & |
---|
| 1287 | ) |
---|
| 1288 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1289 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1290 | ENDIF |
---|
[1] | 1291 | |
---|
[1517] | 1292 | ENDDO |
---|
[1] | 1293 | ENDDO |
---|
[1517] | 1294 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1295 | |
---|
| 1296 | ! |
---|
[1517] | 1297 | !-- Prognostic equation |
---|
| 1298 | DO j = nys, nyn |
---|
| 1299 | DO k = nzb+1, nzt |
---|
| 1300 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1301 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1302 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1303 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1304 | tendcy = fplus - fminus |
---|
[1] | 1305 | ! |
---|
[1517] | 1306 | !-- Removed in order to optimise speed |
---|
| 1307 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1308 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1309 | ! |
---|
[1517] | 1310 | !-- Density correction because of possible remaining divergences |
---|
| 1311 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1312 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1313 | ( 1.0_wp + d_new ) |
---|
[1] | 1314 | ! |
---|
[1517] | 1315 | !-- Store heat flux for subsequent statistics output. |
---|
| 1316 | !-- array m1 is here used as temporary storage |
---|
| 1317 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1318 | ENDDO |
---|
[1] | 1319 | ENDDO |
---|
| 1320 | |
---|
| 1321 | ! |
---|
[1517] | 1322 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1323 | IF ( sk_char == 'pt' ) THEN |
---|
| 1324 | DO sr = 0, statistic_regions |
---|
| 1325 | DO j = nys, nyn |
---|
| 1326 | DO k = nzb+1, nzt |
---|
| 1327 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1328 | m1(k,j) * rmask(j,i,sr) |
---|
| 1329 | ENDDO |
---|
[1] | 1330 | ENDDO |
---|
| 1331 | ENDDO |
---|
[1517] | 1332 | ENDIF |
---|
[1] | 1333 | |
---|
[1517] | 1334 | ENDDO ! End of the advection in z-direction |
---|
| 1335 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1336 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1337 | |
---|
| 1338 | ! |
---|
[1517] | 1339 | !-- Deallocate temporary arrays |
---|
| 1340 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1341 | ippb, ippe, m1, sw ) |
---|
[1] | 1342 | |
---|
| 1343 | ! |
---|
[1517] | 1344 | !-- Store results as tendency and deallocate local array |
---|
| 1345 | DO i = nxl, nxr |
---|
| 1346 | DO j = nys, nyn |
---|
| 1347 | DO k = nzb+1, nzt |
---|
| 1348 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1349 | ENDDO |
---|
[1] | 1350 | ENDDO |
---|
| 1351 | ENDDO |
---|
| 1352 | |
---|
[1517] | 1353 | DEALLOCATE( sk_p ) |
---|
[1] | 1354 | |
---|
[1517] | 1355 | END SUBROUTINE advec_s_bc |
---|
| 1356 | |
---|
| 1357 | END MODULE advec_s_bc_mod |
---|