[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 2001 2016-08-20 18:41:22Z gronemeier $ |
---|
| 27 | ! |
---|
[2001] | 28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 29 | ! Forced header and separation lines into 80 columns |
---|
| 30 | ! |
---|
[1961] | 31 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 32 | ! New CASE statement to treat scalars and humidity separately |
---|
| 33 | ! |
---|
[1874] | 34 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 35 | ! Module renamed (removed _mod) |
---|
| 36 | ! |
---|
| 37 | ! |
---|
[1851] | 38 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 39 | ! Module renamed |
---|
| 40 | ! |
---|
| 41 | ! |
---|
[1816] | 42 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 43 | ! comment change |
---|
| 44 | ! |
---|
[1692] | 45 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 46 | ! Formatting corrections |
---|
| 47 | ! |
---|
[1683] | 48 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 49 | ! Code annotations made doxygen readable |
---|
| 50 | ! |
---|
[1518] | 51 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 52 | ! interface added to advec_s_bc |
---|
| 53 | ! |
---|
[1375] | 54 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 55 | ! missing variables added to ONLY list |
---|
| 56 | ! |
---|
[1362] | 57 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 58 | ! nr and qr added |
---|
| 59 | ! |
---|
[1354] | 60 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 61 | ! REAL constants provided with KIND-attribute |
---|
| 62 | ! |
---|
[1347] | 63 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 64 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 65 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 66 | ! |
---|
[1321] | 67 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 68 | ! ONLY-attribute added to USE-statements, |
---|
| 69 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 70 | ! kinds are defined in new module kinds, |
---|
| 71 | ! revision history before 2012 removed, |
---|
| 72 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 73 | ! all variable declaration statements |
---|
[1] | 74 | ! |
---|
[1319] | 75 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 76 | ! module interfaces removed |
---|
| 77 | ! |
---|
[1093] | 78 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 79 | ! unused variables removed |
---|
| 80 | ! |
---|
[1037] | 81 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 82 | ! code put under GPL (PALM 3.9) |
---|
| 83 | ! |
---|
[1011] | 84 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 85 | ! cpp switch __nopointer added for pointer free version |
---|
| 86 | ! |
---|
[1] | 87 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 88 | ! Initial revision |
---|
| 89 | ! |
---|
| 90 | ! |
---|
| 91 | ! Description: |
---|
| 92 | ! ------------ |
---|
[1682] | 93 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 94 | !> Computation in individual steps for each of the three dimensions. |
---|
| 95 | !> Limiting assumptions: |
---|
| 96 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 97 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 98 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 99 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 100 | !> stretched grids. |
---|
| 101 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 102 | !------------------------------------------------------------------------------! |
---|
[1682] | 103 | MODULE advec_s_bc_mod |
---|
| 104 | |
---|
[1] | 105 | |
---|
[1517] | 106 | PRIVATE |
---|
| 107 | PUBLIC advec_s_bc |
---|
[1320] | 108 | |
---|
[1517] | 109 | INTERFACE advec_s_bc |
---|
| 110 | MODULE PROCEDURE advec_s_bc |
---|
| 111 | END INTERFACE advec_s_bc |
---|
[1320] | 112 | |
---|
[1517] | 113 | CONTAINS |
---|
[1320] | 114 | |
---|
[1682] | 115 | !------------------------------------------------------------------------------! |
---|
| 116 | ! Description: |
---|
| 117 | ! ------------ |
---|
| 118 | !> @todo Missing subroutine description. |
---|
| 119 | !------------------------------------------------------------------------------! |
---|
[1517] | 120 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 121 | |
---|
[1517] | 122 | USE advection, & |
---|
| 123 | ONLY: aex, bex, dex, eex |
---|
[1320] | 124 | |
---|
[1517] | 125 | USE arrays_3d, & |
---|
| 126 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 127 | |
---|
[1517] | 128 | USE control_parameters, & |
---|
[1960] | 129 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 130 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 131 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 132 | |
---|
[1517] | 133 | USE cpulog, & |
---|
| 134 | ONLY: cpu_log, log_point_s |
---|
[1] | 135 | |
---|
[1517] | 136 | USE grid_variables, & |
---|
| 137 | ONLY: ddx, ddy |
---|
[1320] | 138 | |
---|
[1517] | 139 | USE indices, & |
---|
| 140 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 141 | |
---|
[1517] | 142 | USE kinds |
---|
[1] | 143 | |
---|
[1517] | 144 | USE pegrid |
---|
[1] | 145 | |
---|
[1517] | 146 | USE statistics, & |
---|
| 147 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 148 | |
---|
[1320] | 149 | |
---|
[1517] | 150 | IMPLICIT NONE |
---|
| 151 | |
---|
[1682] | 152 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 153 | |
---|
[1682] | 154 | INTEGER(iwp) :: i !< |
---|
| 155 | INTEGER(iwp) :: ix !< |
---|
| 156 | INTEGER(iwp) :: j !< |
---|
| 157 | INTEGER(iwp) :: k !< |
---|
| 158 | INTEGER(iwp) :: ngp !< |
---|
| 159 | INTEGER(iwp) :: sr !< |
---|
| 160 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 161 | |
---|
[1682] | 162 | REAL(wp) :: cim !< |
---|
| 163 | REAL(wp) :: cimf !< |
---|
| 164 | REAL(wp) :: cip !< |
---|
| 165 | REAL(wp) :: cipf !< |
---|
| 166 | REAL(wp) :: d_new !< |
---|
| 167 | REAL(wp) :: denomi !< denominator |
---|
| 168 | REAL(wp) :: fminus !< |
---|
| 169 | REAL(wp) :: fplus !< |
---|
| 170 | REAL(wp) :: f2 !< |
---|
| 171 | REAL(wp) :: f4 !< |
---|
| 172 | REAL(wp) :: f8 !< |
---|
| 173 | REAL(wp) :: f12 !< |
---|
| 174 | REAL(wp) :: f24 !< |
---|
| 175 | REAL(wp) :: f48 !< |
---|
| 176 | REAL(wp) :: f1920 !< |
---|
| 177 | REAL(wp) :: im !< |
---|
| 178 | REAL(wp) :: ip !< |
---|
