[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 2718 2018-01-02 08:49:38Z Giersch $ |
---|
[2716] | 27 | ! Corrected "Former revisions" section |
---|
| 28 | ! |
---|
| 29 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 30 | ! Change in file header (GPL part) |
---|
| 31 | ! |
---|
| 32 | ! 2300 2017-06-29 13:31:14Z raasch |
---|
[2300] | 33 | ! NEC related code removed |
---|
| 34 | ! |
---|
| 35 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 36 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 37 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 38 | ! and cloud water content (qc). |
---|
| 39 | ! |
---|
| 40 | ! 2101 2017-01-05 16:42:31Z suehring |
---|
[1321] | 41 | ! |
---|
[2001] | 42 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 43 | ! Forced header and separation lines into 80 columns |
---|
| 44 | ! |
---|
[1961] | 45 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 46 | ! New CASE statement to treat scalars and humidity separately |
---|
| 47 | ! |
---|
[1874] | 48 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 49 | ! Module renamed (removed _mod) |
---|
| 50 | ! |
---|
| 51 | ! |
---|
[1851] | 52 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 53 | ! Module renamed |
---|
| 54 | ! |
---|
| 55 | ! |
---|
[1816] | 56 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 57 | ! comment change |
---|
| 58 | ! |
---|
[1692] | 59 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 60 | ! Formatting corrections |
---|
| 61 | ! |
---|
[1683] | 62 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 63 | ! Code annotations made doxygen readable |
---|
| 64 | ! |
---|
[1518] | 65 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 66 | ! interface added to advec_s_bc |
---|
| 67 | ! |
---|
[1375] | 68 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 69 | ! missing variables added to ONLY list |
---|
| 70 | ! |
---|
[1362] | 71 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 72 | ! nr and qr added |
---|
| 73 | ! |
---|
[1354] | 74 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 75 | ! REAL constants provided with KIND-attribute |
---|
| 76 | ! |
---|
[1347] | 77 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 78 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 79 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 80 | ! |
---|
[1321] | 81 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 82 | ! ONLY-attribute added to USE-statements, |
---|
| 83 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 84 | ! kinds are defined in new module kinds, |
---|
| 85 | ! revision history before 2012 removed, |
---|
| 86 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 87 | ! all variable declaration statements |
---|
[1] | 88 | ! |
---|
[1319] | 89 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 90 | ! module interfaces removed |
---|
| 91 | ! |
---|
[1093] | 92 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 93 | ! unused variables removed |
---|
| 94 | ! |
---|
[1037] | 95 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 96 | ! code put under GPL (PALM 3.9) |
---|
| 97 | ! |
---|
[1011] | 98 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 99 | ! cpp switch __nopointer added for pointer free version |
---|
| 100 | ! |
---|
[1] | 101 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 102 | ! Initial revision |
---|
| 103 | ! |
---|
| 104 | ! |
---|
| 105 | ! Description: |
---|
| 106 | ! ------------ |
---|
[1682] | 107 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 108 | !> Computation in individual steps for each of the three dimensions. |
---|
| 109 | !> Limiting assumptions: |
---|
| 110 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 111 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 112 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 113 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 114 | !> stretched grids. |
---|
| 115 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 116 | !------------------------------------------------------------------------------! |
---|
[1682] | 117 | MODULE advec_s_bc_mod |
---|
| 118 | |
---|
[1] | 119 | |
---|
[1517] | 120 | PRIVATE |
---|
| 121 | PUBLIC advec_s_bc |
---|
[1320] | 122 | |
---|
[1517] | 123 | INTERFACE advec_s_bc |
---|
| 124 | MODULE PROCEDURE advec_s_bc |
---|
| 125 | END INTERFACE advec_s_bc |
---|
[1320] | 126 | |
---|
[1517] | 127 | CONTAINS |
---|
[1320] | 128 | |
---|
[1682] | 129 | !------------------------------------------------------------------------------! |
---|
| 130 | ! Description: |
---|
| 131 | ! ------------ |
---|
| 132 | !> @todo Missing subroutine description. |
---|
| 133 | !------------------------------------------------------------------------------! |
---|
[1517] | 134 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 135 | |
---|
[1517] | 136 | USE advection, & |
---|
| 137 | ONLY: aex, bex, dex, eex |
---|
[1320] | 138 | |
---|
[1517] | 139 | USE arrays_3d, & |
---|
| 140 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 141 | |
---|
[1517] | 142 | USE control_parameters, & |
---|
[1960] | 143 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 144 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 145 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 146 | |
---|
[1517] | 147 | USE cpulog, & |
---|
| 148 | ONLY: cpu_log, log_point_s |
---|
[1] | 149 | |
---|
[1517] | 150 | USE grid_variables, & |
---|
| 151 | ONLY: ddx, ddy |
---|
[1320] | 152 | |
---|
[1517] | 153 | USE indices, & |
---|
| 154 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 155 | |
---|
[1517] | 156 | USE kinds |
---|
[1] | 157 | |
---|
[1517] | 158 | USE pegrid |
---|
[1] | 159 | |
---|
[1517] | 160 | USE statistics, & |
---|
| 161 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 162 | |
---|
[1320] | 163 | |
---|
[1517] | 164 | IMPLICIT NONE |
---|
| 165 | |
---|
[1682] | 166 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 167 | |
---|
[1682] | 168 | INTEGER(iwp) :: i !< |
---|
| 169 | INTEGER(iwp) :: ix !< |
---|
| 170 | INTEGER(iwp) :: j !< |
---|
| 171 | INTEGER(iwp) :: k !< |
---|
| 172 | INTEGER(iwp) :: ngp !< |
---|
| 173 | INTEGER(iwp) :: sr !< |
---|
| 174 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 175 | |
---|
[1682] | 176 | REAL(wp) :: cim !< |
---|
| 177 | REAL(wp) :: cimf !< |
---|
| 178 | REAL(wp) :: cip !< |
---|
| 179 | REAL(wp) :: cipf !< |
---|
| 180 | REAL(wp) :: d_new !< |
---|
| 181 | REAL(wp) :: denomi !< denominator |
---|
| 182 | REAL(wp) :: fminus !< |
---|
| 183 | REAL(wp) :: fplus !< |
---|
| 184 | REAL(wp) :: f2 !< |
---|
| 185 | REAL(wp) :: f4 !< |
---|
| 186 | REAL(wp) :: f8 !< |
---|
| 187 | REAL(wp) :: f12 !< |
---|
| 188 | REAL(wp) :: f24 !< |
---|
| 189 | REAL(wp) :: f48 !< |
---|
| 190 | REAL(wp) :: f1920 !< |
---|
| 191 | REAL(wp) :: im !< |
---|
| 192 | REAL(wp) :: ip !< |
---|
[2300] | 193 | REAL(wp) :: m1n !< |
---|
| 194 | REAL(wp) :: m1z !< |
---|
[1682] | 195 | REAL(wp) :: m2 !< |
---|
| 196 | REAL(wp) :: m3 !< |
---|
| 197 | REAL(wp) :: numera !< numerator |
---|
| 198 | REAL(wp) :: snenn !< |
---|
| 199 | REAL(wp) :: sterm !< |
---|
| 200 | REAL(wp) :: tendcy !< |
---|
| 201 | REAL(wp) :: t1 !< |
---|
| 202 | REAL(wp) :: t2 !< |
---|
