[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 3761 2019-02-25 15:31:42Z kanani $ |
---|
[3761] | 27 | ! unused variables removed |
---|
| 28 | ! |
---|
| 29 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3636] | 30 | ! nopointer option removed |
---|
| 31 | ! |
---|
| 32 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 33 | ! Corrected "Former revisions" section |
---|
| 34 | ! |
---|
| 35 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 36 | ! Change in file header (GPL part) |
---|
| 37 | ! |
---|
| 38 | ! 2300 2017-06-29 13:31:14Z raasch |
---|
[2300] | 39 | ! NEC related code removed |
---|
| 40 | ! |
---|
| 41 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 42 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 43 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 44 | ! and cloud water content (qc). |
---|
| 45 | ! |
---|
| 46 | ! 2101 2017-01-05 16:42:31Z suehring |
---|
[1321] | 47 | ! |
---|
[2001] | 48 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 49 | ! Forced header and separation lines into 80 columns |
---|
| 50 | ! |
---|
[1961] | 51 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 52 | ! New CASE statement to treat scalars and humidity separately |
---|
| 53 | ! |
---|
[1874] | 54 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 55 | ! Module renamed (removed _mod) |
---|
| 56 | ! |
---|
| 57 | ! |
---|
[1851] | 58 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 59 | ! Module renamed |
---|
| 60 | ! |
---|
| 61 | ! |
---|
[1816] | 62 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 63 | ! comment change |
---|
| 64 | ! |
---|
[1692] | 65 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 66 | ! Formatting corrections |
---|
| 67 | ! |
---|
[1683] | 68 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 69 | ! Code annotations made doxygen readable |
---|
| 70 | ! |
---|
[1518] | 71 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 72 | ! interface added to advec_s_bc |
---|
| 73 | ! |
---|
[1375] | 74 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 75 | ! missing variables added to ONLY list |
---|
| 76 | ! |
---|
[1362] | 77 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 78 | ! nr and qr added |
---|
| 79 | ! |
---|
[1354] | 80 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 81 | ! REAL constants provided with KIND-attribute |
---|
| 82 | ! |
---|
[1347] | 83 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 84 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 85 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 86 | ! |
---|
[1321] | 87 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 88 | ! ONLY-attribute added to USE-statements, |
---|
| 89 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 90 | ! kinds are defined in new module kinds, |
---|
| 91 | ! revision history before 2012 removed, |
---|
| 92 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 93 | ! all variable declaration statements |
---|
[1] | 94 | ! |
---|
[1319] | 95 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 96 | ! module interfaces removed |
---|
| 97 | ! |
---|
[1093] | 98 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 99 | ! unused variables removed |
---|
| 100 | ! |
---|
[1037] | 101 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 102 | ! code put under GPL (PALM 3.9) |
---|
| 103 | ! |
---|
[1011] | 104 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 105 | ! cpp switch __nopointer added for pointer free version |
---|
| 106 | ! |
---|
[1] | 107 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 108 | ! Initial revision |
---|
| 109 | ! |
---|
| 110 | ! |
---|
| 111 | ! Description: |
---|
| 112 | ! ------------ |
---|
[1682] | 113 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 114 | !> Computation in individual steps for each of the three dimensions. |
---|
| 115 | !> Limiting assumptions: |
---|
| 116 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 117 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 118 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 119 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 120 | !> stretched grids. |
---|
| 121 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 122 | !------------------------------------------------------------------------------! |
---|
[1682] | 123 | MODULE advec_s_bc_mod |
---|
| 124 | |
---|
[1] | 125 | |
---|
[1517] | 126 | PRIVATE |
---|
| 127 | PUBLIC advec_s_bc |
---|
[1320] | 128 | |
---|
[1517] | 129 | INTERFACE advec_s_bc |
---|
| 130 | MODULE PROCEDURE advec_s_bc |
---|
| 131 | END INTERFACE advec_s_bc |
---|
[1320] | 132 | |
---|
[1517] | 133 | CONTAINS |
---|
[1320] | 134 | |
---|
[1682] | 135 | !------------------------------------------------------------------------------! |
---|
| 136 | ! Description: |
---|
| 137 | ! ------------ |
---|
| 138 | !> @todo Missing subroutine description. |
---|
| 139 | !------------------------------------------------------------------------------! |
---|
[1517] | 140 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 141 | |
---|
[1517] | 142 | USE advection, & |
---|
| 143 | ONLY: aex, bex, dex, eex |
---|
[1320] | 144 | |
---|
[1517] | 145 | USE arrays_3d, & |
---|
| 146 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 147 | |
---|
[1517] | 148 | USE control_parameters, & |
---|
[1960] | 149 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 150 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 151 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 152 | |
---|
[1517] | 153 | USE cpulog, & |
---|
| 154 | ONLY: cpu_log, log_point_s |
---|
[1] | 155 | |
---|
[1517] | 156 | USE grid_variables, & |
---|
| 157 | ONLY: ddx, ddy |
---|
[1320] | 158 | |
---|
[1517] | 159 | USE indices, & |
---|
[3761] | 160 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
[1320] | 161 | |
---|
[1517] | 162 | USE kinds |
---|
[1] | 163 | |
---|
[1517] | 164 | USE pegrid |
---|
[1] | 165 | |
---|
[1517] | 166 | USE statistics, & |
---|
| 167 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 168 | |
---|
[1320] | 169 | |
---|
[1517] | 170 | IMPLICIT NONE |
---|
| 171 | |
---|
[1682] | 172 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 173 | |
---|
[1682] | 174 | INTEGER(iwp) :: i !< |
---|
| 175 | INTEGER(iwp) :: ix !< |
---|
| 176 | INTEGER(iwp) :: j !< |
---|
| 177 | INTEGER(iwp) :: k !< |
---|
| 178 | INTEGER(iwp) :: ngp !< |
---|
| 179 | INTEGER(iwp) :: sr !< |
---|
| 180 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 181 | |
---|
[1682] | 182 | REAL(wp) :: cim !< |
---|
| 183 | REAL(wp) :: cimf !< |
---|
| 184 | REAL(wp) :: cip !< |
---|
| 185 | REAL(wp) :: cipf !< |
---|
| 186 | REAL(wp) :: d_new !< |
---|
| 187 | REAL(wp) :: denomi !< denominator |
---|
| 188 | REAL(wp) :: fminus !< |
---|
| 189 | REAL(wp) :: fplus !< |
---|
| 190 | REAL(wp) :: f2 !< |
---|
| 191 | REAL(wp) :: f4 !< |
---|
| 192 | REAL(wp) :: f8 !< |
---|
| 193 | REAL(wp) :: f12 !< |
---|
| 194 | REAL(wp) :: f24 !< |
---|
| 195 | REAL(wp) :: f48 !< |
---|
| 196 | REAL(wp) :: f1920 !< |
---|
| 197 | REAL(wp) :: im !< |
---|
| 198 | REAL(wp) :: ip !< |
---|
[2300] | 199 | REAL(wp) :: m1n !< |
---|
| 200 | REAL(wp) :: m1z !< |
---|
[1682] | 201 | REAL(wp) :: m2 !< |
---|
| 202 | REAL(wp) :: m3 !< |
---|
