[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 2300 2017-06-29 13:31:14Z scharf $ |
---|
[2300] | 27 | ! NEC related code removed |
---|
| 28 | ! |
---|
| 29 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 30 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 31 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 32 | ! and cloud water content (qc). |
---|
| 33 | ! |
---|
| 34 | ! 2101 2017-01-05 16:42:31Z suehring |
---|
[1321] | 35 | ! |
---|
[2001] | 36 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 37 | ! Forced header and separation lines into 80 columns |
---|
| 38 | ! |
---|
[1961] | 39 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 40 | ! New CASE statement to treat scalars and humidity separately |
---|
| 41 | ! |
---|
[1874] | 42 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 43 | ! Module renamed (removed _mod) |
---|
| 44 | ! |
---|
| 45 | ! |
---|
[1851] | 46 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 47 | ! Module renamed |
---|
| 48 | ! |
---|
| 49 | ! |
---|
[1816] | 50 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 51 | ! comment change |
---|
| 52 | ! |
---|
[1692] | 53 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 54 | ! Formatting corrections |
---|
| 55 | ! |
---|
[1683] | 56 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 57 | ! Code annotations made doxygen readable |
---|
| 58 | ! |
---|
[1518] | 59 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 60 | ! interface added to advec_s_bc |
---|
| 61 | ! |
---|
[1375] | 62 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 63 | ! missing variables added to ONLY list |
---|
| 64 | ! |
---|
[1362] | 65 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 66 | ! nr and qr added |
---|
| 67 | ! |
---|
[1354] | 68 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 69 | ! REAL constants provided with KIND-attribute |
---|
| 70 | ! |
---|
[1347] | 71 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 72 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 73 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 74 | ! |
---|
[1321] | 75 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 76 | ! ONLY-attribute added to USE-statements, |
---|
| 77 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 78 | ! kinds are defined in new module kinds, |
---|
| 79 | ! revision history before 2012 removed, |
---|
| 80 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 81 | ! all variable declaration statements |
---|
[1] | 82 | ! |
---|
[1319] | 83 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 84 | ! module interfaces removed |
---|
| 85 | ! |
---|
[1093] | 86 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 87 | ! unused variables removed |
---|
| 88 | ! |
---|
[1037] | 89 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 90 | ! code put under GPL (PALM 3.9) |
---|
| 91 | ! |
---|
[1011] | 92 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 93 | ! cpp switch __nopointer added for pointer free version |
---|
| 94 | ! |
---|
[1] | 95 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 96 | ! Initial revision |
---|
| 97 | ! |
---|
| 98 | ! |
---|
| 99 | ! Description: |
---|
| 100 | ! ------------ |
---|
[1682] | 101 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 102 | !> Computation in individual steps for each of the three dimensions. |
---|
| 103 | !> Limiting assumptions: |
---|
| 104 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 105 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 106 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 107 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 108 | !> stretched grids. |
---|
| 109 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 110 | !------------------------------------------------------------------------------! |
---|
[1682] | 111 | MODULE advec_s_bc_mod |
---|
| 112 | |
---|
[1] | 113 | |
---|
[1517] | 114 | PRIVATE |
---|
| 115 | PUBLIC advec_s_bc |
---|
[1320] | 116 | |
---|
[1517] | 117 | INTERFACE advec_s_bc |
---|
| 118 | MODULE PROCEDURE advec_s_bc |
---|
| 119 | END INTERFACE advec_s_bc |
---|
[1320] | 120 | |
---|
[1517] | 121 | CONTAINS |
---|
[1320] | 122 | |
---|
[1682] | 123 | !------------------------------------------------------------------------------! |
---|
| 124 | ! Description: |
---|
| 125 | ! ------------ |
---|
| 126 | !> @todo Missing subroutine description. |
---|
| 127 | !------------------------------------------------------------------------------! |
---|
[1517] | 128 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 129 | |
---|
[1517] | 130 | USE advection, & |
---|
| 131 | ONLY: aex, bex, dex, eex |
---|
[1320] | 132 | |
---|
[1517] | 133 | USE arrays_3d, & |
---|
| 134 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 135 | |
---|
[1517] | 136 | USE control_parameters, & |
---|
[1960] | 137 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 138 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 139 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 140 | |
---|
[1517] | 141 | USE cpulog, & |
---|
| 142 | ONLY: cpu_log, log_point_s |
---|
[1] | 143 | |
---|
[1517] | 144 | USE grid_variables, & |
---|
| 145 | ONLY: ddx, ddy |
---|
[1320] | 146 | |
---|
[1517] | 147 | USE indices, & |
---|
| 148 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 149 | |
---|
[1517] | 150 | USE kinds |
---|
[1] | 151 | |
---|
[1517] | 152 | USE pegrid |
---|
[1] | 153 | |
---|
[1517] | 154 | USE statistics, & |
---|
| 155 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 156 | |
---|
[1320] | 157 | |
---|
[1517] | 158 | IMPLICIT NONE |
---|
| 159 | |
---|
[1682] | 160 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 161 | |
---|
[1682] | 162 | INTEGER(iwp) :: i !< |
---|
| 163 | INTEGER(iwp) :: ix !< |
---|
| 164 | INTEGER(iwp) :: j !< |
---|
| 165 | INTEGER(iwp) :: k !< |
---|
| 166 | INTEGER(iwp) :: ngp !< |
---|
| 167 | INTEGER(iwp) :: sr !< |
---|
| 168 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 169 | |
---|
[1682] | 170 | REAL(wp) :: cim !< |
---|
| 171 | REAL(wp) :: cimf !< |
---|
| 172 | REAL(wp) :: cip !< |
---|
| 173 | REAL(wp) :: cipf !< |
---|
| 174 | REAL(wp) :: d_new !< |
---|
| 175 | REAL(wp) :: denomi !< denominator |
---|
| 176 | REAL(wp) :: fminus !< |
---|
| 177 | REAL(wp) :: fplus !< |
---|
| 178 | REAL(wp) :: f2 !< |
---|
| 179 | REAL(wp) :: f4 !< |
---|
| 180 | REAL(wp) :: f8 !< |
---|
| 181 | REAL(wp) :: f12 !< |
---|
| 182 | REAL(wp) :: f24 !< |
---|
| 183 | REAL(wp) :: f48 !< |
---|
| 184 | REAL(wp) :: f1920 !< |
---|
| 185 | REAL(wp) :: im !< |
---|
| 186 | REAL(wp) :: ip !< |
---|
[2300] | 187 | REAL(wp) :: m1n !< |
---|
| 188 | REAL(wp) :: m1z !< |
---|
[1682] | 189 | REAL(wp) :: m2 !< |
---|
| 190 | REAL(wp) :: m3 !< |
---|
| 191 | REAL(wp) :: numera !< numerator |
---|
| 192 | REAL(wp) :: snenn !< |
---|
| 193 | REAL(wp) :: sterm !< |
---|
| 194 | REAL(wp) :: tendcy !< |
---|
| 195 | REAL(wp) :: t1 !< |
---|
| 196 | REAL(wp) :: t2 !< |
---|
[1517] | 197 | |
---|
[1682] | 198 | REAL(wp) :: fmax(2) !< |
---|
| 199 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 200 | |
---|
[1010] | 201 | #if defined( __nopointer ) |
---|
[1682] | 202 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 203 | #else |