[1517] | 203 | |
---|
[1682] | 204 | REAL(wp) :: fmax(2) !< |
---|
| 205 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 206 | |
---|
[1010] | 207 | #if defined( __nopointer ) |
---|
[1682] | 208 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 209 | #else |
---|
[1517] | 210 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 211 | #endif |
---|
[1] | 212 | |
---|
[1682] | 213 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 214 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 215 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 216 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 217 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 218 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 219 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 220 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 221 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 222 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 223 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 224 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 225 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 226 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 227 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[1517] | 228 | |
---|
[1682] | 229 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 230 | |
---|
| 231 | ! |
---|
[1517] | 232 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 233 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 234 | sk_p = 0.0_wp |
---|
[1] | 235 | |
---|
| 236 | ! |
---|
[1517] | 237 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 238 | f2 = 0.5_wp |
---|
| 239 | f4 = 0.25_wp |
---|
| 240 | f8 = 0.125_wp |
---|
| 241 | f12 = 0.8333333333333333E-01_wp |
---|
| 242 | f24 = 0.4166666666666666E-01_wp |
---|
| 243 | f48 = 0.2083333333333333E-01_wp |
---|
| 244 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 245 | |
---|
| 246 | ! |
---|
[1517] | 247 | !-- Advection in x-direction: |
---|
[1] | 248 | |
---|
| 249 | ! |
---|
[1517] | 250 | !-- Save the quantity to be advected in a local array |
---|
| 251 | !-- add an enlarged boundary in x-direction |
---|
| 252 | DO i = nxl-1, nxr+1 |
---|
| 253 | DO j = nys, nyn |
---|
| 254 | DO k = nzb, nzt+1 |
---|
| 255 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 256 | ENDDO |
---|
[1] | 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | #if defined( __parallel ) |
---|
[1517] | 260 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 261 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 262 | ! |
---|
[1517] | 263 | !-- Send left boundary, receive right boundary |
---|
| 264 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 265 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 266 | comm2d, status, ierr ) |
---|
[1] | 267 | ! |
---|
[1517] | 268 | !-- Send right boundary, receive left boundary |
---|
| 269 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 270 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 271 | comm2d, status, ierr ) |
---|
| 272 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 273 | #else |
---|
| 274 | |
---|
| 275 | ! |
---|
[1517] | 276 | !-- Cyclic boundary conditions |
---|
| 277 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 278 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 279 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 280 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 281 | #endif |
---|
| 282 | |
---|
| 283 | ! |
---|
[1517] | 284 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 285 | !-- of the temperature field at the left and right boundary of the total |
---|
| 286 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 287 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 288 | IF ( nxl == 0 ) THEN |
---|
| 289 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 290 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 291 | ENDIF |
---|
| 292 | IF ( nxr == nx ) THEN |
---|
| 293 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 294 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 295 | ENDIF |
---|
[1] | 296 | ENDIF |
---|
| 297 | |
---|
| 298 | ! |
---|
[1517] | 299 | !-- Initialise control density |
---|
| 300 | d = 0.0_wp |
---|
[1] | 301 | |
---|
| 302 | ! |
---|
[1517] | 303 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 304 | fmax_l = 0.0_wp |
---|
| 305 | DO i = nxl, nxr |
---|
| 306 | DO j = nys, nyn |
---|
| 307 | DO k = nzb+1, nzt |
---|
| 308 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 309 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 310 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 311 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 312 | ENDDO |
---|
[1] | 313 | ENDDO |
---|
| 314 | ENDDO |
---|
| 315 | #if defined( __parallel ) |
---|
[1517] | 316 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 317 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 318 | #else |
---|
[1517] | 319 | fmax = fmax_l |
---|
[1] | 320 | #endif |
---|
| 321 | |
---|
[1517] | 322 | fmax = 0.04_wp * fmax |
---|
[1] | 323 | |
---|
| 324 | ! |
---|
[1517] | 325 | !-- Allocate temporary arrays |
---|
| 326 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 327 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 328 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 329 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 330 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 331 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 332 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 333 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 334 | ) |
---|
| 335 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 336 | |
---|
| 337 | ! |
---|
[1517] | 338 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 339 | !-- not work if done locally within the loop) |
---|
| 340 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 341 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 342 | |
---|
| 343 | ! |
---|
[1517] | 344 | !-- Outer loop of all j |
---|
| 345 | DO j = nys, nyn |
---|
[1] | 346 | |
---|
| 347 | ! |
---|
[1517] | 348 | !-- Compute polynomial coefficients |
---|
| 349 | DO i = nxl-1, nxr+1 |
---|
| 350 | DO k = nzb+1, nzt |
---|
| 351 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 352 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 353 | + sk_p(k,j,i-1) ) |
---|
| 354 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 355 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 356 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 357 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 358 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 359 | ) * f48 |
---|
| 360 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 361 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 362 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 363 | ENDDO |
---|
[1] | 364 | ENDDO |
---|
| 365 | |
---|
| 366 | ! |
---|
[1517] | 367 | !-- Fluxes using the Bott scheme |
---|
| 368 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 369 | DO i = nxl, nxr |
---|
| 370 | DO k = nzb+1, nzt |
---|