| 203 | REAL(wp) :: numera !< numerator |
---|
| 204 | REAL(wp) :: snenn !< |
---|
| 205 | REAL(wp) :: sterm !< |
---|
| 206 | REAL(wp) :: tendcy !< |
---|
| 207 | REAL(wp) :: t1 !< |
---|
| 208 | REAL(wp) :: t2 !< |
---|
[1517] | 209 | |
---|
[1682] | 210 | REAL(wp) :: fmax(2) !< |
---|
| 211 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 212 | |
---|
| 213 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1] | 214 | |
---|
[1682] | 215 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 216 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 217 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 218 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 219 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 220 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 221 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 222 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 223 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 224 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 225 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 226 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 227 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 228 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 229 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[1517] | 230 | |
---|
[1682] | 231 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 232 | |
---|
| 233 | ! |
---|
[1517] | 234 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 235 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 236 | sk_p = 0.0_wp |
---|
[1] | 237 | |
---|
| 238 | ! |
---|
[1517] | 239 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 240 | f2 = 0.5_wp |
---|
| 241 | f4 = 0.25_wp |
---|
| 242 | f8 = 0.125_wp |
---|
| 243 | f12 = 0.8333333333333333E-01_wp |
---|
| 244 | f24 = 0.4166666666666666E-01_wp |
---|
| 245 | f48 = 0.2083333333333333E-01_wp |
---|
| 246 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 247 | |
---|
| 248 | ! |
---|
[1517] | 249 | !-- Advection in x-direction: |
---|
[1] | 250 | |
---|
| 251 | ! |
---|
[1517] | 252 | !-- Save the quantity to be advected in a local array |
---|
| 253 | !-- add an enlarged boundary in x-direction |
---|
| 254 | DO i = nxl-1, nxr+1 |
---|
| 255 | DO j = nys, nyn |
---|
| 256 | DO k = nzb, nzt+1 |
---|
| 257 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 258 | ENDDO |
---|
[1] | 259 | ENDDO |
---|
| 260 | ENDDO |
---|
| 261 | #if defined( __parallel ) |
---|
[1517] | 262 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 263 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 264 | ! |
---|
[1517] | 265 | !-- Send left boundary, receive right boundary |
---|
| 266 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 267 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 268 | comm2d, status, ierr ) |
---|
[1] | 269 | ! |
---|
[1517] | 270 | !-- Send right boundary, receive left boundary |
---|
| 271 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 272 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 273 | comm2d, status, ierr ) |
---|
| 274 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 275 | #else |
---|
| 276 | |
---|
| 277 | ! |
---|
[1517] | 278 | !-- Cyclic boundary conditions |
---|
| 279 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 280 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 281 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 282 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 283 | #endif |
---|
| 284 | |
---|
| 285 | ! |
---|
[1517] | 286 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 287 | !-- of the temperature field at the left and right boundary of the total |
---|
| 288 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 289 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 290 | IF ( nxl == 0 ) THEN |
---|
| 291 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 292 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 293 | ENDIF |
---|
| 294 | IF ( nxr == nx ) THEN |
---|
| 295 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 296 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 297 | ENDIF |
---|
[1] | 298 | ENDIF |
---|
| 299 | |
---|
| 300 | ! |
---|
[1517] | 301 | !-- Initialise control density |
---|
| 302 | d = 0.0_wp |
---|
[1] | 303 | |
---|
| 304 | ! |
---|
[1517] | 305 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 306 | fmax_l = 0.0_wp |
---|
| 307 | DO i = nxl, nxr |
---|
| 308 | DO j = nys, nyn |
---|
| 309 | DO k = nzb+1, nzt |
---|
| 310 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 311 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 312 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 313 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 314 | ENDDO |
---|
[1] | 315 | ENDDO |
---|
| 316 | ENDDO |
---|
| 317 | #if defined( __parallel ) |
---|
[1517] | 318 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 319 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 320 | #else |
---|
[1517] | 321 | fmax = fmax_l |
---|
[1] | 322 | #endif |
---|
| 323 | |
---|
[1517] | 324 | fmax = 0.04_wp * fmax |
---|
[1] | 325 | |
---|
| 326 | ! |
---|
[1517] | 327 | !-- Allocate temporary arrays |
---|
| 328 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 329 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 330 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 331 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 332 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 333 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 334 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 335 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 336 | ) |
---|
| 337 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 338 | |
---|
| 339 | ! |
---|
[1517] | 340 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 341 | !-- not work if done locally within the loop) |
---|
| 342 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 343 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 344 | |
---|
| 345 | ! |
---|
[1517] | 346 | !-- Outer loop of all j |
---|
| 347 | DO j = nys, nyn |
---|
[1] | 348 | |
---|
| 349 | ! |
---|
[1517] | 350 | !-- Compute polynomial coefficients |
---|
| 351 | DO i = nxl-1, nxr+1 |
---|
| 352 | DO k = nzb+1, nzt |
---|
| 353 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 354 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 355 | + sk_p(k,j,i-1) ) |
---|
| 356 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 357 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 358 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 359 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 360 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 361 | ) * f48 |
---|
| 362 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 363 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 364 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 365 | ENDDO |
---|
[1] | 366 | ENDDO |
---|
| 367 | |
---|
| 368 | ! |
---|
[1517] | 369 | !-- Fluxes using the Bott scheme |
---|
| 370 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 371 | DO i = nxl, nxr |
---|
| 372 | DO k = nzb+1, nzt |
---|
