[1] | 1 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
| 2 | |
---|
[63] | 3 | !------------------------------------------------------------------------------! |
---|
[247] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[392] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: advec_s_bc.f90 392 2009-09-24 10:39:14Z raasch $ |
---|
[77] | 11 | ! |
---|
[392] | 12 | ! 247 2009-02-27 14:01:30Z heinze |
---|
| 13 | ! Output of messages replaced by message handling routine |
---|
| 14 | ! |
---|
[226] | 15 | ! 216 2008-11-25 07:12:43Z raasch |
---|
| 16 | ! Neumann boundary condition at k=nzb is explicitly set for better reading, |
---|
| 17 | ! although this has been already done in boundary_conds |
---|
| 18 | ! |
---|
[98] | 19 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 20 | ! Advection of salinity included |
---|
| 21 | ! Bugfix: Error in boundary condition for TKE removed |
---|
| 22 | ! |
---|
[77] | 23 | ! 63 2007-03-13 03:52:49Z raasch |
---|
| 24 | ! Calculation extended for gridpoint nzt |
---|
| 25 | ! |
---|
[3] | 26 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 27 | ! |
---|
[1] | 28 | ! Revision 1.22 2006/02/23 09:42:08 raasch |
---|
| 29 | ! anz renamed ngp |
---|
| 30 | ! |
---|
| 31 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 32 | ! Initial revision |
---|
| 33 | ! |
---|
| 34 | ! |
---|
| 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
| 37 | ! Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 38 | ! Computation in individual steps for each of the three dimensions. |
---|
| 39 | ! Limiting assumptions: |
---|
| 40 | ! So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 41 | ! the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 42 | ! a substitute for a constant grid length. This certainly causes incorrect |
---|
| 43 | ! results; however, it is hoped that they are not too apparent for weakly |
---|
| 44 | ! stretched grids. |
---|
| 45 | ! NOTE: This is a provisional, non-optimised version! |
---|
[63] | 46 | !------------------------------------------------------------------------------! |
---|
[1] | 47 | |
---|
| 48 | USE advection |
---|
| 49 | USE arrays_3d |
---|
[63] | 50 | USE control_parameters |
---|
[1] | 51 | USE cpulog |
---|
| 52 | USE grid_variables |
---|
| 53 | USE indices |
---|
| 54 | USE interfaces |
---|
| 55 | USE pegrid |
---|
| 56 | USE statistics |
---|
| 57 | |
---|
| 58 | IMPLICIT NONE |
---|
| 59 | |
---|
| 60 | CHARACTER (LEN=*) :: sk_char |
---|
| 61 | |
---|
| 62 | INTEGER :: i, ix, j, k, ngp, sr, type_xz_2 |
---|
| 63 | |
---|
| 64 | REAL :: cim, cimf, cip, cipf, d_new, ffmax, fminus, fplus, f2, f4, f8, & |
---|
| 65 | f12, f24, f48, f1920, im, ip, m2, m3, nenner, snenn, sterm, & |
---|
| 66 | tendenz, t1, t2, zaehler |
---|
| 67 | REAL :: fmax(2), fmax_l(2) |
---|
| 68 | REAL, DIMENSION(:,:,:), POINTER :: sk |
---|
| 69 | |
---|
| 70 | REAL, DIMENSION(:,:), ALLOCATABLE :: a0, a1, a12, a2, a22, immb, imme, & |
---|
| 71 | impb, impe, ipmb, ipme, ippb, ippe |
---|
| 72 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: sk_p |
---|
| 73 | |
---|
[63] | 74 | #if defined( __nec ) |
---|
[1] | 75 | REAL (kind=4) :: m1n, m1z !Wichtig: Division |
---|
| 76 | REAL (kind=4), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
| 77 | #else |
---|
| 78 | REAL :: m1n, m1z |
---|
| 79 | REAL, DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
| 80 | #endif |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | ! |
---|
| 84 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
[63] | 85 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
[1] | 86 | sk_p = 0.0 |
---|
| 87 | |
---|
| 88 | ! |
---|
| 89 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 90 | f2 = 0.5 |
---|
| 91 | f4 = 0.25 |
---|
| 92 | f8 = 0.125 |
---|
| 93 | f12 = 0.8333333333333333E-01 |
---|
| 94 | f24 = 0.4166666666666666E-01 |
---|
| 95 | f48 = 0.2083333333333333E-01 |
---|
| 96 | f1920 = 0.5208333333333333E-03 |
---|
| 97 | |
---|
| 98 | ! |
---|
| 99 | !-- Advection in x-direction: |
---|
| 100 | |
---|
| 101 | ! |
---|
| 102 | !-- Save the quantity to be advected in a local array |
---|
| 103 | !-- add an enlarged boundary in x-direction |
---|
| 104 | DO i = nxl-1, nxr+1 |
---|
| 105 | DO j = nys, nyn |
---|
[63] | 106 | DO k = nzb, nzt+1 |
---|
[1] | 107 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 108 | ENDDO |
---|
| 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | #if defined( __parallel ) |
---|
[63] | 112 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1] | 113 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
| 114 | ! |
---|
| 115 | !-- Send left boundary, receive right boundary |
---|
| 116 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 117 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 118 | comm2d, status, ierr ) |
---|
| 119 | ! |
---|
| 120 | !-- Send right boundary, receive left boundary |
---|
| 121 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 122 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 123 | comm2d, status, ierr ) |
---|
| 124 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 125 | #else |
---|
| 126 | |
---|
| 127 | ! |
---|
| 128 | !-- Cyclic boundary conditions |
---|
| 129 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 130 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 131 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 132 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
| 133 | #endif |
---|
| 134 | |
---|
| 135 | ! |
---|
| 136 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 137 | !-- of the temperature field at the left and right boundary of the total |
---|
| 138 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 139 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 140 | IF ( nxl == 0 ) THEN |
---|
| 141 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 142 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 143 | ENDIF |
---|
| 144 | IF ( nxr == nx ) THEN |
---|