| 371 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 372 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 373 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 374 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 375 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 376 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 377 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 378 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 379 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 380 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 381 | ip = MAX( ip, 0.0_wp ) |
---|
| 382 | im = MAX( im, 0.0_wp ) |
---|
| 383 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 384 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 385 | |
---|
[1517] | 386 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 387 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 388 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 389 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 390 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 391 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 392 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 393 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 394 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 395 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 396 | ip = MAX( ip, 0.0_wp ) |
---|
| 397 | im = MAX( im, 0.0_wp ) |
---|
| 398 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 399 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 400 | ENDDO |
---|
[1] | 401 | ENDDO |
---|
| 402 | |
---|
| 403 | ! |
---|
[1517] | 404 | !-- Compute monitor function m1 |
---|
| 405 | DO i = nxl-2, nxr+2 |
---|
| 406 | DO k = nzb+1, nzt |
---|
| 407 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 408 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 409 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 410 | m1(k,i) = m1z / m1n |
---|
| 411 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 412 | ELSEIF ( m1n < m1z ) THEN |
---|
| 413 | m1(k,i) = -1.0_wp |
---|
| 414 | ELSE |
---|
| 415 | m1(k,i) = 0.0_wp |
---|
| 416 | ENDIF |
---|
| 417 | ENDDO |
---|
[1] | 418 | ENDDO |
---|
| 419 | |
---|
| 420 | ! |
---|
[1517] | 421 | !-- Compute switch sw |
---|
| 422 | sw = 0.0_wp |
---|
| 423 | DO i = nxl-1, nxr+1 |
---|
| 424 | DO k = nzb+1, nzt |
---|
| 425 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 426 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 427 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 428 | |
---|
[1517] | 429 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 430 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 431 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 432 | |
---|
[1517] | 433 | t1 = 0.35_wp |
---|
| 434 | t2 = 0.35_wp |
---|
| 435 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 436 | |
---|
[1517] | 437 | !-- *VOCL STMT,IF(10) |
---|
| 438 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 439 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 440 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 441 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 442 | ) sw(k,i) = 1.0_wp |
---|
| 443 | ENDDO |
---|
[1] | 444 | ENDDO |
---|
| 445 | |
---|
| 446 | ! |
---|
[1517] | 447 | !-- Fluxes using the exponential scheme |
---|
| 448 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 449 | DO i = nxl, nxr |
---|
| 450 | DO k = nzb+1, nzt |
---|
[1] | 451 | |
---|
[1517] | 452 | !-- *VOCL STMT,IF(10) |
---|
| 453 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 454 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 455 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 456 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 457 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 458 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 459 | |
---|
[1517] | 460 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 461 | |
---|
[1517] | 462 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 463 | |
---|
[1517] | 464 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 465 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 466 | eex(ix) - & |
---|
| 467 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 468 | ) & |
---|
| 469 | ) |
---|
| 470 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 471 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 472 | |
---|
[1517] | 473 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 474 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 475 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 476 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 477 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 478 | |
---|
[1517] | 479 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 480 | |
---|
[1517] | 481 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 482 | |
---|
[1517] | 483 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 484 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 485 | eex(ix) - & |
---|
| 486 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 487 | ) & |
---|
| 488 | ) |
---|
| 489 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 490 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 491 | ENDIF |
---|
[1] | 492 | |
---|
[1517] | 493 | !-- *VOCL STMT,IF(10) |
---|
| 494 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 495 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 496 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 497 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 498 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 499 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 500 | |
---|
[1517] | 501 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 502 | |
---|
[1517] | 503 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 504 | |
---|
[1517] | 505 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 506 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 507 | eex(ix) - & |
---|
| 508 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 509 | ) & |
---|
| 510 | ) |
---|
| 511 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 512 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 513 | ENDIF |
---|
[1] | 514 | |
---|
[1517] | 515 | !-- *VOCL STMT,IF(10) |
---|
| 516 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 517 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 518 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 519 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 520 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 521 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 522 | |
---|
[1517] | 523 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 524 | |
---|
[1517] | 525 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 526 | |
---|
[1517] | 527 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 528 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 529 | eex(ix) - & |
---|
| 530 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 531 | ) & |
---|
| 532 | ) |
---|
| 533 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 534 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 535 | ENDIF |
---|
[1] | 536 | |
---|
[1517] | 537 | ENDDO |
---|
[1] | 538 | ENDDO |
---|
[1517] | 539 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 540 | |
---|