| 373 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 374 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 375 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 376 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 377 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 378 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 379 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 380 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 381 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 382 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 383 | ip = MAX( ip, 0.0_wp ) |
---|
| 384 | im = MAX( im, 0.0_wp ) |
---|
| 385 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 386 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 387 | |
---|
[1517] | 388 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 389 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 390 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 391 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 392 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 393 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 394 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 395 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 396 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 397 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 398 | ip = MAX( ip, 0.0_wp ) |
---|
| 399 | im = MAX( im, 0.0_wp ) |
---|
| 400 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 401 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 402 | ENDDO |
---|
[1] | 403 | ENDDO |
---|
| 404 | |
---|
| 405 | ! |
---|
[1517] | 406 | !-- Compute monitor function m1 |
---|
| 407 | DO i = nxl-2, nxr+2 |
---|
| 408 | DO k = nzb+1, nzt |
---|
| 409 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 410 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 411 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 412 | m1(k,i) = m1z / m1n |
---|
| 413 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 414 | ELSEIF ( m1n < m1z ) THEN |
---|
| 415 | m1(k,i) = -1.0_wp |
---|
| 416 | ELSE |
---|
| 417 | m1(k,i) = 0.0_wp |
---|
| 418 | ENDIF |
---|
| 419 | ENDDO |
---|
[1] | 420 | ENDDO |
---|
| 421 | |
---|
| 422 | ! |
---|
[1517] | 423 | !-- Compute switch sw |
---|
| 424 | sw = 0.0_wp |
---|
| 425 | DO i = nxl-1, nxr+1 |
---|
| 426 | DO k = nzb+1, nzt |
---|
| 427 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 428 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 429 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 430 | |
---|
[1517] | 431 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 432 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 433 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 434 | |
---|
[1517] | 435 | t1 = 0.35_wp |
---|
| 436 | t2 = 0.35_wp |
---|
| 437 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 438 | |
---|
[1517] | 439 | !-- *VOCL STMT,IF(10) |
---|
| 440 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 441 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 442 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 443 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 444 | ) sw(k,i) = 1.0_wp |
---|
| 445 | ENDDO |
---|
[1] | 446 | ENDDO |
---|
| 447 | |
---|
| 448 | ! |
---|
[1517] | 449 | !-- Fluxes using the exponential scheme |
---|
| 450 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 451 | DO i = nxl, nxr |
---|
| 452 | DO k = nzb+1, nzt |
---|
[1] | 453 | |
---|
[1517] | 454 | !-- *VOCL STMT,IF(10) |
---|
| 455 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 456 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 457 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 458 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 459 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 460 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 461 | |
---|
[1517] | 462 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 463 | |
---|
[1517] | 464 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 465 | |
---|
[1517] | 466 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 467 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 468 | eex(ix) - & |
---|
| 469 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 470 | ) & |
---|
| 471 | ) |
---|
| 472 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 473 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 474 | |
---|
[1517] | 475 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 476 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 477 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 478 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 479 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 480 | |
---|
[1517] | 481 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 482 | |
---|
[1517] | 483 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 484 | |
---|
[1517] | 485 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 486 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 487 | eex(ix) - & |
---|
| 488 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 489 | ) & |
---|
| 490 | ) |
---|
| 491 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 492 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 493 | ENDIF |
---|
[1] | 494 | |
---|
[1517] | 495 | !-- *VOCL STMT,IF(10) |
---|
| 496 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 497 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 498 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 499 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 500 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 501 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 502 | |
---|
[1517] | 503 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 504 | |
---|
[1517] | 505 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 506 | |
---|
[1517] | 507 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 508 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 509 | eex(ix) - & |
---|
| 510 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 511 | ) & |
---|
| 512 | ) |
---|
| 513 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 514 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 515 | ENDIF |
---|
[1] | 516 | |
---|
[1517] | 517 | !-- *VOCL STMT,IF(10) |
---|
| 518 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 519 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 520 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 521 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 522 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 523 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 524 | |
---|
[1517] | 525 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 526 | |
---|
[1517] | 527 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 528 | |
---|
[1517] | 529 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 530 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 531 | eex(ix) - & |
---|
| 532 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 533 | ) & |
---|
| 534 | ) |
---|
| 535 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 536 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 537 | ENDIF |
---|
[1] | 538 | |
---|
[1517] | 539 | ENDDO |
---|
[1] | 540 | ENDDO |
---|
[1517] | 541 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 542 | |
---|
| 543 | ! |
---|