| 179 | REAL(wp) :: m2 !< |
---|
| 180 | REAL(wp) :: m3 !< |
---|
| 181 | REAL(wp) :: numera !< numerator |
---|
| 182 | REAL(wp) :: snenn !< |
---|
| 183 | REAL(wp) :: sterm !< |
---|
| 184 | REAL(wp) :: tendcy !< |
---|
| 185 | REAL(wp) :: t1 !< |
---|
| 186 | REAL(wp) :: t2 !< |
---|
[1517] | 187 | |
---|
[1682] | 188 | REAL(wp) :: fmax(2) !< |
---|
| 189 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 190 | |
---|
[1010] | 191 | #if defined( __nopointer ) |
---|
[1682] | 192 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 193 | #else |
---|
[1517] | 194 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 195 | #endif |
---|
[1] | 196 | |
---|
[1682] | 197 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 198 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 199 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 200 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 201 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 202 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 203 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 204 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 205 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 206 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 207 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 208 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 209 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[1517] | 210 | |
---|
[1682] | 211 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 212 | |
---|
[63] | 213 | #if defined( __nec ) |
---|
[1815] | 214 | REAL(sp) :: m1n, m1z !< important for optimisation of division |
---|
[1682] | 215 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !< |
---|
[1] | 216 | #else |
---|
[1517] | 217 | REAL(wp) :: m1n, m1z |
---|
| 218 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 219 | #endif |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | ! |
---|
[1517] | 223 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 224 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 225 | sk_p = 0.0_wp |
---|
[1] | 226 | |
---|
| 227 | ! |
---|
[1517] | 228 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 229 | f2 = 0.5_wp |
---|
| 230 | f4 = 0.25_wp |
---|
| 231 | f8 = 0.125_wp |
---|
| 232 | f12 = 0.8333333333333333E-01_wp |
---|
| 233 | f24 = 0.4166666666666666E-01_wp |
---|
| 234 | f48 = 0.2083333333333333E-01_wp |
---|
| 235 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 236 | |
---|
| 237 | ! |
---|
[1517] | 238 | !-- Advection in x-direction: |
---|
[1] | 239 | |
---|
| 240 | ! |
---|
[1517] | 241 | !-- Save the quantity to be advected in a local array |
---|
| 242 | !-- add an enlarged boundary in x-direction |
---|
| 243 | DO i = nxl-1, nxr+1 |
---|
| 244 | DO j = nys, nyn |
---|
| 245 | DO k = nzb, nzt+1 |
---|
| 246 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 247 | ENDDO |
---|
[1] | 248 | ENDDO |
---|
| 249 | ENDDO |
---|
| 250 | #if defined( __parallel ) |
---|
[1517] | 251 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 252 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 253 | ! |
---|
[1517] | 254 | !-- Send left boundary, receive right boundary |
---|
| 255 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 256 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 257 | comm2d, status, ierr ) |
---|
[1] | 258 | ! |
---|
[1517] | 259 | !-- Send right boundary, receive left boundary |
---|
| 260 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 261 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 262 | comm2d, status, ierr ) |
---|
| 263 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 264 | #else |
---|
| 265 | |
---|
| 266 | ! |
---|
[1517] | 267 | !-- Cyclic boundary conditions |
---|
| 268 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 269 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 270 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 271 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 272 | #endif |
---|
| 273 | |
---|
| 274 | ! |
---|
[1517] | 275 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 276 | !-- of the temperature field at the left and right boundary of the total |
---|
| 277 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 278 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 279 | IF ( nxl == 0 ) THEN |
---|
| 280 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 281 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 282 | ENDIF |
---|
| 283 | IF ( nxr == nx ) THEN |
---|
| 284 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 285 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 286 | ENDIF |
---|
[1] | 287 | ENDIF |
---|
| 288 | |
---|
| 289 | ! |
---|
[1517] | 290 | !-- Initialise control density |
---|
| 291 | d = 0.0_wp |
---|
[1] | 292 | |
---|
| 293 | ! |
---|
[1517] | 294 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 295 | fmax_l = 0.0_wp |
---|
| 296 | DO i = nxl, nxr |
---|
| 297 | DO j = nys, nyn |
---|
| 298 | DO k = nzb+1, nzt |
---|
| 299 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 300 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 301 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 302 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 303 | ENDDO |
---|
[1] | 304 | ENDDO |
---|
| 305 | ENDDO |
---|
| 306 | #if defined( __parallel ) |
---|
[1517] | 307 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 308 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 309 | #else |
---|
[1517] | 310 | fmax = fmax_l |
---|
[1] | 311 | #endif |
---|
| 312 | |
---|
[1517] | 313 | fmax = 0.04_wp * fmax |
---|
[1] | 314 | |
---|
| 315 | ! |
---|
[1517] | 316 | !-- Allocate temporary arrays |
---|
| 317 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 318 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 319 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 320 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 321 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 322 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 323 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 324 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 325 | ) |
---|
| 326 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 327 | |
---|