| 541 | ! |
---|
[1517] | 542 | !-- Prognostic equation |
---|
| 543 | DO i = nxl, nxr |
---|
| 544 | DO k = nzb+1, nzt |
---|
| 545 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 546 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 547 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 548 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 549 | tendcy = fplus - fminus |
---|
[1] | 550 | ! |
---|
[1517] | 551 | !-- Removed in order to optimize speed |
---|
| 552 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 553 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 554 | ! |
---|
[1517] | 555 | !-- Density correction because of possible remaining divergences |
---|
| 556 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 557 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 558 | ( 1.0_wp + d_new ) |
---|
| 559 | d(k,j,i) = d_new |
---|
| 560 | ENDDO |
---|
[1] | 561 | ENDDO |
---|
| 562 | |
---|
[1517] | 563 | ENDDO ! End of the advection in x-direction |
---|
[1] | 564 | |
---|
| 565 | ! |
---|
[1517] | 566 | !-- Deallocate temporary arrays |
---|
| 567 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 568 | ippb, ippe, m1, sw ) |
---|
[1] | 569 | |
---|
| 570 | |
---|
| 571 | ! |
---|
[1517] | 572 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 573 | #if defined( __parallel ) |
---|
[1517] | 574 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 575 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 576 | type_xz_2, ierr ) |
---|
| 577 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 578 | ! |
---|
[1517] | 579 | !-- Send front boundary, receive rear boundary |
---|
| 580 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 581 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 582 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 583 | comm2d, status, ierr ) |
---|
[1] | 584 | ! |
---|
[1517] | 585 | !-- Send rear boundary, receive front boundary |
---|
| 586 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 587 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 588 | comm2d, status, ierr ) |
---|
| 589 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 590 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 591 | #else |
---|
[1517] | 592 | DO i = nxl, nxr |
---|
| 593 | DO k = nzb+1, nzt |
---|
| 594 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 595 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 596 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 597 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 598 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 599 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 600 | ENDDO |
---|
[1] | 601 | ENDDO |
---|
| 602 | #endif |
---|
| 603 | |
---|
| 604 | ! |
---|
[1517] | 605 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 606 | fmax_l = 0.0_wp |
---|
| 607 | DO i = nxl, nxr |
---|
| 608 | DO j = nys, nyn |
---|
| 609 | DO k = nzb+1, nzt |
---|
| 610 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 611 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 612 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 613 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 614 | ENDDO |
---|
[1] | 615 | ENDDO |
---|
| 616 | ENDDO |
---|
| 617 | #if defined( __parallel ) |
---|
[1517] | 618 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 619 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 620 | #else |
---|
[1517] | 621 | fmax = fmax_l |
---|
[1] | 622 | #endif |
---|
| 623 | |
---|
[1517] | 624 | fmax = 0.04_wp * fmax |
---|
[1] | 625 | |
---|
| 626 | ! |
---|
[1517] | 627 | !-- Allocate temporary arrays |
---|
| 628 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 629 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 630 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 631 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 632 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 633 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 634 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 635 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 636 | ) |
---|
| 637 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 638 | |
---|
| 639 | ! |
---|
[1517] | 640 | !-- Outer loop of all i |
---|
| 641 | DO i = nxl, nxr |
---|
[1] | 642 | |
---|
| 643 | ! |
---|
[1517] | 644 | !-- Compute polynomial coefficients |
---|
| 645 | DO j = nys-1, nyn+1 |
---|
| 646 | DO k = nzb+1, nzt |
---|
| 647 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 648 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 649 | + sk_p(k,j-1,i) ) |
---|
| 650 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 651 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 652 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 653 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 654 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 655 | ) * f48 |
---|
| 656 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 657 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 658 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 659 | ENDDO |
---|
[1] | 660 | ENDDO |
---|
| 661 | |
---|
| 662 | ! |
---|
[1517] | 663 | !-- Fluxes using the Bott scheme |
---|
| 664 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 665 | DO j = nys, nyn |
---|
| 666 | DO k = nzb+1, nzt |
---|
| 667 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 668 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 669 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 670 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 671 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 672 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 673 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 674 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 675 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 676 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 677 | ip = MAX( ip, 0.0_wp ) |
---|
| 678 | im = MAX( im, 0.0_wp ) |
---|
| 679 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 680 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 681 | |
---|
[1517] | 682 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 683 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 684 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 685 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 686 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 687 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 688 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 689 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 690 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 691 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 692 | ip = MAX( ip, 0.0_wp ) |
---|
| 693 | im = MAX( im, 0.0_wp ) |
---|
| 694 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 695 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 696 | ENDDO |
---|
[1] | 697 | ENDDO |
---|
| 698 | |
---|
| 699 | ! |
---|
[1517] | 700 | !-- Compute monitor function m1 |
---|
| 701 | DO j = nys-2, nyn+2 |
---|
| 702 | DO k = nzb+1, nzt |
---|
| 703 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 704 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 705 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 706 | m1(k,j) = m1z / m1n |