---|
[1517] | 204 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 205 | #endif |
---|
[1] | 206 | |
---|
[1682] | 207 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 208 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 209 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 210 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 211 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 212 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 213 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 214 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 215 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 216 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 217 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 218 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 219 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 220 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 221 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[1517] | 222 | |
---|
[1682] | 223 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 224 | |
---|
| 225 | ! |
---|
[1517] | 226 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 227 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 228 | sk_p = 0.0_wp |
---|
[1] | 229 | |
---|
| 230 | ! |
---|
[1517] | 231 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 232 | f2 = 0.5_wp |
---|
| 233 | f4 = 0.25_wp |
---|
| 234 | f8 = 0.125_wp |
---|
| 235 | f12 = 0.8333333333333333E-01_wp |
---|
| 236 | f24 = 0.4166666666666666E-01_wp |
---|
| 237 | f48 = 0.2083333333333333E-01_wp |
---|
| 238 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 239 | |
---|
| 240 | ! |
---|
[1517] | 241 | !-- Advection in x-direction: |
---|
[1] | 242 | |
---|
| 243 | ! |
---|
[1517] | 244 | !-- Save the quantity to be advected in a local array |
---|
| 245 | !-- add an enlarged boundary in x-direction |
---|
| 246 | DO i = nxl-1, nxr+1 |
---|
| 247 | DO j = nys, nyn |
---|
| 248 | DO k = nzb, nzt+1 |
---|
| 249 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 250 | ENDDO |
---|
[1] | 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | #if defined( __parallel ) |
---|
[1517] | 254 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 255 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 256 | ! |
---|
[1517] | 257 | !-- Send left boundary, receive right boundary |
---|
| 258 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 259 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 260 | comm2d, status, ierr ) |
---|
[1] | 261 | ! |
---|
[1517] | 262 | !-- Send right boundary, receive left boundary |
---|
| 263 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 264 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 265 | comm2d, status, ierr ) |
---|
| 266 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 267 | #else |
---|
| 268 | |
---|
| 269 | ! |
---|
[1517] | 270 | !-- Cyclic boundary conditions |
---|
| 271 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 272 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 273 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 274 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 275 | #endif |
---|
| 276 | |
---|
| 277 | ! |
---|
[1517] | 278 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 279 | !-- of the temperature field at the left and right boundary of the total |
---|
| 280 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 281 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 282 | IF ( nxl == 0 ) THEN |
---|
| 283 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 284 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 285 | ENDIF |
---|
| 286 | IF ( nxr == nx ) THEN |
---|
| 287 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 288 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 289 | ENDIF |
---|
[1] | 290 | ENDIF |
---|
| 291 | |
---|
| 292 | ! |
---|
[1517] | 293 | !-- Initialise control density |
---|
| 294 | d = 0.0_wp |
---|
[1] | 295 | |
---|
| 296 | ! |
---|
[1517] | 297 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 298 | fmax_l = 0.0_wp |
---|
| 299 | DO i = nxl, nxr |
---|
| 300 | DO j = nys, nyn |
---|
| 301 | DO k = nzb+1, nzt |
---|
| 302 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 303 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 304 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 305 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 306 | ENDDO |
---|
[1] | 307 | ENDDO |
---|
| 308 | ENDDO |
---|
| 309 | #if defined( __parallel ) |
---|
[1517] | 310 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 311 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 312 | #else |
---|
[1517] | 313 | fmax = fmax_l |
---|
[1] | 314 | #endif |
---|
| 315 | |
---|
[1517] | 316 | fmax = 0.04_wp * fmax |
---|
[1] | 317 | |
---|
| 318 | ! |
---|
[1517] | 319 | !-- Allocate temporary arrays |
---|
| 320 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 321 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 322 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 323 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 324 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 325 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 326 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 327 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 328 | ) |
---|
| 329 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 330 | |
---|
| 331 | ! |
---|
[1517] | 332 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 333 | !-- not work if done locally within the loop) |
---|
| 334 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 335 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 336 | |
---|
| 337 | ! |
---|
[1517] | 338 | !-- Outer loop of all j |
---|
| 339 | DO j = nys, nyn |
---|
[1] | 340 | |
---|
| 341 | ! |
---|
[1517] | 342 | !-- Compute polynomial coefficients |
---|
| 343 | DO i = nxl-1, nxr+1 |
---|
| 344 | DO k = nzb+1, nzt |
---|
| 345 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 346 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 347 | + sk_p(k,j,i-1) ) |
---|
| 348 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 349 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 350 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 351 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 352 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 353 | ) * f48 |
---|
| 354 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 355 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 356 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 357 | ENDDO |
---|
[1] | 358 | ENDDO |
---|
| 359 | |
---|
| 360 | ! |
---|
[1517] | 361 | !-- Fluxes using the Bott scheme |
---|
| 362 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 363 | DO i = nxl, nxr |
---|
| 364 | DO k = nzb+1, nzt |
---|
| 365 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 366 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 367 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 368 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 369 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 370 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 371 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 372 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 373 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 374 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 375 | ip = MAX( ip, 0.0_wp ) |