| 145 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 146 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 147 | ENDIF |
---|
| 148 | ENDIF |
---|
| 149 | |
---|
| 150 | ! |
---|
| 151 | !-- Initialise control density |
---|
| 152 | d = 0.0 |
---|
| 153 | |
---|
| 154 | ! |
---|
| 155 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 156 | fmax_l = 0.0 |
---|
| 157 | DO i = nxl, nxr |
---|
| 158 | DO j = nys, nyn |
---|
[63] | 159 | DO k = nzb+1, nzt |
---|
[1] | 160 | zaehler = ABS( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 161 | nenner = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 162 | fmax_l(1) = MAX( fmax_l(1) , zaehler ) |
---|
| 163 | fmax_l(2) = MAX( fmax_l(2) , nenner ) |
---|
| 164 | ENDDO |
---|
| 165 | ENDDO |
---|
| 166 | ENDDO |
---|
| 167 | #if defined( __parallel ) |
---|
| 168 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 169 | #else |
---|
| 170 | fmax = fmax_l |
---|
| 171 | #endif |
---|
| 172 | |
---|
| 173 | fmax = 0.04 * fmax |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- Allocate temporary arrays |
---|
[63] | 177 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 178 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 179 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 180 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 181 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 182 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 183 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 184 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
[1] | 185 | ) |
---|
| 186 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
| 187 | |
---|
| 188 | ! |
---|
| 189 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 190 | !-- not work if done locally within the loop) |
---|
| 191 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 192 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Outer loop of all j |
---|
| 196 | DO j = nys, nyn |
---|
| 197 | |
---|
| 198 | ! |
---|
| 199 | !-- Compute polynomial coefficients |
---|
| 200 | DO i = nxl-1, nxr+1 |
---|
[63] | 201 | DO k = nzb+1, nzt |
---|
[1] | 202 | a12(k,i) = 0.5 * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 203 | a22(k,i) = 0.5 * ( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) & |
---|
| 204 | + sk_p(k,j,i-1) ) |
---|
| 205 | a0(k,i) = ( 9.0 * sk_p(k,j,i+2) - 116.0 * sk_p(k,j,i+1) & |
---|
| 206 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k,j,i-1) & |
---|
| 207 | + 9.0 * sk_p(k,j,i-2) ) * f1920 |
---|
| 208 | a1(k,i) = ( -5.0 * sk_p(k,j,i+2) + 34.0 * sk_p(k,j,i+1) & |
---|
| 209 | - 34.0 * sk_p(k,j,i-1) + 5.0 * sk_p(k,j,i-2) & |
---|
| 210 | ) * f48 |
---|
| 211 | a2(k,i) = ( -3.0 * sk_p(k,j,i+2) + 36.0 * sk_p(k,j,i+1) & |
---|
| 212 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k,j,i-1) & |
---|
| 213 | - 3.0 * sk_p(k,j,i-2) ) * f48 |
---|
| 214 | ENDDO |
---|
| 215 | ENDDO |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- Fluxes using the Bott scheme |
---|
| 219 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 220 | DO i = nxl, nxr |
---|
[63] | 221 | DO k = nzb+1, nzt |
---|
[1] | 222 | cip = MAX( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 223 | cim = -MIN( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 224 | cipf = 1.0 - 2.0 * cip |
---|
| 225 | cimf = 1.0 - 2.0 * cim |
---|
| 226 | ip = a0(k,i) * f2 * ( 1.0 - cipf ) & |
---|
| 227 | + a1(k,i) * f8 * ( 1.0 - cipf*cipf ) & |
---|
| 228 | + a2(k,i) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
| 229 | im = a0(k,i+1) * f2 * ( 1.0 - cimf ) & |
---|
| 230 | - a1(k,i+1) * f8 * ( 1.0 - cimf*cimf ) & |
---|
| 231 | + a2(k,i+1) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 232 | ip = MAX( ip, 0.0 ) |
---|
| 233 | im = MAX( im, 0.0 ) |
---|
| 234 | ippb(k,i) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 235 | impb(k,i) = im * MIN( 1.0, sk_p(k,j,i+1) / (ip+im+1E-15) ) |
---|
| 236 | |
---|
| 237 | cip = MAX( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 238 | cim = -MIN( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 239 | cipf = 1.0 - 2.0 * cip |
---|
| 240 | cimf = 1.0 - 2.0 * cim |
---|
| 241 | ip = a0(k,i-1) * f2 * ( 1.0 - cipf ) & |
---|
| 242 | + a1(k,i-1) * f8 * ( 1.0 - cipf*cipf ) & |
---|
| 243 | + a2(k,i-1) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
| 244 | im = a0(k,i) * f2 * ( 1.0 - cimf ) & |
---|
| 245 | - a1(k,i) * f8 * ( 1.0 - cimf*cimf ) & |
---|
| 246 | + a2(k,i) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 247 | ip = MAX( ip, 0.0 ) |
---|
| 248 | im = MAX( im, 0.0 ) |
---|
| 249 | ipmb(k,i) = ip * MIN( 1.0, sk_p(k,j,i-1) / (ip+im+1E-15) ) |
---|
| 250 | immb(k,i) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !-- Compute monitor function m1 |
---|
| 256 | DO i = nxl-2, nxr+2 |
---|
[63] | 257 | DO k = nzb+1, nzt |
---|
[1] | 258 | m1z = ABS( sk_p(k,j,i+1) - 2.0 * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 259 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 260 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
| 261 | m1(k,i) = m1z / m1n |
---|
| 262 | IF ( m1(k,i) /= 2.0 .AND. m1n < fmax(2) ) m1(k,i) = 0.0 |
---|
| 263 | ELSEIF ( m1n < m1z ) THEN |
---|
| 264 | m1(k,i) = -1.0 |
---|
| 265 | ELSE |
---|
| 266 | m1(k,i) = 0.0 |
---|
| 267 | ENDIF |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
| 270 | |
---|
| 271 | ! |
---|
| 272 | !-- Compute switch sw |
---|
| 273 | sw = 0.0 |
---|
| 274 | DO i = nxl-1, nxr+1 |
---|
[63] | 275 | DO k = nzb+1, nzt |
---|
[1] | 276 | m2 = 2.0 * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 277 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35 ) |
---|
| 278 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0 |
---|
| 279 | |
---|
| 280 | m3 = 2.0 * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 281 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35 ) |
---|
| 282 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0 |
---|
| 283 | |
---|
| 284 | t1 = 0.35 |