---|
| 707 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 708 | ELSEIF ( m1n < m1z ) THEN |
---|
| 709 | m1(k,j) = -1.0_wp |
---|
| 710 | ELSE |
---|
| 711 | m1(k,j) = 0.0_wp |
---|
| 712 | ENDIF |
---|
| 713 | ENDDO |
---|
[1] | 714 | ENDDO |
---|
| 715 | |
---|
| 716 | ! |
---|
[1517] | 717 | !-- Compute switch sw |
---|
| 718 | sw = 0.0_wp |
---|
| 719 | DO j = nys-1, nyn+1 |
---|
| 720 | DO k = nzb+1, nzt |
---|
| 721 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 722 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 723 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 724 | |
---|
[1517] | 725 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 726 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 727 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 728 | |
---|
[1517] | 729 | t1 = 0.35_wp |
---|
| 730 | t2 = 0.35_wp |
---|
| 731 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 732 | |
---|
[1517] | 733 | !-- *VOCL STMT,IF(10) |
---|
| 734 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 735 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 736 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 737 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 738 | ) sw(k,j) = 1.0_wp |
---|
| 739 | ENDDO |
---|
[1] | 740 | ENDDO |
---|
| 741 | |
---|
| 742 | ! |
---|
[1517] | 743 | !-- Fluxes using exponential scheme |
---|
| 744 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 745 | DO j = nys, nyn |
---|
| 746 | DO k = nzb+1, nzt |
---|
[1] | 747 | |
---|
[1517] | 748 | !-- *VOCL STMT,IF(10) |
---|
| 749 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 750 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 751 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 752 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 753 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 754 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 755 | |
---|
[1517] | 756 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 757 | |
---|
[1517] | 758 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 759 | |
---|
[1517] | 760 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 761 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 762 | eex(ix) - & |
---|
| 763 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 764 | ) & |
---|
| 765 | ) |
---|
| 766 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 767 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 768 | |
---|
[1517] | 769 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 770 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 771 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 772 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 773 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 774 | |
---|
[1517] | 775 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 776 | |
---|
[1517] | 777 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 778 | |
---|
[1517] | 779 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 780 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 781 | eex(ix) - & |
---|
| 782 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 783 | ) & |
---|
| 784 | ) |
---|
| 785 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 786 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 787 | ENDIF |
---|
[1] | 788 | |
---|
[1517] | 789 | !-- *VOCL STMT,IF(10) |
---|
| 790 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 791 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 792 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 793 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 794 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 795 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 796 | |
---|
[1517] | 797 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 798 | |
---|
[1517] | 799 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 800 | |
---|
[1517] | 801 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 802 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 803 | eex(ix) - & |
---|
| 804 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 805 | ) & |
---|
| 806 | ) |
---|
| 807 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 808 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 809 | ENDIF |
---|
[1] | 810 | |
---|
[1517] | 811 | !-- *VOCL STMT,IF(10) |
---|
| 812 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 813 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 814 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 815 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 816 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 817 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 818 | |
---|
[1517] | 819 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 820 | |
---|
[1517] | 821 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 822 | |
---|
[1517] | 823 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 824 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 825 | eex(ix) - & |
---|
| 826 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 827 | ) & |
---|
| 828 | ) |
---|
| 829 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 830 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 831 | ENDIF |
---|
[1] | 832 | |
---|
[1517] | 833 | ENDDO |
---|
[1] | 834 | ENDDO |
---|
[1517] | 835 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 836 | |
---|
| 837 | ! |
---|
[1517] | 838 | !-- Prognostic equation |
---|
| 839 | DO j = nys, nyn |
---|
| 840 | DO k = nzb+1, nzt |
---|
| 841 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 842 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 843 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 844 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 845 | tendcy = fplus - fminus |
---|
[1] | 846 | ! |
---|
[1517] | 847 | !-- Removed in order to optimise speed |
---|
| 848 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 849 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 850 | ! |
---|
[1517] | 851 | !-- Density correction because of possible remaining divergences |
---|
| 852 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 853 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 854 | ( 1.0_wp + d_new ) |
---|
| 855 | d(k,j,i) = d_new |
---|
| 856 | ENDDO |
---|
[1] | 857 | ENDDO |
---|
| 858 | |
---|
[1517] | 859 | ENDDO ! End of the advection in y-direction |
---|
| 860 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 861 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 862 | |
---|
| 863 | ! |
---|
[1517] | 864 | !-- Deallocate temporary arrays |
---|
| 865 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 866 | ippb, ippe, m1, sw ) |
---|
[1] | 867 | |
---|
| 868 | |
---|
| 869 | ! |
---|
[1517] | 870 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 871 | !-- UP flow_statistics) |
---|
| 872 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 873 | |
---|
| 874 | ! |
---|
[1517] | 875 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 876 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 877 | |
---|
| 878 | ! |
---|
[1517] | 879 | !-- Temperature boundary condition at the bottom boundary |
---|