---|
| 376 | im = MAX( im, 0.0_wp ) |
---|
| 377 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 378 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 379 | |
---|
[1517] | 380 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 381 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 382 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 383 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 384 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 385 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 386 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 387 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 388 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 389 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 390 | ip = MAX( ip, 0.0_wp ) |
---|
| 391 | im = MAX( im, 0.0_wp ) |
---|
| 392 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 393 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 394 | ENDDO |
---|
[1] | 395 | ENDDO |
---|
| 396 | |
---|
| 397 | ! |
---|
[1517] | 398 | !-- Compute monitor function m1 |
---|
| 399 | DO i = nxl-2, nxr+2 |
---|
| 400 | DO k = nzb+1, nzt |
---|
| 401 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 402 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 403 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 404 | m1(k,i) = m1z / m1n |
---|
| 405 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 406 | ELSEIF ( m1n < m1z ) THEN |
---|
| 407 | m1(k,i) = -1.0_wp |
---|
| 408 | ELSE |
---|
| 409 | m1(k,i) = 0.0_wp |
---|
| 410 | ENDIF |
---|
| 411 | ENDDO |
---|
[1] | 412 | ENDDO |
---|
| 413 | |
---|
| 414 | ! |
---|
[1517] | 415 | !-- Compute switch sw |
---|
| 416 | sw = 0.0_wp |
---|
| 417 | DO i = nxl-1, nxr+1 |
---|
| 418 | DO k = nzb+1, nzt |
---|
| 419 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 420 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 421 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 422 | |
---|
[1517] | 423 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 424 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 425 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 426 | |
---|
[1517] | 427 | t1 = 0.35_wp |
---|
| 428 | t2 = 0.35_wp |
---|
| 429 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 430 | |
---|
[1517] | 431 | !-- *VOCL STMT,IF(10) |
---|
| 432 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 433 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 434 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 435 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 436 | ) sw(k,i) = 1.0_wp |
---|
| 437 | ENDDO |
---|
[1] | 438 | ENDDO |
---|
| 439 | |
---|
| 440 | ! |
---|
[1517] | 441 | !-- Fluxes using the exponential scheme |
---|
| 442 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 443 | DO i = nxl, nxr |
---|
| 444 | DO k = nzb+1, nzt |
---|
[1] | 445 | |
---|
[1517] | 446 | !-- *VOCL STMT,IF(10) |
---|
| 447 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 448 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 449 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 450 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 451 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 452 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 453 | |
---|
[1517] | 454 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 455 | |
---|
[1517] | 456 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 457 | |
---|
[1517] | 458 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 459 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 460 | eex(ix) - & |
---|
| 461 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 462 | ) & |
---|
| 463 | ) |
---|
| 464 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 465 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 466 | |
---|
[1517] | 467 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 468 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 469 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 470 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 471 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 472 | |
---|
[1517] | 473 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 474 | |
---|
[1517] | 475 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 476 | |
---|
[1517] | 477 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 478 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 479 | eex(ix) - & |
---|
| 480 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 481 | ) & |
---|
| 482 | ) |
---|
| 483 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 484 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 485 | ENDIF |
---|
[1] | 486 | |
---|
[1517] | 487 | !-- *VOCL STMT,IF(10) |
---|
| 488 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 489 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 490 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 491 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 492 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 493 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 494 | |
---|
[1517] | 495 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 496 | |
---|
[1517] | 497 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 498 | |
---|
[1517] | 499 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 500 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 501 | eex(ix) - & |
---|
| 502 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 503 | ) & |
---|
| 504 | ) |
---|
| 505 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 506 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 507 | ENDIF |
---|
[1] | 508 | |
---|
[1517] | 509 | !-- *VOCL STMT,IF(10) |
---|
| 510 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 511 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 512 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 513 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 514 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 515 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 516 | |
---|
[1517] | 517 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 518 | |
---|
[1517] | 519 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 520 | |
---|
[1517] | 521 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 522 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 523 | eex(ix) - & |
---|
| 524 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 525 | ) & |
---|
| 526 | ) |
---|
| 527 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 528 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 529 | ENDIF |
---|
[1] | 530 | |
---|
[1517] | 531 | ENDDO |
---|
[1] | 532 | ENDDO |
---|
[1517] | 533 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 534 | |
---|
| 535 | ! |
---|
[1517] | 536 | !-- Prognostic equation |
---|
| 537 | DO i = nxl, nxr |
---|
| 538 | DO k = nzb+1, nzt |
---|