---|
| 285 | t2 = 0.35 |
---|
| 286 | IF ( m1(k,i) == -1.0 ) t2 = 0.12 |
---|
| 287 | |
---|
| 288 | !-- *VOCL STMT,IF(10) |
---|
| 289 | IF ( m1(k,i-1) == 1.0 .OR. m1(k,i) == 1.0 .OR. m1(k,i+1) == 1.0 & |
---|
| 290 | .OR. m2 > t2 .OR. m3 > T2 .OR. & |
---|
| 291 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0 .AND. & |
---|
| 292 | m1(k,i) /= -1.0 .AND. m1(k,i+1) /= -1.0 ) & |
---|
| 293 | ) sw(k,i) = 1.0 |
---|
| 294 | ENDDO |
---|
| 295 | ENDDO |
---|
| 296 | |
---|
| 297 | ! |
---|
| 298 | !-- Fluxes using the exponential scheme |
---|
| 299 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 300 | DO i = nxl, nxr |
---|
[63] | 301 | DO k = nzb+1, nzt |
---|
[1] | 302 | |
---|
| 303 | !-- *VOCL STMT,IF(10) |
---|
| 304 | IF ( sw(k,i) == 1.0 ) THEN |
---|
| 305 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 306 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 307 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 308 | sterm = MIN( sterm, 0.9999 ) |
---|
| 309 | sterm = MAX( sterm, 0.0001 ) |
---|
| 310 | |
---|
| 311 | ix = INT( sterm * 1000 ) + 1 |
---|
| 312 | |
---|
| 313 | cip = MAX( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 314 | |
---|
| 315 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 316 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 317 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 318 | ) & |
---|
| 319 | ) |
---|
| 320 | IF ( sterm == 0.0001 ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 321 | IF ( sterm == 0.9999 ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 322 | |
---|
| 323 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 324 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 325 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 326 | sterm = MIN( sterm, 0.9999 ) |
---|
| 327 | sterm = MAX( sterm, 0.0001 ) |
---|
| 328 | |
---|
| 329 | ix = INT( sterm * 1000 ) + 1 |
---|
| 330 | |
---|
| 331 | cim = -MIN( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 332 | |
---|
| 333 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 334 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 335 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 336 | ) & |
---|
| 337 | ) |
---|
| 338 | IF ( sterm == 0.0001 ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 339 | IF ( sterm == 0.9999 ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 340 | ENDIF |
---|
| 341 | |
---|
| 342 | !-- *VOCL STMT,IF(10) |
---|
| 343 | IF ( sw(k,i+1) == 1.0 ) THEN |
---|
| 344 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
| 345 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
| 346 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 347 | sterm = MIN( sterm, 0.9999 ) |
---|
| 348 | sterm = MAX( sterm, 0.0001 ) |
---|
| 349 | |
---|
| 350 | ix = INT( sterm * 1000 ) + 1 |
---|
| 351 | |
---|
| 352 | cim = -MIN( 0.0, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 353 | |
---|
| 354 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 355 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 356 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 357 | ) & |
---|
| 358 | ) |
---|
| 359 | IF ( sterm == 0.0001 ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 360 | IF ( sterm == 0.9999 ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 361 | ENDIF |
---|
| 362 | |
---|
| 363 | !-- *VOCL STMT,IF(10) |
---|
| 364 | IF ( sw(k,i-1) == 1.0 ) THEN |
---|
| 365 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 366 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 367 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 368 | sterm = MIN( sterm, 0.9999 ) |
---|
| 369 | sterm = MAX( sterm, 0.0001 ) |
---|
| 370 | |
---|
| 371 | ix = INT( sterm * 1000 ) + 1 |
---|
| 372 | |
---|
| 373 | cip = MAX( 0.0, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 374 | |
---|
| 375 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 376 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 377 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 378 | ) & |
---|
| 379 | ) |
---|
| 380 | IF ( sterm == 0.0001 ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 381 | IF ( sterm == 0.9999 ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 382 | ENDIF |
---|
| 383 | |
---|
| 384 | ENDDO |
---|
| 385 | ENDDO |
---|
| 386 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 387 | |
---|
| 388 | ! |
---|
| 389 | !-- Prognostic equation |
---|
| 390 | DO i = nxl, nxr |
---|
[63] | 391 | DO k = nzb+1, nzt |
---|
[1] | 392 | fplus = ( 1.0 - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 393 | - ( 1.0 - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 394 | fminus = ( 1.0 - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 395 | - ( 1.0 - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 396 | tendenz = fplus - fminus |
---|
| 397 | ! |
---|
| 398 | !-- Removed in order to optimize speed |
---|
| 399 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
| 400 | ! IF ( ( ABS( tendenz ) / ffmax ) < 1E-7 ) tendenz = 0.0 |
---|
| 401 | ! |
---|
| 402 | !-- Density correction because of possible remaining divergences |
---|
| 403 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 404 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendenz ) / & |
---|
| 405 | ( 1.0 + d_new ) |
---|
| 406 | d(k,j,i) = d_new |
---|
| 407 | ENDDO |
---|
| 408 | ENDDO |
---|
| 409 | |
---|
| 410 | ENDDO ! End of the advection in x-direction |
---|
| 411 | |
---|
| 412 | ! |
---|
| 413 | !-- Deallocate temporary arrays |
---|
| 414 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 415 | ippb, ippe, m1, sw ) |
---|
| 416 | |
---|
| 417 | |
---|
| 418 | ! |
---|
| 419 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
| 420 | #if defined( __parallel ) |
---|
[63] | 421 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 422 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
[1] | 423 | type_xz_2, ierr ) |
---|
| 424 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
| 425 | ! |