| 328 | ! |
---|
[1517] | 329 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 330 | !-- not work if done locally within the loop) |
---|
| 331 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 332 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 333 | |
---|
| 334 | ! |
---|
[1517] | 335 | !-- Outer loop of all j |
---|
| 336 | DO j = nys, nyn |
---|
[1] | 337 | |
---|
| 338 | ! |
---|
[1517] | 339 | !-- Compute polynomial coefficients |
---|
| 340 | DO i = nxl-1, nxr+1 |
---|
| 341 | DO k = nzb+1, nzt |
---|
| 342 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 343 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 344 | + sk_p(k,j,i-1) ) |
---|
| 345 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 346 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 347 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 348 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 349 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 350 | ) * f48 |
---|
| 351 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 352 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 353 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 354 | ENDDO |
---|
[1] | 355 | ENDDO |
---|
| 356 | |
---|
| 357 | ! |
---|
[1517] | 358 | !-- Fluxes using the Bott scheme |
---|
| 359 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 360 | DO i = nxl, nxr |
---|
| 361 | DO k = nzb+1, nzt |
---|
| 362 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 363 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 364 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 365 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 366 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 367 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 368 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 369 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 370 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 371 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 372 | ip = MAX( ip, 0.0_wp ) |
---|
| 373 | im = MAX( im, 0.0_wp ) |
---|
| 374 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 375 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 376 | |
---|
[1517] | 377 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 378 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 379 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 380 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 381 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 382 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 383 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 384 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 385 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 386 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 387 | ip = MAX( ip, 0.0_wp ) |
---|
| 388 | im = MAX( im, 0.0_wp ) |
---|
| 389 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 390 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 391 | ENDDO |
---|
[1] | 392 | ENDDO |
---|
| 393 | |
---|
| 394 | ! |
---|
[1517] | 395 | !-- Compute monitor function m1 |
---|
| 396 | DO i = nxl-2, nxr+2 |
---|
| 397 | DO k = nzb+1, nzt |
---|
| 398 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 399 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 400 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 401 | m1(k,i) = m1z / m1n |
---|
| 402 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 403 | ELSEIF ( m1n < m1z ) THEN |
---|
| 404 | m1(k,i) = -1.0_wp |
---|
| 405 | ELSE |
---|
| 406 | m1(k,i) = 0.0_wp |
---|
| 407 | ENDIF |
---|
| 408 | ENDDO |
---|
[1] | 409 | ENDDO |
---|
| 410 | |
---|
| 411 | ! |
---|
[1517] | 412 | !-- Compute switch sw |
---|
| 413 | sw = 0.0_wp |
---|
| 414 | DO i = nxl-1, nxr+1 |
---|
| 415 | DO k = nzb+1, nzt |
---|
| 416 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 417 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 418 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 419 | |
---|
[1517] | 420 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 421 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 422 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 423 | |
---|
[1517] | 424 | t1 = 0.35_wp |
---|
| 425 | t2 = 0.35_wp |
---|
| 426 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 427 | |
---|
[1517] | 428 | !-- *VOCL STMT,IF(10) |
---|
| 429 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 430 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 431 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 432 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 433 | ) sw(k,i) = 1.0_wp |
---|
| 434 | ENDDO |
---|
[1] | 435 | ENDDO |
---|
| 436 | |
---|
| 437 | ! |
---|
[1517] | 438 | !-- Fluxes using the exponential scheme |
---|
| 439 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 440 | DO i = nxl, nxr |
---|
| 441 | DO k = nzb+1, nzt |
---|
[1] | 442 | |
---|
[1517] | 443 | !-- *VOCL STMT,IF(10) |
---|
| 444 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 445 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 446 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 447 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 448 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 449 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 450 | |
---|
[1517] | 451 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 452 | |
---|
[1517] | 453 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 454 | |
---|
[1517] | 455 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 456 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 457 | eex(ix) - & |
---|
| 458 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 459 | ) & |
---|
| 460 | ) |
---|
| 461 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 462 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 463 | |
---|
[1517] | 464 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 465 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 466 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 467 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 468 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 469 | |
---|
[1517] | 470 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 471 | |
---|