| 539 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 540 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 541 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 542 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 543 | tendcy = fplus - fminus |
---|
[1] | 544 | ! |
---|
[1517] | 545 | !-- Removed in order to optimize speed |
---|
| 546 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 547 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 548 | ! |
---|
[1517] | 549 | !-- Density correction because of possible remaining divergences |
---|
| 550 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 551 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 552 | ( 1.0_wp + d_new ) |
---|
| 553 | d(k,j,i) = d_new |
---|
| 554 | ENDDO |
---|
[1] | 555 | ENDDO |
---|
| 556 | |
---|
[1517] | 557 | ENDDO ! End of the advection in x-direction |
---|
[1] | 558 | |
---|
| 559 | ! |
---|
[1517] | 560 | !-- Deallocate temporary arrays |
---|
| 561 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 562 | ippb, ippe, m1, sw ) |
---|
[1] | 563 | |
---|
| 564 | |
---|
| 565 | ! |
---|
[1517] | 566 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 567 | #if defined( __parallel ) |
---|
[1517] | 568 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 569 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 570 | type_xz_2, ierr ) |
---|
| 571 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 572 | ! |
---|
[1517] | 573 | !-- Send front boundary, receive rear boundary |
---|
| 574 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 575 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 576 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 577 | comm2d, status, ierr ) |
---|
[1] | 578 | ! |
---|
[1517] | 579 | !-- Send rear boundary, receive front boundary |
---|
| 580 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 581 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 582 | comm2d, status, ierr ) |
---|
| 583 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 584 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 585 | #else |
---|
[1517] | 586 | DO i = nxl, nxr |
---|
| 587 | DO k = nzb+1, nzt |
---|
| 588 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 589 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 590 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 591 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 592 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 593 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 594 | ENDDO |
---|
[1] | 595 | ENDDO |
---|
| 596 | #endif |
---|
| 597 | |
---|
| 598 | ! |
---|
[1517] | 599 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 600 | fmax_l = 0.0_wp |
---|
| 601 | DO i = nxl, nxr |
---|
| 602 | DO j = nys, nyn |
---|
| 603 | DO k = nzb+1, nzt |
---|
| 604 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 605 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 606 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 607 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 608 | ENDDO |
---|
[1] | 609 | ENDDO |
---|
| 610 | ENDDO |
---|
| 611 | #if defined( __parallel ) |
---|
[1517] | 612 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 613 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 614 | #else |
---|
[1517] | 615 | fmax = fmax_l |
---|
[1] | 616 | #endif |
---|
| 617 | |
---|
[1517] | 618 | fmax = 0.04_wp * fmax |
---|
[1] | 619 | |
---|
| 620 | ! |
---|
[1517] | 621 | !-- Allocate temporary arrays |
---|
| 622 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 623 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 624 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 625 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 626 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 627 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 628 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 629 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 630 | ) |
---|
| 631 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 632 | |
---|
| 633 | ! |
---|
[1517] | 634 | !-- Outer loop of all i |
---|
| 635 | DO i = nxl, nxr |
---|
[1] | 636 | |
---|
| 637 | ! |
---|
[1517] | 638 | !-- Compute polynomial coefficients |
---|
| 639 | DO j = nys-1, nyn+1 |
---|
| 640 | DO k = nzb+1, nzt |
---|
| 641 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 642 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 643 | + sk_p(k,j-1,i) ) |
---|
| 644 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 645 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 646 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 647 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 648 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 649 | ) * f48 |
---|
| 650 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 651 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 652 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 653 | ENDDO |
---|
[1] | 654 | ENDDO |
---|
| 655 | |
---|
| 656 | ! |
---|
[1517] | 657 | !-- Fluxes using the Bott scheme |
---|
| 658 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 659 | DO j = nys, nyn |
---|
| 660 | DO k = nzb+1, nzt |
---|
| 661 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 662 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 663 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 664 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 665 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 666 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 667 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 668 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 669 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 670 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 671 | ip = MAX( ip, 0.0_wp ) |
---|
| 672 | im = MAX( im, 0.0_wp ) |
---|
| 673 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 674 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 675 | |
---|
[1517] | 676 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 677 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 678 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 679 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 680 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 681 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 682 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 683 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 684 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 685 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 686 | ip = MAX( ip, 0.0_wp ) |
---|
| 687 | im = MAX( im, 0.0_wp ) |
---|
| 688 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 689 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 690 | ENDDO |
---|
[1] | 691 | ENDDO |
---|
| 692 | |
---|
| 693 | ! |
---|
[1517] | 694 | !-- Compute monitor function m1 |
---|
| 695 | DO j = nys-2, nyn+2 |
---|
| 696 | DO k = nzb+1, nzt |
---|
| 697 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 698 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 699 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 700 | m1(k,j) = m1z / m1n |
---|
| 701 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 702 | ELSEIF ( m1n < m1z ) THEN |
---|
| 703 | m1(k,j) = -1.0_wp |
---|
| 704 | ELSE |
---|
| 705 | m1(k,j) = 0.0_wp |
---|
| 706 | ENDIF |