[1517] | 544 | !-- Prognostic equation |
---|
| 545 | DO i = nxl, nxr |
---|
| 546 | DO k = nzb+1, nzt |
---|
| 547 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 548 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 549 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 550 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 551 | tendcy = fplus - fminus |
---|
[1] | 552 | ! |
---|
[1517] | 553 | !-- Removed in order to optimize speed |
---|
| 554 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 555 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 556 | ! |
---|
[1517] | 557 | !-- Density correction because of possible remaining divergences |
---|
| 558 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 559 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 560 | ( 1.0_wp + d_new ) |
---|
| 561 | d(k,j,i) = d_new |
---|
| 562 | ENDDO |
---|
[1] | 563 | ENDDO |
---|
| 564 | |
---|
[1517] | 565 | ENDDO ! End of the advection in x-direction |
---|
[1] | 566 | |
---|
| 567 | ! |
---|
[1517] | 568 | !-- Deallocate temporary arrays |
---|
| 569 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 570 | ippb, ippe, m1, sw ) |
---|
[1] | 571 | |
---|
| 572 | |
---|
| 573 | ! |
---|
[1517] | 574 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 575 | #if defined( __parallel ) |
---|
[1517] | 576 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 577 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 578 | type_xz_2, ierr ) |
---|
| 579 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 580 | ! |
---|
[1517] | 581 | !-- Send front boundary, receive rear boundary |
---|
| 582 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 583 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 584 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 585 | comm2d, status, ierr ) |
---|
[1] | 586 | ! |
---|
[1517] | 587 | !-- Send rear boundary, receive front boundary |
---|
| 588 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 589 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 590 | comm2d, status, ierr ) |
---|
| 591 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 592 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 593 | #else |
---|
[1517] | 594 | DO i = nxl, nxr |
---|
| 595 | DO k = nzb+1, nzt |
---|
| 596 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 597 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 598 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 599 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 600 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 601 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 602 | ENDDO |
---|
[1] | 603 | ENDDO |
---|
| 604 | #endif |
---|
| 605 | |
---|
| 606 | ! |
---|
[1517] | 607 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 608 | fmax_l = 0.0_wp |
---|
| 609 | DO i = nxl, nxr |
---|
| 610 | DO j = nys, nyn |
---|
| 611 | DO k = nzb+1, nzt |
---|
| 612 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 613 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 614 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 615 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 616 | ENDDO |
---|
[1] | 617 | ENDDO |
---|
| 618 | ENDDO |
---|
| 619 | #if defined( __parallel ) |
---|
[1517] | 620 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 621 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 622 | #else |
---|
[1517] | 623 | fmax = fmax_l |
---|
[1] | 624 | #endif |
---|
| 625 | |
---|
[1517] | 626 | fmax = 0.04_wp * fmax |
---|
[1] | 627 | |
---|
| 628 | ! |
---|
[1517] | 629 | !-- Allocate temporary arrays |
---|
| 630 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 631 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 632 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 633 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 634 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 635 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 636 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 637 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 638 | ) |
---|
| 639 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 640 | |
---|
| 641 | ! |
---|
[1517] | 642 | !-- Outer loop of all i |
---|
| 643 | DO i = nxl, nxr |
---|
[1] | 644 | |
---|
| 645 | ! |
---|
[1517] | 646 | !-- Compute polynomial coefficients |
---|
| 647 | DO j = nys-1, nyn+1 |
---|
| 648 | DO k = nzb+1, nzt |
---|
| 649 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 650 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 651 | + sk_p(k,j-1,i) ) |
---|
| 652 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 653 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 654 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 655 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 656 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 657 | ) * f48 |
---|
| 658 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 659 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 660 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 661 | ENDDO |
---|
[1] | 662 | ENDDO |
---|
| 663 | |
---|
| 664 | ! |
---|
[1517] | 665 | !-- Fluxes using the Bott scheme |
---|
| 666 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 667 | DO j = nys, nyn |
---|
| 668 | DO k = nzb+1, nzt |
---|
| 669 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 670 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 671 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 672 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 673 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 674 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 675 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 676 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 677 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 678 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 679 | ip = MAX( ip, 0.0_wp ) |
---|
| 680 | im = MAX( im, 0.0_wp ) |
---|
| 681 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 682 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 683 | |
---|
[1517] | 684 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 685 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 686 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 687 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 688 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 689 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 690 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 691 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 692 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 693 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 694 | ip = MAX( ip, 0.0_wp ) |
---|
| 695 | im = MAX( im, 0.0_wp ) |
---|
| 696 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 697 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 698 | ENDDO |
---|
[1] | 699 | ENDDO |
---|
| 700 | |
---|
| 701 | ! |
---|
[1517] | 702 | !-- Compute monitor function m1 |
---|
| 703 | DO j = nys-2, nyn+2 |
---|
| 704 | DO k = nzb+1, nzt |
---|
| 705 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 706 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 707 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 708 | m1(k,j) = m1z / m1n |
---|