[1517] | 472 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 473 | |
---|
[1517] | 474 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 475 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 476 | eex(ix) - & |
---|
| 477 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 478 | ) & |
---|
| 479 | ) |
---|
| 480 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 481 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 482 | ENDIF |
---|
[1] | 483 | |
---|
[1517] | 484 | !-- *VOCL STMT,IF(10) |
---|
| 485 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 486 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 487 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 488 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 489 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 490 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 491 | |
---|
[1517] | 492 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 493 | |
---|
[1517] | 494 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 495 | |
---|
[1517] | 496 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 497 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 498 | eex(ix) - & |
---|
| 499 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 500 | ) & |
---|
| 501 | ) |
---|
| 502 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 503 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 504 | ENDIF |
---|
[1] | 505 | |
---|
[1517] | 506 | !-- *VOCL STMT,IF(10) |
---|
| 507 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 508 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 509 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 510 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 511 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 512 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 513 | |
---|
[1517] | 514 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 515 | |
---|
[1517] | 516 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 517 | |
---|
[1517] | 518 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 519 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 520 | eex(ix) - & |
---|
| 521 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 522 | ) & |
---|
| 523 | ) |
---|
| 524 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 525 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 526 | ENDIF |
---|
[1] | 527 | |
---|
[1517] | 528 | ENDDO |
---|
[1] | 529 | ENDDO |
---|
[1517] | 530 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 531 | |
---|
| 532 | ! |
---|
[1517] | 533 | !-- Prognostic equation |
---|
| 534 | DO i = nxl, nxr |
---|
| 535 | DO k = nzb+1, nzt |
---|
| 536 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 537 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 538 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 539 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 540 | tendcy = fplus - fminus |
---|
[1] | 541 | ! |
---|
[1517] | 542 | !-- Removed in order to optimize speed |
---|
| 543 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 544 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 545 | ! |
---|
[1517] | 546 | !-- Density correction because of possible remaining divergences |
---|
| 547 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 548 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 549 | ( 1.0_wp + d_new ) |
---|
| 550 | d(k,j,i) = d_new |
---|
| 551 | ENDDO |
---|
[1] | 552 | ENDDO |
---|
| 553 | |
---|
[1517] | 554 | ENDDO ! End of the advection in x-direction |
---|
[1] | 555 | |
---|
| 556 | ! |
---|
[1517] | 557 | !-- Deallocate temporary arrays |
---|
| 558 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 559 | ippb, ippe, m1, sw ) |
---|
[1] | 560 | |
---|
| 561 | |
---|
| 562 | ! |
---|
[1517] | 563 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 564 | #if defined( __parallel ) |
---|
[1517] | 565 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 566 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 567 | type_xz_2, ierr ) |
---|
| 568 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 569 | ! |
---|
[1517] | 570 | !-- Send front boundary, receive rear boundary |
---|
| 571 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 572 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 573 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 574 | comm2d, status, ierr ) |
---|
[1] | 575 | ! |
---|
[1517] | 576 | !-- Send rear boundary, receive front boundary |
---|
| 577 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 578 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 579 | comm2d, status, ierr ) |
---|
| 580 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 581 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 582 | #else |
---|
[1517] | 583 | DO i = nxl, nxr |
---|
| 584 | DO k = nzb+1, nzt |
---|
| 585 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 586 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 587 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 588 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 589 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 590 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 591 | ENDDO |
---|
[1] | 592 | ENDDO |
---|
| 593 | #endif |
---|
| 594 | |
---|
| 595 | ! |
---|
[1517] | 596 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 597 | fmax_l = 0.0_wp |
---|
| 598 | DO i = nxl, nxr |
---|
| 599 | DO j = nys, nyn |
---|
| 600 | DO k = nzb+1, nzt |
---|
| 601 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 602 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 603 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 604 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 605 | ENDDO |
---|
[1] | 606 | ENDDO |
---|
| 607 | ENDDO |
---|
| 608 | #if defined( __parallel ) |
---|
[1517] | 609 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 610 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 611 | #else |
---|
[1517] | 612 | fmax = fmax_l |
---|
[1] | 613 | #endif |
---|
| 614 | |
---|
[1517] | 615 | fmax = 0.04_wp * fmax |
---|
[1] | 616 | |
---|
| 617 | ! |
---|
[1517] | 618 | !-- Allocate temporary arrays |
---|