---|
| 426 | !-- Send front boundary, receive rear boundary |
---|
| 427 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 428 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 429 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 430 | comm2d, status, ierr ) |
---|
| 431 | ! |
---|
| 432 | !-- Send rear boundary, receive front boundary |
---|
| 433 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 434 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 435 | comm2d, status, ierr ) |
---|
| 436 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 437 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 438 | #else |
---|
| 439 | DO i = nxl, nxr |
---|
[63] | 440 | DO k = nzb+1, nzt |
---|
[1] | 441 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 442 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 443 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 444 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 445 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 446 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 447 | ENDDO |
---|
| 448 | ENDDO |
---|
| 449 | #endif |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 453 | fmax_l = 0.0 |
---|
| 454 | DO i = nxl, nxr |
---|
| 455 | DO j = nys, nyn |
---|
[63] | 456 | DO k = nzb+1, nzt |
---|
[1] | 457 | zaehler = ABS( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 458 | nenner = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 459 | fmax_l(1) = MAX( fmax_l(1) , zaehler ) |
---|
| 460 | fmax_l(2) = MAX( fmax_l(2) , nenner ) |
---|
| 461 | ENDDO |
---|
| 462 | ENDDO |
---|
| 463 | ENDDO |
---|
| 464 | #if defined( __parallel ) |
---|
| 465 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 466 | #else |
---|
| 467 | fmax = fmax_l |
---|
| 468 | #endif |
---|
| 469 | |
---|
| 470 | fmax = 0.04 * fmax |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | !-- Allocate temporary arrays |
---|
[63] | 474 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 475 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 476 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 477 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 478 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 479 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 480 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 481 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
[1] | 482 | ) |
---|
| 483 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
| 484 | |
---|
| 485 | ! |
---|
| 486 | !-- Outer loop of all i |
---|
| 487 | DO i = nxl, nxr |
---|
| 488 | |
---|
| 489 | ! |
---|
| 490 | !-- Compute polynomial coefficients |
---|
| 491 | DO j = nys-1, nyn+1 |
---|
[63] | 492 | DO k = nzb+1, nzt |
---|
[1] | 493 | a12(k,j) = 0.5 * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 494 | a22(k,j) = 0.5 * ( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) & |
---|
| 495 | + sk_p(k,j-1,i) ) |
---|
| 496 | a0(k,j) = ( 9.0 * sk_p(k,j+2,i) - 116.0 * sk_p(k,j+1,i) & |
---|
| 497 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k,j-1,i) & |
---|
| 498 | + 9.0 * sk_p(k,j-2,i) ) * f1920 |
---|
| 499 | a1(k,j) = ( -5.0 * sk_p(k,j+2,i) + 34.0 * sk_p(k,j+1,i) & |
---|
| 500 | - 34.0 * sk_p(k,j-1,i) + 5.0 * sk_p(k,j-2,i) & |
---|
| 501 | ) * f48 |
---|
| 502 | a2(k,j) = ( -3.0 * sk_p(k,j+2,i) + 36.0 * sk_p(k,j+1,i) & |
---|
| 503 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k,j-1,i) & |
---|
| 504 | - 3.0 * sk_p(k,j-2,i) ) * f48 |
---|
| 505 | ENDDO |
---|
| 506 | ENDDO |
---|
| 507 | |
---|
| 508 | ! |
---|
| 509 | !-- Fluxes using the Bott scheme |
---|
| 510 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 511 | DO j = nys, nyn |
---|
[63] | 512 | DO k = nzb+1, nzt |
---|
[1] | 513 | cip = MAX( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 514 | cim = -MIN( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 515 | cipf = 1.0 - 2.0 * cip |
---|
| 516 | cimf = 1.0 - 2.0 * cim |
---|
| 517 | ip = a0(k,j) * f2 * ( 1.0 - cipf ) & |
---|
| 518 | + a1(k,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
| 519 | + a2(k,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
| 520 | im = a0(k,j+1) * f2 * ( 1.0 - cimf ) & |
---|
| 521 | - a1(k,j+1) * f8 * ( 1.0 - cimf*cimf ) & |
---|
| 522 | + a2(k,j+1) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 523 | ip = MAX( ip, 0.0 ) |
---|
| 524 | im = MAX( im, 0.0 ) |
---|
| 525 | ippb(k,j) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 526 | impb(k,j) = im * MIN( 1.0, sk_p(k,j+1,i) / (ip+im+1E-15) ) |
---|
| 527 | |
---|
| 528 | cip = MAX( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 529 | cim = -MIN( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 530 | cipf = 1.0 - 2.0 * cip |
---|
| 531 | cimf = 1.0 - 2.0 * cim |
---|
| 532 | ip = a0(k,j-1) * f2 * ( 1.0 - cipf ) & |
---|
| 533 | + a1(k,j-1) * f8 * ( 1.0 - cipf*cipf ) & |
---|
| 534 | + a2(k,j-1) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
| 535 | im = a0(k,j) * f2 * ( 1.0 - cimf ) & |
---|
| 536 | - a1(k,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
| 537 | + a2(k,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 538 | ip = MAX( ip, 0.0 ) |
---|
| 539 | im = MAX( im, 0.0 ) |
---|
| 540 | ipmb(k,j) = ip * MIN( 1.0, sk_p(k,j-1,i) / (ip+im+1E-15) ) |
---|
| 541 | immb(k,j) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 542 | ENDDO |
---|
| 543 | ENDDO |
---|
| 544 | |
---|
| 545 | ! |
---|
| 546 | !-- Compute monitor function m1 |
---|
| 547 | DO j = nys-2, nyn+2 |
---|
[63] | 548 | DO k = nzb+1, nzt |
---|
[1] | 549 | m1z = ABS( sk_p(k,j+1,i) - 2.0 * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 550 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 551 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
| 552 | m1(k,j) = m1z / m1n |
---|
| 553 | IF ( m1(k,j) /= 2.0 .AND. m1n < fmax(2) ) m1(k,j) = 0.0 |
---|
| 554 | ELSEIF ( m1n < m1z ) THEN |
---|
| 555 | m1(k,j) = -1.0 |
---|
| 556 | ELSE |
---|
| 557 | m1(k,j) = 0.0 |