| 709 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 710 | ELSEIF ( m1n < m1z ) THEN |
---|
| 711 | m1(k,j) = -1.0_wp |
---|
| 712 | ELSE |
---|
| 713 | m1(k,j) = 0.0_wp |
---|
| 714 | ENDIF |
---|
| 715 | ENDDO |
---|
[1] | 716 | ENDDO |
---|
| 717 | |
---|
| 718 | ! |
---|
[1517] | 719 | !-- Compute switch sw |
---|
| 720 | sw = 0.0_wp |
---|
| 721 | DO j = nys-1, nyn+1 |
---|
| 722 | DO k = nzb+1, nzt |
---|
| 723 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 724 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 725 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 726 | |
---|
[1517] | 727 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 728 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 729 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 730 | |
---|
[1517] | 731 | t1 = 0.35_wp |
---|
| 732 | t2 = 0.35_wp |
---|
| 733 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 734 | |
---|
[1517] | 735 | !-- *VOCL STMT,IF(10) |
---|
| 736 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 737 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 738 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 739 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 740 | ) sw(k,j) = 1.0_wp |
---|
| 741 | ENDDO |
---|
[1] | 742 | ENDDO |
---|
| 743 | |
---|
| 744 | ! |
---|
[1517] | 745 | !-- Fluxes using exponential scheme |
---|
| 746 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 747 | DO j = nys, nyn |
---|
| 748 | DO k = nzb+1, nzt |
---|
[1] | 749 | |
---|
[1517] | 750 | !-- *VOCL STMT,IF(10) |
---|
| 751 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 752 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 753 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 754 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 755 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 756 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 757 | |
---|
[1517] | 758 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 759 | |
---|
[1517] | 760 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 761 | |
---|
[1517] | 762 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 763 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 764 | eex(ix) - & |
---|
| 765 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 766 | ) & |
---|
| 767 | ) |
---|
| 768 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 769 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 770 | |
---|
[1517] | 771 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 772 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 773 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 774 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 775 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 776 | |
---|
[1517] | 777 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 778 | |
---|
[1517] | 779 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 780 | |
---|
[1517] | 781 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 782 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 783 | eex(ix) - & |
---|
| 784 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 785 | ) & |
---|
| 786 | ) |
---|
| 787 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 788 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 789 | ENDIF |
---|
[1] | 790 | |
---|
[1517] | 791 | !-- *VOCL STMT,IF(10) |
---|
| 792 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 793 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 794 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 795 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 796 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 797 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 798 | |
---|
[1517] | 799 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 800 | |
---|
[1517] | 801 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 802 | |
---|
[1517] | 803 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 804 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 805 | eex(ix) - & |
---|
| 806 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 807 | ) & |
---|
| 808 | ) |
---|
| 809 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 810 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 811 | ENDIF |
---|
[1] | 812 | |
---|
[1517] | 813 | !-- *VOCL STMT,IF(10) |
---|
| 814 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 815 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 816 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 817 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 818 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 819 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 820 | |
---|
[1517] | 821 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 822 | |
---|
[1517] | 823 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 824 | |
---|
[1517] | 825 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 826 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 827 | eex(ix) - & |
---|
| 828 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 829 | ) & |
---|
| 830 | ) |
---|
| 831 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 832 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 833 | ENDIF |
---|
[1] | 834 | |
---|
[1517] | 835 | ENDDO |
---|
[1] | 836 | ENDDO |
---|
[1517] | 837 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 838 | |
---|
| 839 | ! |
---|
[1517] | 840 | !-- Prognostic equation |
---|
| 841 | DO j = nys, nyn |
---|
| 842 | DO k = nzb+1, nzt |
---|
| 843 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 844 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 845 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 846 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 847 | tendcy = fplus - fminus |
---|
[1] | 848 | ! |
---|
[1517] | 849 | !-- Removed in order to optimise speed |
---|
| 850 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 851 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 852 | ! |
---|
[1517] | 853 | !-- Density correction because of possible remaining divergences |
---|
| 854 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 855 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 856 | ( 1.0_wp + d_new ) |
---|
| 857 | d(k,j,i) = d_new |
---|
| 858 | ENDDO |
---|
[1] | 859 | ENDDO |
---|
| 860 | |
---|
[1517] | 861 | ENDDO ! End of the advection in y-direction |
---|
| 862 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 863 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 864 | |
---|
| 865 | ! |
---|
[1517] | 866 | !-- Deallocate temporary arrays |
---|
| 867 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 868 | ippb, ippe, m1, sw ) |
---|
[1] | 869 | |
---|
| 870 | |
---|
| 871 | ! |
---|
[1517] | 872 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 873 | !-- UP flow_statistics) |
---|
| 874 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 875 | |
---|
| 876 | ! |
---|
[1517] | 877 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 878 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 879 | |
---|
| 880 | ! |
---|
[1517] | 881 | !-- Temperature boundary condition at the bottom boundary |
---|
| 882 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 883 | ! |
---|