| 619 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 620 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 621 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 622 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 623 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 624 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 625 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 626 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 627 | ) |
---|
| 628 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 629 | |
---|
| 630 | ! |
---|
[1517] | 631 | !-- Outer loop of all i |
---|
| 632 | DO i = nxl, nxr |
---|
[1] | 633 | |
---|
| 634 | ! |
---|
[1517] | 635 | !-- Compute polynomial coefficients |
---|
| 636 | DO j = nys-1, nyn+1 |
---|
| 637 | DO k = nzb+1, nzt |
---|
| 638 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 639 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 640 | + sk_p(k,j-1,i) ) |
---|
| 641 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 642 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 643 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 644 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 645 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 646 | ) * f48 |
---|
| 647 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 648 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 649 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 650 | ENDDO |
---|
[1] | 651 | ENDDO |
---|
| 652 | |
---|
| 653 | ! |
---|
[1517] | 654 | !-- Fluxes using the Bott scheme |
---|
| 655 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 656 | DO j = nys, nyn |
---|
| 657 | DO k = nzb+1, nzt |
---|
| 658 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 659 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 660 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 661 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 662 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 663 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 664 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 665 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 666 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 667 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 668 | ip = MAX( ip, 0.0_wp ) |
---|
| 669 | im = MAX( im, 0.0_wp ) |
---|
| 670 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 671 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 672 | |
---|
[1517] | 673 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 674 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 675 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 676 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 677 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 678 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 679 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 680 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 681 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 682 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 683 | ip = MAX( ip, 0.0_wp ) |
---|
| 684 | im = MAX( im, 0.0_wp ) |
---|
| 685 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 686 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 687 | ENDDO |
---|
[1] | 688 | ENDDO |
---|
| 689 | |
---|
| 690 | ! |
---|
[1517] | 691 | !-- Compute monitor function m1 |
---|
| 692 | DO j = nys-2, nyn+2 |
---|
| 693 | DO k = nzb+1, nzt |
---|
| 694 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 695 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 696 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 697 | m1(k,j) = m1z / m1n |
---|
| 698 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 699 | ELSEIF ( m1n < m1z ) THEN |
---|
| 700 | m1(k,j) = -1.0_wp |
---|
| 701 | ELSE |
---|
| 702 | m1(k,j) = 0.0_wp |
---|
| 703 | ENDIF |
---|
| 704 | ENDDO |
---|
[1] | 705 | ENDDO |
---|
| 706 | |
---|
| 707 | ! |
---|
[1517] | 708 | !-- Compute switch sw |
---|
| 709 | sw = 0.0_wp |
---|
| 710 | DO j = nys-1, nyn+1 |
---|
| 711 | DO k = nzb+1, nzt |
---|
| 712 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 713 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 714 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 715 | |
---|
[1517] | 716 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 717 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 718 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 719 | |
---|
[1517] | 720 | t1 = 0.35_wp |
---|
| 721 | t2 = 0.35_wp |
---|
| 722 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 723 | |
---|
[1517] | 724 | !-- *VOCL STMT,IF(10) |
---|
| 725 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 726 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 727 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 728 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 729 | ) sw(k,j) = 1.0_wp |
---|
| 730 | ENDDO |
---|
[1] | 731 | ENDDO |
---|
| 732 | |
---|
| 733 | ! |
---|
[1517] | 734 | !-- Fluxes using exponential scheme |
---|
| 735 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 736 | DO j = nys, nyn |
---|
| 737 | DO k = nzb+1, nzt |
---|
[1] | 738 | |
---|
[1517] | 739 | !-- *VOCL STMT,IF(10) |
---|
| 740 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 741 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 742 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 743 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 744 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 745 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 746 | |
---|
[1517] | 747 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 748 | |
---|
[1517] | 749 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 750 | |
---|
[1517] | 751 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 752 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 753 | eex(ix) - & |
---|
| 754 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 755 | ) & |
---|
| 756 | ) |
---|
| 757 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 758 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 759 | |
---|
[1517] | 760 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 761 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 762 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 763 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 764 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 765 | |