---|
| 707 | ENDDO |
---|
[1] | 708 | ENDDO |
---|
| 709 | |
---|
| 710 | ! |
---|
[1517] | 711 | !-- Compute switch sw |
---|
| 712 | sw = 0.0_wp |
---|
| 713 | DO j = nys-1, nyn+1 |
---|
| 714 | DO k = nzb+1, nzt |
---|
| 715 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 716 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 717 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 718 | |
---|
[1517] | 719 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 720 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 721 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 722 | |
---|
[1517] | 723 | t1 = 0.35_wp |
---|
| 724 | t2 = 0.35_wp |
---|
| 725 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 726 | |
---|
[1517] | 727 | !-- *VOCL STMT,IF(10) |
---|
| 728 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 729 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 730 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 731 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 732 | ) sw(k,j) = 1.0_wp |
---|
| 733 | ENDDO |
---|
[1] | 734 | ENDDO |
---|
| 735 | |
---|
| 736 | ! |
---|
[1517] | 737 | !-- Fluxes using exponential scheme |
---|
| 738 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 739 | DO j = nys, nyn |
---|
| 740 | DO k = nzb+1, nzt |
---|
[1] | 741 | |
---|
[1517] | 742 | !-- *VOCL STMT,IF(10) |
---|
| 743 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 744 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 745 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 746 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 747 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 748 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 749 | |
---|
[1517] | 750 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 751 | |
---|
[1517] | 752 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 753 | |
---|
[1517] | 754 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 755 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 756 | eex(ix) - & |
---|
| 757 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 758 | ) & |
---|
| 759 | ) |
---|
| 760 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 761 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 762 | |
---|
[1517] | 763 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 764 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 765 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 766 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 767 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 768 | |
---|
[1517] | 769 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 770 | |
---|
[1517] | 771 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 772 | |
---|
[1517] | 773 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 774 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 775 | eex(ix) - & |
---|
| 776 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 777 | ) & |
---|
| 778 | ) |
---|
| 779 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 780 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 781 | ENDIF |
---|
[1] | 782 | |
---|
[1517] | 783 | !-- *VOCL STMT,IF(10) |
---|
| 784 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 785 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 786 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 787 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 788 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 789 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 790 | |
---|
[1517] | 791 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 792 | |
---|
[1517] | 793 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 794 | |
---|
[1517] | 795 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 796 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 797 | eex(ix) - & |
---|
| 798 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 799 | ) & |
---|
| 800 | ) |
---|
| 801 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 802 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 803 | ENDIF |
---|
[1] | 804 | |
---|
[1517] | 805 | !-- *VOCL STMT,IF(10) |
---|
| 806 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 807 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 808 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 809 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 810 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 811 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 812 | |
---|
[1517] | 813 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 814 | |
---|
[1517] | 815 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 816 | |
---|
[1517] | 817 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 818 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 819 | eex(ix) - & |
---|
| 820 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 821 | ) & |
---|
| 822 | ) |
---|
| 823 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 824 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 825 | ENDIF |
---|
[1] | 826 | |
---|
[1517] | 827 | ENDDO |
---|
[1] | 828 | ENDDO |
---|
[1517] | 829 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 830 | |
---|
| 831 | ! |
---|
[1517] | 832 | !-- Prognostic equation |
---|
| 833 | DO j = nys, nyn |
---|
| 834 | DO k = nzb+1, nzt |
---|
| 835 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 836 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 837 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 838 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 839 | tendcy = fplus - fminus |
---|
[1] | 840 | ! |
---|
[1517] | 841 | !-- Removed in order to optimise speed |
---|
| 842 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 843 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 844 | ! |
---|
[1517] | 845 | !-- Density correction because of possible remaining divergences |
---|
| 846 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 847 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 848 | ( 1.0_wp + d_new ) |
---|
| 849 | d(k,j,i) = d_new |
---|
| 850 | ENDDO |
---|
[1] | 851 | ENDDO |
---|
| 852 | |
---|
[1517] | 853 | ENDDO ! End of the advection in y-direction |
---|
| 854 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 855 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 856 | |
---|
| 857 | ! |
---|
[1517] | 858 | !-- Deallocate temporary arrays |
---|
| 859 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 860 | ippb, ippe, m1, sw ) |
---|
[1] | 861 | |
---|
| 862 | |
---|
| 863 | ! |
---|
[1517] | 864 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 865 | !-- UP flow_statistics) |
---|
| 866 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 867 | |
---|
| 868 | ! |
---|
[1517] | 869 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 870 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 871 | |
---|
| 872 | ! |
---|
[1517] | 873 | !-- Temperature boundary condition at the bottom boundary |
---|
| 874 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 875 | ! |
---|
| 876 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 877 | DO i = nxl, nxr |
---|
| 878 | DO j = nys, nyn |
---|
| 879 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 880 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 881 | ENDDO |