---|
| 558 | ENDIF |
---|
| 559 | ENDDO |
---|
| 560 | ENDDO |
---|
| 561 | |
---|
| 562 | ! |
---|
| 563 | !-- Compute switch sw |
---|
| 564 | sw = 0.0 |
---|
| 565 | DO j = nys-1, nyn+1 |
---|
[63] | 566 | DO k = nzb+1, nzt |
---|
[1] | 567 | m2 = 2.0 * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 568 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35 ) |
---|
| 569 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0 |
---|
| 570 | |
---|
| 571 | m3 = 2.0 * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 572 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35 ) |
---|
| 573 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0 |
---|
| 574 | |
---|
| 575 | t1 = 0.35 |
---|
| 576 | t2 = 0.35 |
---|
| 577 | IF ( m1(k,j) == -1.0 ) t2 = 0.12 |
---|
| 578 | |
---|
| 579 | !-- *VOCL STMT,IF(10) |
---|
| 580 | IF ( m1(k,j-1) == 1.0 .OR. m1(k,j) == 1.0 .OR. m1(k,j+1) == 1.0 & |
---|
| 581 | .OR. m2 > t2 .OR. m3 > T2 .OR. & |
---|
| 582 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0 .AND. & |
---|
| 583 | m1(k,j) /= -1.0 .AND. m1(k,j+1) /= -1.0 ) & |
---|
| 584 | ) sw(k,j) = 1.0 |
---|
| 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | |
---|
| 588 | ! |
---|
| 589 | !-- Fluxes using exponential scheme |
---|
| 590 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 591 | DO j = nys, nyn |
---|
[63] | 592 | DO k = nzb+1, nzt |
---|
[1] | 593 | |
---|
| 594 | !-- *VOCL STMT,IF(10) |
---|
| 595 | IF ( sw(k,j) == 1.0 ) THEN |
---|
| 596 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 597 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 598 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 599 | sterm = MIN( sterm, 0.9999 ) |
---|
| 600 | sterm = MAX( sterm, 0.0001 ) |
---|
| 601 | |
---|
| 602 | ix = INT( sterm * 1000 ) + 1 |
---|
| 603 | |
---|
| 604 | cip = MAX( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 605 | |
---|
| 606 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 607 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 608 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 609 | ) & |
---|
| 610 | ) |
---|
| 611 | IF ( sterm == 0.0001 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 612 | IF ( sterm == 0.9999 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 613 | |
---|
| 614 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 615 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 616 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 617 | sterm = MIN( sterm, 0.9999 ) |
---|
| 618 | sterm = MAX( sterm, 0.0001 ) |
---|
| 619 | |
---|
| 620 | ix = INT( sterm * 1000 ) + 1 |
---|
| 621 | |
---|
| 622 | cim = -MIN( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 623 | |
---|
| 624 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 625 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 626 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 627 | ) & |
---|
| 628 | ) |
---|
| 629 | IF ( sterm == 0.0001 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 630 | IF ( sterm == 0.9999 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 631 | ENDIF |
---|
| 632 | |
---|
| 633 | !-- *VOCL STMT,IF(10) |
---|
| 634 | IF ( sw(k,j+1) == 1.0 ) THEN |
---|
| 635 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
| 636 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
| 637 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 638 | sterm = MIN( sterm, 0.9999 ) |
---|
| 639 | sterm = MAX( sterm, 0.0001 ) |
---|
| 640 | |
---|
| 641 | ix = INT( sterm * 1000 ) + 1 |
---|
| 642 | |
---|
| 643 | cim = -MIN( 0.0, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 644 | |
---|
| 645 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 646 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 647 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 648 | ) & |
---|
| 649 | ) |
---|
| 650 | IF ( sterm == 0.0001 ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 651 | IF ( sterm == 0.9999 ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 652 | ENDIF |
---|
| 653 | |
---|
| 654 | !-- *VOCL STMT,IF(10) |
---|
| 655 | IF ( sw(k,j-1) == 1.0 ) THEN |
---|
| 656 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 657 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 658 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 659 | sterm = MIN( sterm, 0.9999 ) |
---|
| 660 | sterm = MAX( sterm, 0.0001 ) |
---|
| 661 | |
---|
| 662 | ix = INT( sterm * 1000 ) + 1 |
---|
| 663 | |
---|
| 664 | cip = MAX( 0.0, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 665 | |
---|
| 666 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 667 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 668 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 669 | ) & |
---|
| 670 | ) |
---|
| 671 | IF ( sterm == 0.0001 ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 672 | IF ( sterm == 0.9999 ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ENDDO |
---|
| 676 | ENDDO |
---|
| 677 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 678 | |
---|
| 679 | ! |
---|
| 680 | !-- Prognostic equation |
---|
| 681 | DO j = nys, nyn |
---|
[63] | 682 | DO k = nzb+1, nzt |
---|
[1] | 683 | fplus = ( 1.0 - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 684 | - ( 1.0 - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 685 | fminus = ( 1.0 - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 686 | - ( 1.0 - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 687 | tendenz = fplus - fminus |
---|
| 688 | ! |
---|
| 689 | !-- Removed in order to optimise speed |
---|
| 690 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
| 691 | ! IF ( ( ABS( tendenz ) / ffmax ) < 1E-7 ) tendenz = 0.0 |
---|
| 692 | ! |
---|
| 693 | !-- Density correction because of possible remaining divergences |
---|
| 694 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 695 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendenz ) / & |
---|
| 696 | ( 1.0 + d_new ) |
---|
| 697 | d(k,j,i) = d_new |