---|
[1517] | 766 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 767 | |
---|
[1517] | 768 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 769 | |
---|
[1517] | 770 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 771 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 772 | eex(ix) - & |
---|
| 773 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 774 | ) & |
---|
| 775 | ) |
---|
| 776 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 777 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 778 | ENDIF |
---|
[1] | 779 | |
---|
[1517] | 780 | !-- *VOCL STMT,IF(10) |
---|
| 781 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 782 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 783 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 784 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 785 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 786 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 787 | |
---|
[1517] | 788 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 789 | |
---|
[1517] | 790 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 791 | |
---|
[1517] | 792 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 793 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 794 | eex(ix) - & |
---|
| 795 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 796 | ) & |
---|
| 797 | ) |
---|
| 798 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 799 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 800 | ENDIF |
---|
[1] | 801 | |
---|
[1517] | 802 | !-- *VOCL STMT,IF(10) |
---|
| 803 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 804 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 805 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 806 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 807 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 808 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 809 | |
---|
[1517] | 810 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 811 | |
---|
[1517] | 812 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 813 | |
---|
[1517] | 814 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 815 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 816 | eex(ix) - & |
---|
| 817 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 818 | ) & |
---|
| 819 | ) |
---|
| 820 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 821 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 822 | ENDIF |
---|
[1] | 823 | |
---|
[1517] | 824 | ENDDO |
---|
[1] | 825 | ENDDO |
---|
[1517] | 826 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 827 | |
---|
| 828 | ! |
---|
[1517] | 829 | !-- Prognostic equation |
---|
| 830 | DO j = nys, nyn |
---|
| 831 | DO k = nzb+1, nzt |
---|
| 832 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 833 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 834 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 835 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 836 | tendcy = fplus - fminus |
---|
[1] | 837 | ! |
---|
[1517] | 838 | !-- Removed in order to optimise speed |
---|
| 839 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 840 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 841 | ! |
---|
[1517] | 842 | !-- Density correction because of possible remaining divergences |
---|
| 843 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 844 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 845 | ( 1.0_wp + d_new ) |
---|
| 846 | d(k,j,i) = d_new |
---|
| 847 | ENDDO |
---|
[1] | 848 | ENDDO |
---|
| 849 | |
---|
[1517] | 850 | ENDDO ! End of the advection in y-direction |
---|
| 851 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 852 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 853 | |
---|
| 854 | ! |
---|
[1517] | 855 | !-- Deallocate temporary arrays |
---|
| 856 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 857 | ippb, ippe, m1, sw ) |
---|
[1] | 858 | |
---|
| 859 | |
---|
| 860 | ! |
---|
[1517] | 861 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 862 | !-- UP flow_statistics) |
---|
| 863 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 864 | |
---|
| 865 | ! |
---|
[1517] | 866 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 867 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 868 | |
---|
| 869 | ! |
---|
[1517] | 870 | !-- Temperature boundary condition at the bottom boundary |
---|
| 871 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 872 | ! |
---|
| 873 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 874 | DO i = nxl, nxr |
---|
| 875 | DO j = nys, nyn |
---|
| 876 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 877 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 878 | ENDDO |
---|
[1] | 879 | ENDDO |
---|
| 880 | |
---|
[1517] | 881 | ELSE |
---|
[1] | 882 | ! |
---|
[1517] | 883 | !-- Neumann (i.e. here zero gradient) |
---|
| 884 | DO i = nxl, nxr |
---|
| 885 | DO j = nys, nyn |
---|
| 886 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 887 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 888 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
| 891 | |
---|
| 892 | ENDIF |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- Temperature boundary condition at the top boundary |
---|
| 896 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 897 | ! |
---|
| 898 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 899 | DO i = nxl, nxr |
---|
| 900 | DO j = nys, nyn |
---|
| 901 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 902 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 903 | ENDDO |
---|
| 904 | ENDDO |
---|
| 905 | |
---|
| 906 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 907 | ! |
---|
| 908 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 909 | DO i = nxl, nxr |
---|
| 910 | DO j = nys, nyn |
---|
| 911 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 912 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | |
---|
| 916 | ENDIF |
---|
| 917 | |
---|
| 918 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 919 | |
---|
| 920 | ! |
---|
| 921 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 922 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 923 | DO i = nxl, nxr |