---|
[1] | 882 | ENDDO |
---|
| 883 | |
---|
[1517] | 884 | ELSE |
---|
[1] | 885 | ! |
---|
[1517] | 886 | !-- Neumann (i.e. here zero gradient) |
---|
| 887 | DO i = nxl, nxr |
---|
| 888 | DO j = nys, nyn |
---|
| 889 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 890 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 891 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 892 | ENDDO |
---|
| 893 | ENDDO |
---|
| 894 | |
---|
| 895 | ENDIF |
---|
| 896 | |
---|
| 897 | ! |
---|
| 898 | !-- Temperature boundary condition at the top boundary |
---|
| 899 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 900 | ! |
---|
| 901 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 902 | DO i = nxl, nxr |
---|
| 903 | DO j = nys, nyn |
---|
| 904 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 905 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 906 | ENDDO |
---|
| 907 | ENDDO |
---|
| 908 | |
---|
| 909 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 910 | ! |
---|
| 911 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 912 | DO i = nxl, nxr |
---|
| 913 | DO j = nys, nyn |
---|
| 914 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 915 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | |
---|
| 919 | ENDIF |
---|
| 920 | |
---|
| 921 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 922 | |
---|
| 923 | ! |
---|
| 924 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 925 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 926 | DO i = nxl, nxr |
---|
| 927 | DO j = nys, nyn |
---|
[216] | 928 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 929 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 930 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 931 | ENDDO |
---|
| 932 | ENDDO |
---|
| 933 | |
---|
| 934 | ! |
---|
[1517] | 935 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 936 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 937 | DO i = nxl, nxr |
---|
| 938 | DO j = nys, nyn |
---|
[63] | 939 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 940 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 941 | ENDDO |
---|
| 942 | ENDDO |
---|
| 943 | |
---|
[1517] | 944 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 945 | |
---|
[1] | 946 | ! |
---|
[1517] | 947 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 948 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 949 | DO i = nxl, nxr |
---|
| 950 | DO j = nys, nyn |
---|
[1517] | 951 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 952 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 953 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 954 | ENDDO |
---|
| 955 | ENDDO |
---|
| 956 | |
---|
| 957 | ! |
---|
[1517] | 958 | !-- Specific humidity boundary condition at the top boundary |
---|
| 959 | IF ( ibc_q_t == 0 ) THEN |
---|
| 960 | ! |
---|
| 961 | !-- Dirichlet |
---|
| 962 | DO i = nxl, nxr |
---|
| 963 | DO j = nys, nyn |
---|
| 964 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 965 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 966 | ENDDO |
---|
| 967 | ENDDO |
---|
[1] | 968 | |
---|
[1517] | 969 | ELSE |
---|
[1] | 970 | ! |
---|
[1517] | 971 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 972 | DO i = nxl, nxr |
---|
| 973 | DO j = nys, nyn |
---|
| 974 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 975 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 976 | ENDDO |
---|
| 977 | ENDDO |
---|
[1] | 978 | |
---|
[1517] | 979 | ENDIF |
---|
[1] | 980 | |
---|
[1960] | 981 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 982 | ! |
---|
| 983 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 984 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 985 | DO i = nxl, nxr |
---|
| 986 | DO j = nys, nyn |
---|
| 987 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 988 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 989 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | |
---|
| 993 | ! |
---|
| 994 | !-- Specific scalar boundary condition at the top boundary |
---|
| 995 | IF ( ibc_s_t == 0 ) THEN |
---|
| 996 | ! |
---|
| 997 | !-- Dirichlet |
---|
| 998 | DO i = nxl, nxr |
---|
| 999 | DO j = nys, nyn |
---|
| 1000 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1001 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1002 | ENDDO |
---|
| 1003 | ENDDO |
---|
| 1004 | |
---|
| 1005 | ELSE |
---|
| 1006 | ! |
---|
| 1007 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 1008 | DO i = nxl, nxr |
---|
| 1009 | DO j = nys, nyn |
---|
| 1010 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1011 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1012 | ENDDO |
---|
| 1013 | ENDDO |
---|
| 1014 | |
---|
| 1015 | ENDIF |
---|
| 1016 | |
---|
[2292] | 1017 | ELSEIF ( sk_char == 'qc' ) THEN |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- Cloud water content boundary condition at the bottom boundary: |
---|
| 1021 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1022 | DO i = nxl, nxr |
---|
| 1023 | DO j = nys, nyn |
---|
| 1024 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1025 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1026 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1027 | ENDDO |
---|
| 1028 | ENDDO |
---|
| 1029 | |
---|
| 1030 | ! |
---|
| 1031 | !-- Cloud water content boundary condition at the top boundary: Dirichlet |
---|
| 1032 | DO i = nxl, nxr |
---|
| 1033 | DO j = nys, nyn |
---|
| 1034 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1035 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1036 | ENDDO |
---|
| 1037 | ENDDO |
---|
| 1038 | |
---|
[1517] | 1039 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 1040 | |
---|
[1] | 1041 | ! |
---|
[1517] | 1042 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 1043 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1044 | DO i = nxl, nxr |
---|
| 1045 | DO j = nys, nyn |
---|
| 1046 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1047 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1048 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1049 | ENDDO |
---|
[97] | 1050 | ENDDO |
---|
| 1051 | |
---|
| 1052 | ! |
---|
[1517] | 1053 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 1054 | DO i = nxl, nxr |
---|
| 1055 | DO j = nys, nyn |
---|
[63] | 1056 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1057 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 1058 | ENDDO |
---|
| 1059 | ENDDO |
---|
| 1060 | |
---|
[2292] | 1061 | ELSEIF ( sk_char == 'nc' ) THEN |
---|
| 1062 | |
---|
| 1063 | ! |
---|
| 1064 | !-- Cloud drop concentration boundary condition at the bottom boundary: |
---|
| 1065 | !-- Dirichlet (fixed surface cloud drop concentration). |
---|
| 1066 | DO i = nxl, nxr |
---|
| 1067 | DO j = nys, nyn |
---|
| 1068 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1069 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1070 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1071 | ENDDO |
---|
| 1072 | ENDDO |
---|
| 1073 | |
---|
| 1074 | ! |
---|
| 1075 | !-- Cloud drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1076 | DO i = nxl, nxr |
---|
| 1077 | DO j = nys, nyn |
---|