---|
| 698 | ENDDO |
---|
| 699 | ENDDO |
---|
| 700 | |
---|
| 701 | ENDDO ! End of the advection in y-direction |
---|
| 702 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 703 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
| 704 | |
---|
| 705 | ! |
---|
| 706 | !-- Deallocate temporary arrays |
---|
| 707 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 708 | ippb, ippe, m1, sw ) |
---|
| 709 | |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 713 | !-- UP flow_statistics) |
---|
| 714 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0 |
---|
| 715 | |
---|
| 716 | ! |
---|
| 717 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 718 | IF ( sk_char == 'pt' ) THEN |
---|
| 719 | |
---|
| 720 | ! |
---|
| 721 | !-- Temperature boundary condition at the bottom boundary |
---|
| 722 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 723 | ! |
---|
| 724 | !-- Dirichlet (fixed surface temperature) |
---|
| 725 | DO i = nxl, nxr |
---|
| 726 | DO j = nys, nyn |
---|
| 727 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 728 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 729 | ENDDO |
---|
| 730 | ENDDO |
---|
| 731 | |
---|
| 732 | ELSE |
---|
| 733 | ! |
---|
| 734 | !-- Neumann (i.e. here zero gradient) |
---|
| 735 | DO i = nxl, nxr |
---|
| 736 | DO j = nys, nyn |
---|
[216] | 737 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 738 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 739 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 740 | ENDDO |
---|
| 741 | ENDDO |
---|
| 742 | |
---|
| 743 | ENDIF |
---|
| 744 | |
---|
| 745 | ! |
---|
| 746 | !-- Temperature boundary condition at the top boundary |
---|
[63] | 747 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
[1] | 748 | ! |
---|
[63] | 749 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 750 | DO i = nxl, nxr |
---|
| 751 | DO j = nys, nyn |
---|
[63] | 752 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 753 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 754 | ENDDO |
---|
| 755 | ENDDO |
---|
| 756 | |
---|
[63] | 757 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1] | 758 | ! |
---|
[63] | 759 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 760 | DO i = nxl, nxr |
---|
| 761 | DO j = nys, nyn |
---|
| 762 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[63] | 763 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 764 | ENDDO |
---|
| 765 | ENDDO |
---|
| 766 | |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
[97] | 769 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
[1] | 770 | |
---|
| 771 | ! |
---|
[97] | 772 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 773 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
| 774 | DO i = nxl, nxr |
---|
| 775 | DO j = nys, nyn |
---|
[216] | 776 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 777 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 778 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 779 | ENDDO |
---|
[97] | 780 | ENDDO |
---|
[1] | 781 | |
---|
| 782 | ! |
---|
[97] | 783 | !-- Salinity boundary condition at the top boundary. |
---|
| 784 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 785 | DO i = nxl, nxr |
---|
| 786 | DO j = nys, nyn |
---|
| 787 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 788 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 789 | ENDDO |
---|
[97] | 790 | ENDDO |
---|
[1] | 791 | |
---|
[97] | 792 | ELSEIF ( sk_char == 'q' ) THEN |
---|
[1] | 793 | |
---|
| 794 | ! |
---|
[97] | 795 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 796 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 797 | DO i = nxl, nxr |
---|
| 798 | DO j = nys, nyn |
---|
[216] | 799 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 800 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 801 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 802 | ENDDO |
---|
| 803 | ENDDO |
---|
| 804 | |
---|
| 805 | ! |
---|
[63] | 806 | !-- Specific humidity boundary condition at the top boundary |
---|
[1] | 807 | IF ( ibc_q_t == 0 ) THEN |
---|
| 808 | ! |
---|
| 809 | !-- Dirichlet |
---|
| 810 | DO i = nxl, nxr |
---|
| 811 | DO j = nys, nyn |
---|
[63] | 812 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 813 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 814 | ENDDO |
---|
| 815 | ENDDO |
---|
| 816 | |
---|
| 817 | ELSE |
---|
| 818 | ! |
---|
[63] | 819 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 820 | DO i = nxl, nxr |
---|
| 821 | DO j = nys, nyn |
---|
| 822 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[63] | 823 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 824 | ENDDO |
---|
| 825 | ENDDO |
---|
| 826 | |
---|
| 827 | ENDIF |
---|
| 828 | |
---|
| 829 | ELSEIF ( sk_char == 'e' ) THEN |
---|
| 830 | |
---|
| 831 | ! |
---|
| 832 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
[97] | 833 | DO i = nxl, nxr |
---|
| 834 | DO j = nys, nyn |
---|
[216] | 835 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 836 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 837 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 838 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 839 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 840 | ENDDO |
---|
| 841 | ENDDO |
---|
[1] | 842 | |
---|
| 843 | ELSE |
---|
| 844 | |
---|
[247] | 845 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
[1] | 846 | 'tion for variable "', sk_char, '"' |
---|
[247] | 847 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 848 | |
---|
[1] | 849 | ENDIF |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 853 | fmax_l = 0.0 |
---|
| 854 | DO i = nxl, nxr |
---|
| 855 | DO j = nys, nyn |
---|
[63] | 856 | DO k = nzb, nzt+1 |
---|
[1] | 857 | zaehler = ABS( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 858 | nenner = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 859 | fmax_l(1) = MAX( fmax_l(1) , zaehler ) |
---|
| 860 | fmax_l(2) = MAX( fmax_l(2) , nenner ) |