| 884 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 885 | DO i = nxl, nxr |
---|
| 886 | DO j = nys, nyn |
---|
| 887 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 888 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 889 | ENDDO |
---|
[1] | 890 | ENDDO |
---|
| 891 | |
---|
[1517] | 892 | ELSE |
---|
[1] | 893 | ! |
---|
[1517] | 894 | !-- Neumann (i.e. here zero gradient) |
---|
| 895 | DO i = nxl, nxr |
---|
| 896 | DO j = nys, nyn |
---|
| 897 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 898 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 899 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 900 | ENDDO |
---|
| 901 | ENDDO |
---|
| 902 | |
---|
| 903 | ENDIF |
---|
| 904 | |
---|
| 905 | ! |
---|
| 906 | !-- Temperature boundary condition at the top boundary |
---|
| 907 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 908 | ! |
---|
| 909 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 910 | DO i = nxl, nxr |
---|
| 911 | DO j = nys, nyn |
---|
| 912 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 913 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 914 | ENDDO |
---|
| 915 | ENDDO |
---|
| 916 | |
---|
| 917 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 918 | ! |
---|
| 919 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 920 | DO i = nxl, nxr |
---|
| 921 | DO j = nys, nyn |
---|
| 922 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 923 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 924 | ENDDO |
---|
| 925 | ENDDO |
---|
| 926 | |
---|
| 927 | ENDIF |
---|
| 928 | |
---|
| 929 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 930 | |
---|
| 931 | ! |
---|
| 932 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 933 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 934 | DO i = nxl, nxr |
---|
| 935 | DO j = nys, nyn |
---|
[216] | 936 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 937 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 938 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 939 | ENDDO |
---|
| 940 | ENDDO |
---|
| 941 | |
---|
| 942 | ! |
---|
[1517] | 943 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 944 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 945 | DO i = nxl, nxr |
---|
| 946 | DO j = nys, nyn |
---|
[63] | 947 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 948 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 949 | ENDDO |
---|
| 950 | ENDDO |
---|
| 951 | |
---|
[1517] | 952 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 953 | |
---|
[1] | 954 | ! |
---|
[1517] | 955 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 956 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 957 | DO i = nxl, nxr |
---|
| 958 | DO j = nys, nyn |
---|
[1517] | 959 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 960 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 961 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 962 | ENDDO |
---|
| 963 | ENDDO |
---|
| 964 | |
---|
| 965 | ! |
---|
[1517] | 966 | !-- Specific humidity boundary condition at the top boundary |
---|
| 967 | IF ( ibc_q_t == 0 ) THEN |
---|
| 968 | ! |
---|
| 969 | !-- Dirichlet |
---|
| 970 | DO i = nxl, nxr |
---|
| 971 | DO j = nys, nyn |
---|
| 972 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 973 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 974 | ENDDO |
---|
| 975 | ENDDO |
---|
[1] | 976 | |
---|
[1517] | 977 | ELSE |
---|
[1] | 978 | ! |
---|
[1517] | 979 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 980 | DO i = nxl, nxr |
---|
| 981 | DO j = nys, nyn |
---|
| 982 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 983 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 984 | ENDDO |
---|
| 985 | ENDDO |
---|
[1] | 986 | |
---|
[1517] | 987 | ENDIF |
---|
[1] | 988 | |
---|
[1960] | 989 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 990 | ! |
---|
| 991 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 992 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 993 | DO i = nxl, nxr |
---|
| 994 | DO j = nys, nyn |
---|
| 995 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 996 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 997 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 998 | ENDDO |
---|
| 999 | ENDDO |
---|
| 1000 | |
---|
| 1001 | ! |
---|
| 1002 | !-- Specific scalar boundary condition at the top boundary |
---|
| 1003 | IF ( ibc_s_t == 0 ) THEN |
---|
| 1004 | ! |
---|
| 1005 | !-- Dirichlet |
---|
| 1006 | DO i = nxl, nxr |
---|
| 1007 | DO j = nys, nyn |
---|
| 1008 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1009 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1010 | ENDDO |
---|
| 1011 | ENDDO |
---|
| 1012 | |
---|
| 1013 | ELSE |
---|
| 1014 | ! |
---|
| 1015 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 1016 | DO i = nxl, nxr |
---|
| 1017 | DO j = nys, nyn |
---|
| 1018 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1019 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDDO |
---|
| 1022 | |
---|
| 1023 | ENDIF |
---|
| 1024 | |
---|
[2292] | 1025 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
| 1026 | |
---|
| 1027 | ! |
---|
| 1028 | !-- Cloud water content boundary condition at the bottom boundary: |
---|
| 1029 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1030 | DO i = nxl, nxr |
---|
| 1031 | DO j = nys, nyn |
---|
| 1032 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1033 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1034 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1035 | ENDDO |
---|
| 1036 | ENDDO |
---|
| 1037 | |
---|
| 1038 | ! |
---|
| 1039 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
| 1040 | DO i = nxl, nxr |
---|
| 1041 | DO j = nys, nyn |
---|
| 1042 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1043 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1044 | ENDDO |
---|
| 1045 | ENDDO |
---|
| 1046 | |
---|
[1517] | 1047 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 1048 | |
---|
[1] | 1049 | ! |
---|
[1517] | 1050 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 1051 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1052 | DO i = nxl, nxr |
---|
| 1053 | DO j = nys, nyn |
---|
| 1054 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1055 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1056 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1057 | ENDDO |
---|
[97] | 1058 | ENDDO |
---|
| 1059 | |
---|
| 1060 | ! |
---|
[1517] | 1061 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 1062 | DO i = nxl, nxr |
---|
| 1063 | DO j = nys, nyn |
---|
[63] | 1064 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1065 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | |
---|
[2292] | 1069 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
| 1070 | |
---|
| 1071 | ! |
---|
| 1072 | !-- Cloud drop concentration boundary condition at the bottom boundary: |
---|
| 1073 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
| 1074 | DO i = nxl, nxr |
---|
| 1075 | DO j = nys, nyn |
---|
| 1076 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1077 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1078 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1079 | ENDDO |
---|
| 1080 | ENDDO |
---|
| 1081 | |
---|
| 1082 | ! |
---|