| 1078 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1079 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1080 | ENDDO |
---|
| 1081 | ENDDO |
---|
| 1082 | |
---|
[1517] | 1083 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1084 | |
---|
[1] | 1085 | ! |
---|
[1517] | 1086 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1087 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1088 | DO i = nxl, nxr |
---|
| 1089 | DO j = nys, nyn |
---|
[1517] | 1090 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1091 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1092 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1093 | ENDDO |
---|
| 1094 | ENDDO |
---|
| 1095 | |
---|
[1361] | 1096 | ! |
---|
[1517] | 1097 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1098 | DO i = nxl, nxr |
---|
| 1099 | DO j = nys, nyn |
---|
| 1100 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1101 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1102 | ENDDO |
---|
[1361] | 1103 | ENDDO |
---|
| 1104 | |
---|
[1517] | 1105 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1106 | |
---|
| 1107 | ! |
---|
[1517] | 1108 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1109 | DO i = nxl, nxr |
---|
| 1110 | DO j = nys, nyn |
---|
| 1111 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1112 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1113 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1114 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1115 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1116 | ENDDO |
---|
[1361] | 1117 | ENDDO |
---|
| 1118 | |
---|
[1517] | 1119 | ELSE |
---|
[1361] | 1120 | |
---|
[1517] | 1121 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1122 | 'tion for variable "', sk_char, '"' |
---|
| 1123 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1124 | |
---|
| 1125 | ENDIF |
---|
[1] | 1126 | |
---|
| 1127 | ! |
---|
[1517] | 1128 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1129 | fmax_l = 0.0_wp |
---|
[97] | 1130 | DO i = nxl, nxr |
---|
| 1131 | DO j = nys, nyn |
---|
[1517] | 1132 | DO k = nzb, nzt+1 |
---|
| 1133 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1134 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1135 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1136 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1137 | ENDDO |
---|
[97] | 1138 | ENDDO |
---|
| 1139 | ENDDO |
---|
[1] | 1140 | #if defined( __parallel ) |
---|
[1517] | 1141 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1142 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1143 | #else |
---|
[1517] | 1144 | fmax = fmax_l |
---|
[1] | 1145 | #endif |
---|
| 1146 | |
---|
[1517] | 1147 | fmax = 0.04_wp * fmax |
---|
[1] | 1148 | |
---|
| 1149 | ! |
---|
[1517] | 1150 | !-- Allocate temporary arrays |
---|
| 1151 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1152 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1153 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1154 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1155 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1156 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1157 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1158 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1159 | ) |
---|
| 1160 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1161 | |
---|
| 1162 | ! |
---|
[1517] | 1163 | !-- Outer loop of all i |
---|
| 1164 | DO i = nxl, nxr |
---|
[1] | 1165 | |
---|
| 1166 | ! |
---|
[1517] | 1167 | !-- Compute polynomial coefficients |
---|
| 1168 | DO j = nys, nyn |
---|
| 1169 | DO k = nzb, nzt+1 |
---|
| 1170 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1171 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1172 | + sk_p(k-1,j,i) ) |
---|
| 1173 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1174 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1175 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1176 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1177 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1178 | ) * f48 |
---|
| 1179 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1180 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1181 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1182 | ENDDO |
---|
[1] | 1183 | ENDDO |
---|
| 1184 | |
---|
| 1185 | ! |
---|
[1517] | 1186 | !-- Fluxes using the Bott scheme |
---|
| 1187 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1188 | DO j = nys, nyn |
---|
| 1189 | DO k = nzb+1, nzt |
---|
| 1190 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1191 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1192 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1193 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1194 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1195 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1196 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1197 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1198 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1199 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1200 | ip = MAX( ip, 0.0_wp ) |
---|
| 1201 | im = MAX( im, 0.0_wp ) |
---|
| 1202 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1203 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1204 | |
---|
[1517] | 1205 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1206 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1207 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1208 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1209 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1210 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1211 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1212 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1213 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1214 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1215 | ip = MAX( ip, 0.0_wp ) |
---|
| 1216 | im = MAX( im, 0.0_wp ) |
---|
| 1217 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1218 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1219 | ENDDO |
---|
[1] | 1220 | ENDDO |
---|
| 1221 | |
---|
| 1222 | ! |
---|
[1517] | 1223 | !-- Compute monitor function m1 |
---|
| 1224 | DO j = nys, nyn |
---|
| 1225 | DO k = nzb-1, nzt+2 |
---|
| 1226 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1227 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1228 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1229 | m1(k,j) = m1z / m1n |
---|
| 1230 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1231 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1232 | m1(k,j) = -1.0_wp |
---|
| 1233 | ELSE |
---|
| 1234 | m1(k,j) = 0.0_wp |
---|
| 1235 | ENDIF |
---|
| 1236 | ENDDO |
---|
[1] | 1237 | ENDDO |
---|
| 1238 | |
---|
| 1239 | ! |
---|
[1517] | 1240 | !-- Compute switch sw |
---|
| 1241 | sw = 0.0_wp |
---|
| 1242 | DO j = nys, nyn |
---|
| 1243 | DO k = nzb, nzt+1 |
---|
| 1244 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1245 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1246 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1247 | |
---|