| 880 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 881 | ! |
---|
| 882 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 883 | DO i = nxl, nxr |
---|
| 884 | DO j = nys, nyn |
---|
| 885 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 886 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 887 | ENDDO |
---|
[1] | 888 | ENDDO |
---|
| 889 | |
---|
[1517] | 890 | ELSE |
---|
[1] | 891 | ! |
---|
[1517] | 892 | !-- Neumann (i.e. here zero gradient) |
---|
| 893 | DO i = nxl, nxr |
---|
| 894 | DO j = nys, nyn |
---|
| 895 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 896 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 897 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
| 901 | ENDIF |
---|
| 902 | |
---|
| 903 | ! |
---|
| 904 | !-- Temperature boundary condition at the top boundary |
---|
| 905 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 906 | ! |
---|
| 907 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 908 | DO i = nxl, nxr |
---|
| 909 | DO j = nys, nyn |
---|
| 910 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 911 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | |
---|
| 915 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 916 | ! |
---|
| 917 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 918 | DO i = nxl, nxr |
---|
| 919 | DO j = nys, nyn |
---|
| 920 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 921 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 922 | ENDDO |
---|
| 923 | ENDDO |
---|
| 924 | |
---|
| 925 | ENDIF |
---|
| 926 | |
---|
| 927 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 928 | |
---|
| 929 | ! |
---|
| 930 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 931 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 932 | DO i = nxl, nxr |
---|
| 933 | DO j = nys, nyn |
---|
[216] | 934 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 935 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 936 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 937 | ENDDO |
---|
| 938 | ENDDO |
---|
| 939 | |
---|
| 940 | ! |
---|
[1517] | 941 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 942 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 943 | DO i = nxl, nxr |
---|
| 944 | DO j = nys, nyn |
---|
[63] | 945 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 946 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 947 | ENDDO |
---|
| 948 | ENDDO |
---|
| 949 | |
---|
[1517] | 950 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 951 | |
---|
[1] | 952 | ! |
---|
[1517] | 953 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 954 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 955 | DO i = nxl, nxr |
---|
| 956 | DO j = nys, nyn |
---|
[1517] | 957 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 958 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 959 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 960 | ENDDO |
---|
| 961 | ENDDO |
---|
| 962 | |
---|
| 963 | ! |
---|
[1517] | 964 | !-- Specific humidity boundary condition at the top boundary |
---|
| 965 | IF ( ibc_q_t == 0 ) THEN |
---|
| 966 | ! |
---|
| 967 | !-- Dirichlet |
---|
| 968 | DO i = nxl, nxr |
---|
| 969 | DO j = nys, nyn |
---|
| 970 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 971 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
[1] | 974 | |
---|
[1517] | 975 | ELSE |
---|
[1] | 976 | ! |
---|
[1517] | 977 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 978 | DO i = nxl, nxr |
---|
| 979 | DO j = nys, nyn |
---|
| 980 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 981 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 982 | ENDDO |
---|
| 983 | ENDDO |
---|
[1] | 984 | |
---|
[1517] | 985 | ENDIF |
---|
[1] | 986 | |
---|
[1960] | 987 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 988 | ! |
---|
| 989 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 990 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 991 | DO i = nxl, nxr |
---|
| 992 | DO j = nys, nyn |
---|
| 993 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 994 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 995 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 996 | ENDDO |
---|
| 997 | ENDDO |
---|
| 998 | |
---|
| 999 | ! |
---|
| 1000 | !-- Specific scalar boundary condition at the top boundary |
---|
| 1001 | IF ( ibc_s_t == 0 ) THEN |
---|
| 1002 | ! |
---|
| 1003 | !-- Dirichlet |
---|
| 1004 | DO i = nxl, nxr |
---|
| 1005 | DO j = nys, nyn |
---|
| 1006 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1007 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1008 | ENDDO |
---|
| 1009 | ENDDO |
---|
| 1010 | |
---|
| 1011 | ELSE |
---|
| 1012 | ! |
---|
| 1013 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 1014 | DO i = nxl, nxr |
---|
| 1015 | DO j = nys, nyn |
---|
| 1016 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1017 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1018 | ENDDO |
---|
| 1019 | ENDDO |
---|
| 1020 | |
---|
| 1021 | ENDIF |
---|
| 1022 | |
---|
[2292] | 1023 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
| 1024 | |
---|
| 1025 | ! |
---|
| 1026 | !-- Cloud water content boundary condition at the bottom boundary: |
---|
| 1027 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1028 | DO i = nxl, nxr |
---|
| 1029 | DO j = nys, nyn |
---|
| 1030 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1031 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1032 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
| 1038 | DO i = nxl, nxr |
---|
| 1039 | DO j = nys, nyn |
---|
| 1040 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1041 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | |
---|
[1517] | 1045 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 1046 | |
---|
[1] | 1047 | ! |
---|
[1517] | 1048 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 1049 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1050 | DO i = nxl, nxr |
---|
| 1051 | DO j = nys, nyn |
---|
| 1052 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1053 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1054 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1055 | ENDDO |
---|
[97] | 1056 | ENDDO |
---|
| 1057 | |
---|
| 1058 | ! |
---|
[1517] | 1059 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 1060 | DO i = nxl, nxr |
---|
| 1061 | DO j = nys, nyn |
---|
[63] | 1062 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1063 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 1064 | ENDDO |
---|
| 1065 | ENDDO |
---|
| 1066 | |
---|
[2292] | 1067 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
| 1068 | |
---|
| 1069 | ! |
---|
| 1070 | !-- Cloud drop concentration boundary condition at the bottom boundary: |
---|
| 1071 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
| 1072 | DO i = nxl, nxr |
---|
| 1073 | DO j = nys, nyn |
---|
| 1074 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1075 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1076 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1077 | ENDDO |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
| 1080 | ! |
---|
| 1081 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1082 | DO i = nxl, nxr |
---|
| 1083 | DO j = nys, nyn |
---|