---|
| 924 | DO j = nys, nyn |
---|
[216] | 925 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 926 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 927 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 928 | ENDDO |
---|
| 929 | ENDDO |
---|
| 930 | |
---|
| 931 | ! |
---|
[1517] | 932 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 933 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 934 | DO i = nxl, nxr |
---|
| 935 | DO j = nys, nyn |
---|
[63] | 936 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 937 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 938 | ENDDO |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
[1517] | 941 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 942 | |
---|
[1] | 943 | ! |
---|
[1517] | 944 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 945 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 946 | DO i = nxl, nxr |
---|
| 947 | DO j = nys, nyn |
---|
[1517] | 948 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 949 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 950 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 951 | ENDDO |
---|
| 952 | ENDDO |
---|
| 953 | |
---|
| 954 | ! |
---|
[1517] | 955 | !-- Specific humidity boundary condition at the top boundary |
---|
| 956 | IF ( ibc_q_t == 0 ) THEN |
---|
| 957 | ! |
---|
| 958 | !-- Dirichlet |
---|
| 959 | DO i = nxl, nxr |
---|
| 960 | DO j = nys, nyn |
---|
| 961 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 962 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 963 | ENDDO |
---|
| 964 | ENDDO |
---|
[1] | 965 | |
---|
[1517] | 966 | ELSE |
---|
[1] | 967 | ! |
---|
[1517] | 968 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 969 | DO i = nxl, nxr |
---|
| 970 | DO j = nys, nyn |
---|
| 971 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 972 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 973 | ENDDO |
---|
| 974 | ENDDO |
---|
[1] | 975 | |
---|
[1517] | 976 | ENDIF |
---|
[1] | 977 | |
---|
[1960] | 978 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 979 | ! |
---|
| 980 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 981 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 982 | DO i = nxl, nxr |
---|
| 983 | DO j = nys, nyn |
---|
| 984 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 985 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 986 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 987 | ENDDO |
---|
| 988 | ENDDO |
---|
| 989 | |
---|
| 990 | ! |
---|
| 991 | !-- Specific scalar boundary condition at the top boundary |
---|
| 992 | IF ( ibc_s_t == 0 ) THEN |
---|
| 993 | ! |
---|
| 994 | !-- Dirichlet |
---|
| 995 | DO i = nxl, nxr |
---|
| 996 | DO j = nys, nyn |
---|
| 997 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 998 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | |
---|
| 1002 | ELSE |
---|
| 1003 | ! |
---|
| 1004 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 1005 | DO i = nxl, nxr |
---|
| 1006 | DO j = nys, nyn |
---|
| 1007 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1008 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1009 | ENDDO |
---|
| 1010 | ENDDO |
---|
| 1011 | |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
[1517] | 1014 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 1015 | |
---|
[1] | 1016 | ! |
---|
[1517] | 1017 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 1018 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1019 | DO i = nxl, nxr |
---|
| 1020 | DO j = nys, nyn |
---|
| 1021 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1022 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1023 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1024 | ENDDO |
---|
[97] | 1025 | ENDDO |
---|
| 1026 | |
---|
| 1027 | ! |
---|
[1517] | 1028 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 1029 | DO i = nxl, nxr |
---|
| 1030 | DO j = nys, nyn |
---|
[63] | 1031 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1032 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | |
---|
[1517] | 1036 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1037 | |
---|
[1] | 1038 | ! |
---|
[1517] | 1039 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1040 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1041 | DO i = nxl, nxr |
---|
| 1042 | DO j = nys, nyn |
---|
[1517] | 1043 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1044 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1045 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1046 | ENDDO |
---|
| 1047 | ENDDO |
---|
| 1048 | |
---|
[1361] | 1049 | ! |
---|
[1517] | 1050 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1051 | DO i = nxl, nxr |
---|
| 1052 | DO j = nys, nyn |
---|
| 1053 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1054 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1055 | ENDDO |
---|
[1361] | 1056 | ENDDO |
---|
| 1057 | |
---|
[1517] | 1058 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1059 | |
---|
| 1060 | ! |
---|
[1517] | 1061 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1062 | DO i = nxl, nxr |
---|
| 1063 | DO j = nys, nyn |
---|
| 1064 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1065 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1066 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1067 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1068 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1069 | ENDDO |
---|
[1361] | 1070 | ENDDO |
---|
| 1071 | |
---|
[1517] | 1072 | ELSE |
---|
[1361] | 1073 | |
---|
[1517] | 1074 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1075 | 'tion for variable "', sk_char, '"' |
---|
| 1076 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1077 | |
---|
| 1078 | ENDIF |
---|
[1] | 1079 | |
---|
| 1080 | ! |
---|
[1517] | 1081 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1082 | fmax_l = 0.0_wp |
---|
[97] | 1083 | DO i = nxl, nxr |
---|
| 1084 | DO j = nys, nyn |
---|
[1517] | 1085 | DO k = nzb, nzt+1 |
---|
| 1086 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1087 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1088 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1089 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1090 | ENDDO |