[1517] | 1248 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1249 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1250 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1251 | |
---|
[1517] | 1252 | t1 = 0.35_wp |
---|
| 1253 | t2 = 0.35_wp |
---|
| 1254 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1255 | |
---|
[1517] | 1256 | !-- *VOCL STMT,IF(10) |
---|
| 1257 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1258 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1259 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1260 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1261 | ) sw(k,j) = 1.0_wp |
---|
| 1262 | ENDDO |
---|
[1] | 1263 | ENDDO |
---|
| 1264 | |
---|
| 1265 | ! |
---|
[1517] | 1266 | !-- Fluxes using exponential scheme |
---|
| 1267 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1268 | DO j = nys, nyn |
---|
| 1269 | DO k = nzb+1, nzt |
---|
[1] | 1270 | |
---|
[1517] | 1271 | !-- *VOCL STMT,IF(10) |
---|
| 1272 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1273 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1274 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1275 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1276 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1277 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1278 | |
---|
[1517] | 1279 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1280 | |
---|
[1517] | 1281 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1282 | |
---|
[1517] | 1283 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1284 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1285 | eex(ix) - & |
---|
| 1286 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1287 | ) & |
---|
| 1288 | ) |
---|
| 1289 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1290 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1291 | |
---|
[1517] | 1292 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1293 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1294 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1295 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1296 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1297 | |
---|
[1517] | 1298 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1299 | |
---|
[1517] | 1300 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1301 | |
---|
[1517] | 1302 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1303 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1304 | eex(ix) - & |
---|
| 1305 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1306 | ) & |
---|
| 1307 | ) |
---|
| 1308 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1309 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1310 | ENDIF |
---|
[1] | 1311 | |
---|
[1517] | 1312 | !-- *VOCL STMT,IF(10) |
---|
| 1313 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1314 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1315 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1316 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1317 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1318 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1319 | |
---|
[1517] | 1320 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1321 | |
---|
[1517] | 1322 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1323 | |
---|
[1517] | 1324 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1325 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1326 | eex(ix) - & |
---|
| 1327 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1328 | ) & |
---|
| 1329 | ) |
---|
| 1330 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1331 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1332 | ENDIF |
---|
[1] | 1333 | |
---|
[1517] | 1334 | !-- *VOCL STMT,IF(10) |
---|
| 1335 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1336 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1337 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1338 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1339 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1340 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1341 | |
---|
[1517] | 1342 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1343 | |
---|
[1517] | 1344 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1345 | |
---|
[1517] | 1346 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1347 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1348 | eex(ix) - & |
---|
| 1349 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1350 | ) & |
---|
| 1351 | ) |
---|
| 1352 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1353 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1354 | ENDIF |
---|
[1] | 1355 | |
---|
[1517] | 1356 | ENDDO |
---|
[1] | 1357 | ENDDO |
---|
[1517] | 1358 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1359 | |
---|
| 1360 | ! |
---|
[1517] | 1361 | !-- Prognostic equation |
---|
| 1362 | DO j = nys, nyn |
---|
| 1363 | DO k = nzb+1, nzt |
---|
| 1364 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1365 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1366 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1367 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1368 | tendcy = fplus - fminus |
---|
[1] | 1369 | ! |
---|
[1517] | 1370 | !-- Removed in order to optimise speed |
---|
| 1371 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1372 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1373 | ! |
---|
[1517] | 1374 | !-- Density correction because of possible remaining divergences |
---|
| 1375 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1376 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1377 | ( 1.0_wp + d_new ) |
---|
[1] | 1378 | ! |
---|
[1517] | 1379 | !-- Store heat flux for subsequent statistics output. |
---|
| 1380 | !-- array m1 is here used as temporary storage |
---|
| 1381 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1382 | ENDDO |
---|
[1] | 1383 | ENDDO |
---|
| 1384 | |
---|
| 1385 | ! |
---|
[1517] | 1386 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1387 | IF ( sk_char == 'pt' ) THEN |
---|
| 1388 | DO sr = 0, statistic_regions |
---|
| 1389 | DO j = nys, nyn |
---|
| 1390 | DO k = nzb+1, nzt |
---|
| 1391 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1392 | m1(k,j) * rmask(j,i,sr) |
---|
| 1393 | ENDDO |
---|
[1] | 1394 | ENDDO |
---|
| 1395 | ENDDO |
---|
[1517] | 1396 | ENDIF |
---|
[1] | 1397 | |
---|
[1517] | 1398 | ENDDO ! End of the advection in z-direction |
---|
| 1399 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1400 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1401 | |
---|
| 1402 | ! |
---|
[1517] | 1403 | !-- Deallocate temporary arrays |
---|
| 1404 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1405 | ippb, ippe, m1, sw ) |
---|
[1] | 1406 | |
---|
| 1407 | ! |
---|
[1517] | 1408 | !-- Store results as tendency and deallocate local array |
---|
| 1409 | DO i = nxl, nxr |
---|
| 1410 | DO j = nys, nyn |
---|
| 1411 | DO k = nzb+1, nzt |
---|
| 1412 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1413 | ENDDO |
---|
[1] | 1414 | ENDDO |
---|
| 1415 | ENDDO |
---|
| 1416 | |
---|
[1517] | 1417 | DEALLOCATE( sk_p ) |
---|
[1] | 1418 | |
---|
[1517] | 1419 | END SUBROUTINE advec_s_bc |
---|
| 1420 | |
---|
| 1421 | END MODULE advec_s_bc_mod |
---|