| 1084 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1085 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1086 | ENDDO |
---|
| 1087 | ENDDO |
---|
| 1088 | |
---|
[1517] | 1089 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1090 | |
---|
[1] | 1091 | ! |
---|
[1517] | 1092 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1093 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1094 | DO i = nxl, nxr |
---|
| 1095 | DO j = nys, nyn |
---|
[1517] | 1096 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1097 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1098 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1099 | ENDDO |
---|
| 1100 | ENDDO |
---|
| 1101 | |
---|
[1361] | 1102 | ! |
---|
[1517] | 1103 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1104 | DO i = nxl, nxr |
---|
| 1105 | DO j = nys, nyn |
---|
| 1106 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1107 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1108 | ENDDO |
---|
[1361] | 1109 | ENDDO |
---|
| 1110 | |
---|
[1517] | 1111 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1112 | |
---|
| 1113 | ! |
---|
[1517] | 1114 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1115 | DO i = nxl, nxr |
---|
| 1116 | DO j = nys, nyn |
---|
| 1117 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1118 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1119 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1120 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1121 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1122 | ENDDO |
---|
[1361] | 1123 | ENDDO |
---|
| 1124 | |
---|
[1517] | 1125 | ELSE |
---|
[1361] | 1126 | |
---|
[1517] | 1127 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1128 | 'tion for variable "', sk_char, '"' |
---|
| 1129 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1130 | |
---|
| 1131 | ENDIF |
---|
[1] | 1132 | |
---|
| 1133 | ! |
---|
[1517] | 1134 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1135 | fmax_l = 0.0_wp |
---|
[97] | 1136 | DO i = nxl, nxr |
---|
| 1137 | DO j = nys, nyn |
---|
[1517] | 1138 | DO k = nzb, nzt+1 |
---|
| 1139 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1140 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1141 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1142 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1143 | ENDDO |
---|
[97] | 1144 | ENDDO |
---|
| 1145 | ENDDO |
---|
[1] | 1146 | #if defined( __parallel ) |
---|
[1517] | 1147 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1148 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1149 | #else |
---|
[1517] | 1150 | fmax = fmax_l |
---|
[1] | 1151 | #endif |
---|
| 1152 | |
---|
[1517] | 1153 | fmax = 0.04_wp * fmax |
---|
[1] | 1154 | |
---|
| 1155 | ! |
---|
[1517] | 1156 | !-- Allocate temporary arrays |
---|
| 1157 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1158 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1159 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1160 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1161 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1162 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1163 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1164 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1165 | ) |
---|
| 1166 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1167 | |
---|
| 1168 | ! |
---|
[1517] | 1169 | !-- Outer loop of all i |
---|
| 1170 | DO i = nxl, nxr |
---|
[1] | 1171 | |
---|
| 1172 | ! |
---|
[1517] | 1173 | !-- Compute polynomial coefficients |
---|
| 1174 | DO j = nys, nyn |
---|
| 1175 | DO k = nzb, nzt+1 |
---|
| 1176 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1177 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1178 | + sk_p(k-1,j,i) ) |
---|
| 1179 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1180 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1181 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1182 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1183 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1184 | ) * f48 |
---|
| 1185 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1186 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1187 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1188 | ENDDO |
---|
[1] | 1189 | ENDDO |
---|
| 1190 | |
---|
| 1191 | ! |
---|
[1517] | 1192 | !-- Fluxes using the Bott scheme |
---|
| 1193 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1194 | DO j = nys, nyn |
---|
| 1195 | DO k = nzb+1, nzt |
---|
| 1196 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1197 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1198 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1199 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1200 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1201 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1202 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1203 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1204 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1205 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1206 | ip = MAX( ip, 0.0_wp ) |
---|
| 1207 | im = MAX( im, 0.0_wp ) |
---|
| 1208 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1209 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1210 | |
---|
[1517] | 1211 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1212 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1213 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1214 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1215 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1216 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1217 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1218 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1219 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1220 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1221 | ip = MAX( ip, 0.0_wp ) |
---|
| 1222 | im = MAX( im, 0.0_wp ) |
---|
| 1223 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1224 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1225 | ENDDO |
---|
[1] | 1226 | ENDDO |
---|
| 1227 | |
---|
| 1228 | ! |
---|
[1517] | 1229 | !-- Compute monitor function m1 |
---|
| 1230 | DO j = nys, nyn |
---|
| 1231 | DO k = nzb-1, nzt+2 |
---|
| 1232 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1233 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1234 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1235 | m1(k,j) = m1z / m1n |
---|
| 1236 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1237 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1238 | m1(k,j) = -1.0_wp |
---|
| 1239 | ELSE |
---|
| 1240 | m1(k,j) = 0.0_wp |
---|
| 1241 | ENDIF |
---|
| 1242 | ENDDO |
---|
[1] | 1243 | ENDDO |
---|
| 1244 | |
---|
| 1245 | ! |
---|
[1517] | 1246 | !-- Compute switch sw |
---|
| 1247 | sw = 0.0_wp |
---|
| 1248 | DO j = nys, nyn |
---|
| 1249 | DO k = nzb, nzt+1 |
---|
| 1250 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1251 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1252 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1253 | |
---|