| 1083 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1084 | DO i = nxl, nxr |
---|
| 1085 | DO j = nys, nyn |
---|
| 1086 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1087 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | |
---|
[1517] | 1091 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1092 | |
---|
[1] | 1093 | ! |
---|
[1517] | 1094 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1095 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1096 | DO i = nxl, nxr |
---|
| 1097 | DO j = nys, nyn |
---|
[1517] | 1098 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1099 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1100 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1101 | ENDDO |
---|
| 1102 | ENDDO |
---|
| 1103 | |
---|
[1361] | 1104 | ! |
---|
[1517] | 1105 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1106 | DO i = nxl, nxr |
---|
| 1107 | DO j = nys, nyn |
---|
| 1108 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1109 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1110 | ENDDO |
---|
[1361] | 1111 | ENDDO |
---|
| 1112 | |
---|
[1517] | 1113 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1114 | |
---|
| 1115 | ! |
---|
[1517] | 1116 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1117 | DO i = nxl, nxr |
---|
| 1118 | DO j = nys, nyn |
---|
| 1119 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1120 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1121 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1122 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1123 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1124 | ENDDO |
---|
[1361] | 1125 | ENDDO |
---|
| 1126 | |
---|
[1517] | 1127 | ELSE |
---|
[1361] | 1128 | |
---|
[1517] | 1129 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1130 | 'tion for variable "', sk_char, '"' |
---|
| 1131 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1132 | |
---|
| 1133 | ENDIF |
---|
[1] | 1134 | |
---|
| 1135 | ! |
---|
[1517] | 1136 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1137 | fmax_l = 0.0_wp |
---|
[97] | 1138 | DO i = nxl, nxr |
---|
| 1139 | DO j = nys, nyn |
---|
[1517] | 1140 | DO k = nzb, nzt+1 |
---|
| 1141 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1142 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1143 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1144 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1145 | ENDDO |
---|
[97] | 1146 | ENDDO |
---|
| 1147 | ENDDO |
---|
[1] | 1148 | #if defined( __parallel ) |
---|
[1517] | 1149 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1150 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1151 | #else |
---|
[1517] | 1152 | fmax = fmax_l |
---|
[1] | 1153 | #endif |
---|
| 1154 | |
---|
[1517] | 1155 | fmax = 0.04_wp * fmax |
---|
[1] | 1156 | |
---|
| 1157 | ! |
---|
[1517] | 1158 | !-- Allocate temporary arrays |
---|
| 1159 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1160 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1161 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1162 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1163 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1164 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1165 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1166 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1167 | ) |
---|
| 1168 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1169 | |
---|
| 1170 | ! |
---|
[1517] | 1171 | !-- Outer loop of all i |
---|
| 1172 | DO i = nxl, nxr |
---|
[1] | 1173 | |
---|
| 1174 | ! |
---|
[1517] | 1175 | !-- Compute polynomial coefficients |
---|
| 1176 | DO j = nys, nyn |
---|
| 1177 | DO k = nzb, nzt+1 |
---|
| 1178 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1179 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1180 | + sk_p(k-1,j,i) ) |
---|
| 1181 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1182 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1183 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1184 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1185 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1186 | ) * f48 |
---|
| 1187 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1188 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1189 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1190 | ENDDO |
---|
[1] | 1191 | ENDDO |
---|
| 1192 | |
---|
| 1193 | ! |
---|
[1517] | 1194 | !-- Fluxes using the Bott scheme |
---|
| 1195 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1196 | DO j = nys, nyn |
---|
| 1197 | DO k = nzb+1, nzt |
---|
| 1198 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1199 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1200 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1201 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1202 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1203 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1204 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1205 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1206 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1207 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1208 | ip = MAX( ip, 0.0_wp ) |
---|
| 1209 | im = MAX( im, 0.0_wp ) |
---|
| 1210 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1211 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1212 | |
---|
[1517] | 1213 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1214 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1215 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1216 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1217 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1218 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1219 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1220 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1221 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1222 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1223 | ip = MAX( ip, 0.0_wp ) |
---|
| 1224 | im = MAX( im, 0.0_wp ) |
---|
| 1225 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1226 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1227 | ENDDO |
---|
[1] | 1228 | ENDDO |
---|
| 1229 | |
---|
| 1230 | ! |
---|
[1517] | 1231 | !-- Compute monitor function m1 |
---|
| 1232 | DO j = nys, nyn |
---|
| 1233 | DO k = nzb-1, nzt+2 |
---|
| 1234 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1235 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1236 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1237 | m1(k,j) = m1z / m1n |
---|
| 1238 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1239 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1240 | m1(k,j) = -1.0_wp |
---|
| 1241 | ELSE |
---|
| 1242 | m1(k,j) = 0.0_wp |
---|
| 1243 | ENDIF |
---|
| 1244 | ENDDO |
---|
[1] | 1245 | ENDDO |
---|
| 1246 | |
---|
| 1247 | ! |
---|
[1517] | 1248 | !-- Compute switch sw |
---|
| 1249 | sw = 0.0_wp |
---|
| 1250 | DO j = nys, nyn |
---|
| 1251 | DO k = nzb, nzt+1 |
---|
| 1252 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1253 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1254 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1255 | |
---|