---|
| 861 | ENDDO |
---|
| 862 | ENDDO |
---|
| 863 | ENDDO |
---|
| 864 | #if defined( __parallel ) |
---|
| 865 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 866 | #else |
---|
| 867 | fmax = fmax_l |
---|
| 868 | #endif |
---|
| 869 | |
---|
| 870 | fmax = 0.04 * fmax |
---|
| 871 | |
---|
| 872 | ! |
---|
| 873 | !-- Allocate temporary arrays |
---|
[63] | 874 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 875 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 876 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 877 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 878 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 879 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 880 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 881 | sw(nzb:nzt+1,nys:nyn) & |
---|
[1] | 882 | ) |
---|
| 883 | imme = 0.0; impe = 0.0; ipme = 0.0; ippe = 0.0 |
---|
| 884 | |
---|
| 885 | ! |
---|
| 886 | !-- Outer loop of all i |
---|
| 887 | DO i = nxl, nxr |
---|
| 888 | |
---|
| 889 | ! |
---|
| 890 | !-- Compute polynomial coefficients |
---|
| 891 | DO j = nys, nyn |
---|
[63] | 892 | DO k = nzb, nzt+1 |
---|
[1] | 893 | a12(k,j) = 0.5 * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 894 | a22(k,j) = 0.5 * ( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) & |
---|
| 895 | + sk_p(k-1,j,i) ) |
---|
| 896 | a0(k,j) = ( 9.0 * sk_p(k+2,j,i) - 116.0 * sk_p(k+1,j,i) & |
---|
| 897 | + 2134.0 * sk_p(k,j,i) - 116.0 * sk_p(k-1,j,i) & |
---|
| 898 | + 9.0 * sk_p(k-2,j,i) ) * f1920 |
---|
| 899 | a1(k,j) = ( -5.0 * sk_p(k+2,j,i) + 34.0 * sk_p(k+1,j,i) & |
---|
| 900 | - 34.0 * sk_p(k-1,j,i) + 5.0 * sk_p(k-2,j,i) & |
---|
| 901 | ) * f48 |
---|
| 902 | a2(k,j) = ( -3.0 * sk_p(k+2,j,i) + 36.0 * sk_p(k+1,j,i) & |
---|
| 903 | - 66.0 * sk_p(k,j,i) + 36.0 * sk_p(k-1,j,i) & |
---|
| 904 | - 3.0 * sk_p(k-2,j,i) ) * f48 |
---|
| 905 | ENDDO |
---|
| 906 | ENDDO |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- Fluxes using the Bott scheme |
---|
| 910 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 911 | DO j = nys, nyn |
---|
[63] | 912 | DO k = nzb+1, nzt |
---|
[1] | 913 | cip = MAX( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 914 | cim = -MIN( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 915 | cipf = 1.0 - 2.0 * cip |
---|
| 916 | cimf = 1.0 - 2.0 * cim |
---|
| 917 | ip = a0(k,j) * f2 * ( 1.0 - cipf ) & |
---|
| 918 | + a1(k,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
| 919 | + a2(k,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
| 920 | im = a0(k+1,j) * f2 * ( 1.0 - cimf ) & |
---|
| 921 | - a1(k+1,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
| 922 | + a2(k+1,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 923 | ip = MAX( ip, 0.0 ) |
---|
| 924 | im = MAX( im, 0.0 ) |
---|
| 925 | ippb(k,j) = ip * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 926 | impb(k,j) = im * MIN( 1.0, sk_p(k+1,j,i) / (ip+im+1E-15) ) |
---|
| 927 | |
---|
| 928 | cip = MAX( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 929 | cim = -MIN( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 930 | cipf = 1.0 - 2.0 * cip |
---|
| 931 | cimf = 1.0 - 2.0 * cim |
---|
| 932 | ip = a0(k-1,j) * f2 * ( 1.0 - cipf ) & |
---|
| 933 | + a1(k-1,j) * f8 * ( 1.0 - cipf*cipf ) & |
---|
| 934 | + a2(k-1,j) * f24 * ( 1.0 - cipf*cipf*cipf ) |
---|
| 935 | im = a0(k,j) * f2 * ( 1.0 - cimf ) & |
---|
| 936 | - a1(k,j) * f8 * ( 1.0 - cimf*cimf ) & |
---|
| 937 | + a2(k,j) * f24 * ( 1.0 - cimf*cimf*cimf ) |
---|
| 938 | ip = MAX( ip, 0.0 ) |
---|
| 939 | im = MAX( im, 0.0 ) |
---|
| 940 | ipmb(k,j) = ip * MIN( 1.0, sk_p(k-1,j,i) / (ip+im+1E-15) ) |
---|
| 941 | immb(k,j) = im * MIN( 1.0, sk_p(k,j,i) / (ip+im+1E-15) ) |
---|
| 942 | ENDDO |
---|
| 943 | ENDDO |
---|
| 944 | |
---|
| 945 | ! |
---|
| 946 | !-- Compute monitor function m1 |
---|
| 947 | DO j = nys, nyn |
---|
[63] | 948 | DO k = nzb-1, nzt+2 |
---|
[1] | 949 | m1z = ABS( sk_p(k+1,j,i) - 2.0 * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 950 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 951 | IF ( m1n /= 0.0 .AND. m1n >= m1z ) THEN |
---|
| 952 | m1(k,j) = m1z / m1n |
---|
| 953 | IF ( m1(k,j) /= 2.0 .AND. m1n < fmax(2) ) m1(k,j) = 0.0 |
---|
| 954 | ELSEIF ( m1n < m1z ) THEN |
---|
| 955 | m1(k,j) = -1.0 |
---|
| 956 | ELSE |
---|
| 957 | m1(k,j) = 0.0 |
---|
| 958 | ENDIF |
---|
| 959 | ENDDO |
---|
| 960 | ENDDO |
---|
| 961 | |
---|
| 962 | ! |
---|
| 963 | !-- Compute switch sw |
---|
| 964 | sw = 0.0 |
---|
| 965 | DO j = nys, nyn |
---|
[63] | 966 | DO k = nzb, nzt+1 |
---|
[1] | 967 | m2 = 2.0 * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 968 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35 ) |
---|
| 969 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0 |
---|
| 970 | |
---|
| 971 | m3 = 2.0 * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 972 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35 ) |
---|
| 973 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0 |
---|
| 974 | |
---|
| 975 | t1 = 0.35 |
---|
| 976 | t2 = 0.35 |
---|
| 977 | IF ( m1(k,j) == -1.0 ) t2 = 0.12 |
---|
| 978 | |
---|
| 979 | !-- *VOCL STMT,IF(10) |
---|
| 980 | IF ( m1(k-1,j) == 1.0 .OR. m1(k,j) == 1.0 .OR. m1(k+1,j) == 1.0 & |
---|
| 981 | .OR. m2 > t2 .OR. m3 > T2 .OR. & |
---|
| 982 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0 .AND. & |
---|
| 983 | m1(k,j) /= -1.0 .AND. m1(k+1,j) /= -1.0 ) & |
---|
| 984 | ) sw(k,j) = 1.0 |
---|
| 985 | ENDDO |
---|
| 986 | ENDDO |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- Fluxes using exponential scheme |
---|
| 990 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 991 | DO j = nys, nyn |
---|
[63] | 992 | DO k = nzb+1, nzt |
---|
[1] | 993 | |
---|
| 994 | !-- *VOCL STMT,IF(10) |
---|
| 995 | IF ( sw(k,j) == 1.0 ) THEN |
---|