[1517] | 1254 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1255 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1256 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1257 | |
---|
[1517] | 1258 | t1 = 0.35_wp |
---|
| 1259 | t2 = 0.35_wp |
---|
| 1260 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1261 | |
---|
[1517] | 1262 | !-- *VOCL STMT,IF(10) |
---|
| 1263 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1264 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1265 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1266 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1267 | ) sw(k,j) = 1.0_wp |
---|
| 1268 | ENDDO |
---|
[1] | 1269 | ENDDO |
---|
| 1270 | |
---|
| 1271 | ! |
---|
[1517] | 1272 | !-- Fluxes using exponential scheme |
---|
| 1273 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1274 | DO j = nys, nyn |
---|
| 1275 | DO k = nzb+1, nzt |
---|
[1] | 1276 | |
---|
[1517] | 1277 | !-- *VOCL STMT,IF(10) |
---|
| 1278 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1279 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1280 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1281 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1282 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1283 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1284 | |
---|
[1517] | 1285 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1286 | |
---|
[1517] | 1287 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1288 | |
---|
[1517] | 1289 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1290 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1291 | eex(ix) - & |
---|
| 1292 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1293 | ) & |
---|
| 1294 | ) |
---|
| 1295 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1296 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1297 | |
---|
[1517] | 1298 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1299 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1300 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1301 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1302 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1303 | |
---|
[1517] | 1304 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1305 | |
---|
[1517] | 1306 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1307 | |
---|
[1517] | 1308 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1309 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1310 | eex(ix) - & |
---|
| 1311 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1312 | ) & |
---|
| 1313 | ) |
---|
| 1314 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1315 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1316 | ENDIF |
---|
[1] | 1317 | |
---|
[1517] | 1318 | !-- *VOCL STMT,IF(10) |
---|
| 1319 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1320 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1321 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1322 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1323 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1324 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1325 | |
---|
[1517] | 1326 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1327 | |
---|
[1517] | 1328 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1329 | |
---|
[1517] | 1330 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1331 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1332 | eex(ix) - & |
---|
| 1333 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1334 | ) & |
---|
| 1335 | ) |
---|
| 1336 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1337 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1338 | ENDIF |
---|
[1] | 1339 | |
---|
[1517] | 1340 | !-- *VOCL STMT,IF(10) |
---|
| 1341 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1342 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1343 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1344 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1345 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1346 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1347 | |
---|
[1517] | 1348 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1349 | |
---|
[1517] | 1350 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1351 | |
---|
[1517] | 1352 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1353 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1354 | eex(ix) - & |
---|
| 1355 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1356 | ) & |
---|
| 1357 | ) |
---|
| 1358 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1359 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1360 | ENDIF |
---|
[1] | 1361 | |
---|
[1517] | 1362 | ENDDO |
---|
[1] | 1363 | ENDDO |
---|
[1517] | 1364 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1365 | |
---|
| 1366 | ! |
---|
[1517] | 1367 | !-- Prognostic equation |
---|
| 1368 | DO j = nys, nyn |
---|
| 1369 | DO k = nzb+1, nzt |
---|
| 1370 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1371 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1372 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1373 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1374 | tendcy = fplus - fminus |
---|
[1] | 1375 | ! |
---|
[1517] | 1376 | !-- Removed in order to optimise speed |
---|
| 1377 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1378 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1379 | ! |
---|
[1517] | 1380 | !-- Density correction because of possible remaining divergences |
---|
| 1381 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1382 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1383 | ( 1.0_wp + d_new ) |
---|
[1] | 1384 | ! |
---|
[1517] | 1385 | !-- Store heat flux for subsequent statistics output. |
---|
| 1386 | !-- array m1 is here used as temporary storage |
---|
| 1387 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1388 | ENDDO |
---|
[1] | 1389 | ENDDO |
---|
| 1390 | |
---|
| 1391 | ! |
---|
[1517] | 1392 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1393 | IF ( sk_char == 'pt' ) THEN |
---|
| 1394 | DO sr = 0, statistic_regions |
---|
| 1395 | DO j = nys, nyn |
---|
| 1396 | DO k = nzb+1, nzt |
---|
| 1397 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1398 | m1(k,j) * rmask(j,i,sr) |
---|
| 1399 | ENDDO |
---|
[1] | 1400 | ENDDO |
---|
| 1401 | ENDDO |
---|
[1517] | 1402 | ENDIF |
---|
[1] | 1403 | |
---|
[1517] | 1404 | ENDDO ! End of the advection in z-direction |
---|
| 1405 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1406 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1407 | |
---|
| 1408 | ! |
---|
[1517] | 1409 | !-- Deallocate temporary arrays |
---|
| 1410 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1411 | ippb, ippe, m1, sw ) |
---|
[1] | 1412 | |
---|
| 1413 | ! |
---|
[1517] | 1414 | !-- Store results as tendency and deallocate local array |
---|
| 1415 | DO i = nxl, nxr |
---|
| 1416 | DO j = nys, nyn |
---|
| 1417 | DO k = nzb+1, nzt |
---|
| 1418 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1419 | ENDDO |
---|
[1] | 1420 | ENDDO |
---|
| 1421 | ENDDO |
---|
| 1422 | |
---|
[1517] | 1423 | DEALLOCATE( sk_p ) |
---|
[1] | 1424 | |
---|
[1517] | 1425 | END SUBROUTINE advec_s_bc |
---|
| 1426 | |
---|
| 1427 | END MODULE advec_s_bc_mod |
---|