[1517] | 1256 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1257 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1258 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1259 | |
---|
[1517] | 1260 | t1 = 0.35_wp |
---|
| 1261 | t2 = 0.35_wp |
---|
| 1262 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1263 | |
---|
[1517] | 1264 | !-- *VOCL STMT,IF(10) |
---|
| 1265 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1266 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1267 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1268 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1269 | ) sw(k,j) = 1.0_wp |
---|
| 1270 | ENDDO |
---|
[1] | 1271 | ENDDO |
---|
| 1272 | |
---|
| 1273 | ! |
---|
[1517] | 1274 | !-- Fluxes using exponential scheme |
---|
| 1275 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1276 | DO j = nys, nyn |
---|
| 1277 | DO k = nzb+1, nzt |
---|
[1] | 1278 | |
---|
[1517] | 1279 | !-- *VOCL STMT,IF(10) |
---|
| 1280 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1281 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1282 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1283 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1284 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1285 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1286 | |
---|
[1517] | 1287 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1288 | |
---|
[1517] | 1289 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1290 | |
---|
[1517] | 1291 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1292 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1293 | eex(ix) - & |
---|
| 1294 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1295 | ) & |
---|
| 1296 | ) |
---|
| 1297 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1298 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1299 | |
---|
[1517] | 1300 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1301 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1302 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1303 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1304 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1305 | |
---|
[1517] | 1306 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1307 | |
---|
[1517] | 1308 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1309 | |
---|
[1517] | 1310 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1311 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1312 | eex(ix) - & |
---|
| 1313 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1314 | ) & |
---|
| 1315 | ) |
---|
| 1316 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1317 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1318 | ENDIF |
---|
[1] | 1319 | |
---|
[1517] | 1320 | !-- *VOCL STMT,IF(10) |
---|
| 1321 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1322 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1323 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1324 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1325 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1326 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1327 | |
---|
[1517] | 1328 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1329 | |
---|
[1517] | 1330 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1331 | |
---|
[1517] | 1332 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1333 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1334 | eex(ix) - & |
---|
| 1335 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1336 | ) & |
---|
| 1337 | ) |
---|
| 1338 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1339 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1340 | ENDIF |
---|
[1] | 1341 | |
---|
[1517] | 1342 | !-- *VOCL STMT,IF(10) |
---|
| 1343 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1344 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1345 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1346 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1347 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1348 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1349 | |
---|
[1517] | 1350 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1351 | |
---|
[1517] | 1352 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1353 | |
---|
[1517] | 1354 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1355 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1356 | eex(ix) - & |
---|
| 1357 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1358 | ) & |
---|
| 1359 | ) |
---|
| 1360 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1361 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1362 | ENDIF |
---|
[1] | 1363 | |
---|
[1517] | 1364 | ENDDO |
---|
[1] | 1365 | ENDDO |
---|
[1517] | 1366 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1367 | |
---|
| 1368 | ! |
---|
[1517] | 1369 | !-- Prognostic equation |
---|
| 1370 | DO j = nys, nyn |
---|
| 1371 | DO k = nzb+1, nzt |
---|
| 1372 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1373 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1374 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1375 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1376 | tendcy = fplus - fminus |
---|
[1] | 1377 | ! |
---|
[1517] | 1378 | !-- Removed in order to optimise speed |
---|
| 1379 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1380 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1381 | ! |
---|
[1517] | 1382 | !-- Density correction because of possible remaining divergences |
---|
| 1383 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1384 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1385 | ( 1.0_wp + d_new ) |
---|
[1] | 1386 | ! |
---|
[1517] | 1387 | !-- Store heat flux for subsequent statistics output. |
---|
| 1388 | !-- array m1 is here used as temporary storage |
---|
| 1389 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1390 | ENDDO |
---|
[1] | 1391 | ENDDO |
---|
| 1392 | |
---|
| 1393 | ! |
---|
[1517] | 1394 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1395 | IF ( sk_char == 'pt' ) THEN |
---|
| 1396 | DO sr = 0, statistic_regions |
---|
| 1397 | DO j = nys, nyn |
---|
| 1398 | DO k = nzb+1, nzt |
---|
| 1399 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1400 | m1(k,j) * rmask(j,i,sr) |
---|
| 1401 | ENDDO |
---|
[1] | 1402 | ENDDO |
---|
| 1403 | ENDDO |
---|
[1517] | 1404 | ENDIF |
---|
[1] | 1405 | |
---|
[1517] | 1406 | ENDDO ! End of the advection in z-direction |
---|
| 1407 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1408 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1409 | |
---|
| 1410 | ! |
---|
[1517] | 1411 | !-- Deallocate temporary arrays |
---|
| 1412 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1413 | ippb, ippe, m1, sw ) |
---|
[1] | 1414 | |
---|
| 1415 | ! |
---|
[1517] | 1416 | !-- Store results as tendency and deallocate local array |
---|
| 1417 | DO i = nxl, nxr |
---|
| 1418 | DO j = nys, nyn |
---|
| 1419 | DO k = nzb+1, nzt |
---|
| 1420 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1421 | ENDDO |
---|
[1] | 1422 | ENDDO |
---|
| 1423 | ENDDO |
---|
| 1424 | |
---|
[1517] | 1425 | DEALLOCATE( sk_p ) |
---|
[1] | 1426 | |
---|
[1517] | 1427 | END SUBROUTINE advec_s_bc |
---|
| 1428 | |
---|
| 1429 | END MODULE advec_s_bc_mod |
---|