| 996 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 997 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 998 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 999 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1000 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1001 | |
---|
| 1002 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1003 | |
---|
| 1004 | cip = MAX( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1005 | |
---|
| 1006 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1007 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1008 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 1009 | ) & |
---|
| 1010 | ) |
---|
| 1011 | IF ( sterm == 0.0001 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1012 | IF ( sterm == 0.9999 ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1013 | |
---|
| 1014 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1015 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 1016 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1017 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1018 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1019 | |
---|
| 1020 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1021 | |
---|
| 1022 | cim = -MIN( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1023 | |
---|
| 1024 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1025 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1026 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 1027 | ) & |
---|
| 1028 | ) |
---|
| 1029 | IF ( sterm == 0.0001 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1030 | IF ( sterm == 0.9999 ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1031 | ENDIF |
---|
| 1032 | |
---|
| 1033 | !-- *VOCL STMT,IF(10) |
---|
| 1034 | IF ( sw(k+1,j) == 1.0 ) THEN |
---|
| 1035 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
| 1036 | IF ( ABS( snenn ) .LT. 1E-9 ) snenn = 1E-9 |
---|
| 1037 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1038 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1039 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1040 | |
---|
| 1041 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1042 | |
---|
| 1043 | cim = -MIN( 0.0, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1044 | |
---|
| 1045 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1046 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1047 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cim ) ) & |
---|
| 1048 | ) & |
---|
| 1049 | ) |
---|
| 1050 | IF ( sterm == 0.0001 ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1051 | IF ( sterm == 0.9999 ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1052 | ENDIF |
---|
| 1053 | |
---|
| 1054 | !-- *VOCL STMT,IF(10) |
---|
| 1055 | IF ( sw(k-1,j) == 1.0 ) THEN |
---|
| 1056 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1057 | IF ( ABS( snenn ) < 1E-9 ) snenn = 1E-9 |
---|
| 1058 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1059 | sterm = MIN( sterm, 0.9999 ) |
---|
| 1060 | sterm = MAX( sterm, 0.0001 ) |
---|
| 1061 | |
---|
| 1062 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1063 | |
---|
| 1064 | cip = MAX( 0.0, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1065 | |
---|
| 1066 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1067 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1068 | eex(ix) - EXP( dex(ix)*0.5 * ( 1.0 - 2.0 * cip ) ) & |
---|
| 1069 | ) & |
---|
| 1070 | ) |
---|
| 1071 | IF ( sterm == 0.0001 ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1072 | IF ( sterm == 0.9999 ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1073 | ENDIF |
---|
| 1074 | |
---|
| 1075 | ENDDO |
---|
| 1076 | ENDDO |
---|
| 1077 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 1078 | |
---|
| 1079 | ! |
---|
| 1080 | !-- Prognostic equation |
---|
| 1081 | DO j = nys, nyn |
---|
[63] | 1082 | DO k = nzb+1, nzt |
---|
[1] | 1083 | fplus = ( 1.0 - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1084 | - ( 1.0 - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1085 | fminus = ( 1.0 - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1086 | - ( 1.0 - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1087 | tendenz = fplus - fminus |
---|
| 1088 | ! |
---|
| 1089 | !-- Removed in order to optimise speed |
---|
| 1090 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35 ) |
---|
| 1091 | ! IF ( ( ABS( tendenz ) / ffmax ) < 1E-7 ) tendenz = 0.0 |
---|
| 1092 | ! |
---|
| 1093 | !-- Density correction because of possible remaining divergences |
---|
| 1094 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1095 | sk_p(k,j,i) = ( ( 1.0 + d(k,j,i) ) * sk_p(k,j,i) - tendenz ) / & |
---|
| 1096 | ( 1.0 + d_new ) |
---|
| 1097 | ! |
---|
| 1098 | !-- Store heat flux for subsequent statistics output. |
---|
| 1099 | !-- array m1 is here used as temporary storage |
---|
| 1100 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1106 | IF ( sk_char == 'pt' ) THEN |
---|
| 1107 | DO sr = 0, statistic_regions |
---|
| 1108 | DO j = nys, nyn |
---|
[63] | 1109 | DO k = nzb+1, nzt |
---|
[1] | 1110 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1111 | m1(k,j) * rmask(j,i,sr) |
---|
| 1112 | ENDDO |
---|
| 1113 | ENDDO |
---|
| 1114 | ENDDO |
---|
| 1115 | ENDIF |
---|
| 1116 | |
---|
| 1117 | ENDDO ! End of the advection in z-direction |
---|
| 1118 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1119 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
| 1120 | |
---|
| 1121 | ! |
---|
| 1122 | !-- Deallocate temporary arrays |
---|
| 1123 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1124 | ippb, ippe, m1, sw ) |
---|
| 1125 | |
---|
| 1126 | ! |
---|
| 1127 | !-- Store results as tendency and deallocate local array |
---|
| 1128 | DO i = nxl, nxr |
---|
| 1129 | DO j = nys, nyn |
---|
[63] | 1130 | DO k = nzb+1, nzt |
---|
[1] | 1131 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1132 | ENDDO |
---|
| 1133 | ENDDO |
---|
| 1134 | ENDDO |
---|
| 1135 | |
---|
| 1136 | DEALLOCATE( sk_p ) |
---|
| 1137 | |
---|
| 1138 | END SUBROUTINE advec_s_bc |
---|