---|
[97] | 1091 | ENDDO |
---|
| 1092 | ENDDO |
---|
[1] | 1093 | #if defined( __parallel ) |
---|
[1517] | 1094 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1095 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1096 | #else |
---|
[1517] | 1097 | fmax = fmax_l |
---|
[1] | 1098 | #endif |
---|
| 1099 | |
---|
[1517] | 1100 | fmax = 0.04_wp * fmax |
---|
[1] | 1101 | |
---|
| 1102 | ! |
---|
[1517] | 1103 | !-- Allocate temporary arrays |
---|
| 1104 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1105 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1106 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1107 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1108 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1109 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1110 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1111 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1112 | ) |
---|
| 1113 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1114 | |
---|
| 1115 | ! |
---|
[1517] | 1116 | !-- Outer loop of all i |
---|
| 1117 | DO i = nxl, nxr |
---|
[1] | 1118 | |
---|
| 1119 | ! |
---|
[1517] | 1120 | !-- Compute polynomial coefficients |
---|
| 1121 | DO j = nys, nyn |
---|
| 1122 | DO k = nzb, nzt+1 |
---|
| 1123 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1124 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1125 | + sk_p(k-1,j,i) ) |
---|
| 1126 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1127 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1128 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1129 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1130 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1131 | ) * f48 |
---|
| 1132 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1133 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1134 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1135 | ENDDO |
---|
[1] | 1136 | ENDDO |
---|
| 1137 | |
---|
| 1138 | ! |
---|
[1517] | 1139 | !-- Fluxes using the Bott scheme |
---|
| 1140 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1141 | DO j = nys, nyn |
---|
| 1142 | DO k = nzb+1, nzt |
---|
| 1143 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1144 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1145 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1146 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1147 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1148 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1149 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1150 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1151 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1152 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1153 | ip = MAX( ip, 0.0_wp ) |
---|
| 1154 | im = MAX( im, 0.0_wp ) |
---|
| 1155 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1156 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1157 | |
---|
[1517] | 1158 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1159 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1160 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1161 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1162 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1163 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1164 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1165 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1166 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1167 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1168 | ip = MAX( ip, 0.0_wp ) |
---|
| 1169 | im = MAX( im, 0.0_wp ) |
---|
| 1170 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1171 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1172 | ENDDO |
---|
[1] | 1173 | ENDDO |
---|
| 1174 | |
---|
| 1175 | ! |
---|
[1517] | 1176 | !-- Compute monitor function m1 |
---|
| 1177 | DO j = nys, nyn |
---|
| 1178 | DO k = nzb-1, nzt+2 |
---|
| 1179 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1180 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1181 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1182 | m1(k,j) = m1z / m1n |
---|
| 1183 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1184 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1185 | m1(k,j) = -1.0_wp |
---|
| 1186 | ELSE |
---|
| 1187 | m1(k,j) = 0.0_wp |
---|
| 1188 | ENDIF |
---|
| 1189 | ENDDO |
---|
[1] | 1190 | ENDDO |
---|
| 1191 | |
---|
| 1192 | ! |
---|
[1517] | 1193 | !-- Compute switch sw |
---|
| 1194 | sw = 0.0_wp |
---|
| 1195 | DO j = nys, nyn |
---|
| 1196 | DO k = nzb, nzt+1 |
---|
| 1197 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1198 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1199 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1200 | |
---|
[1517] | 1201 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1202 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1203 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1204 | |
---|
[1517] | 1205 | t1 = 0.35_wp |
---|
| 1206 | t2 = 0.35_wp |
---|
| 1207 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1208 | |
---|
[1517] | 1209 | !-- *VOCL STMT,IF(10) |
---|
| 1210 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1211 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1212 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1213 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1214 | ) sw(k,j) = 1.0_wp |
---|
| 1215 | ENDDO |
---|
[1] | 1216 | ENDDO |
---|
| 1217 | |
---|
| 1218 | ! |
---|
[1517] | 1219 | !-- Fluxes using exponential scheme |
---|
| 1220 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1221 | DO j = nys, nyn |
---|
| 1222 | DO k = nzb+1, nzt |
---|
[1] | 1223 | |
---|
[1517] | 1224 | !-- *VOCL STMT,IF(10) |
---|
| 1225 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1226 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1227 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1228 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1229 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1230 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1231 | |
---|
[1517] | 1232 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1233 | |
---|
[1517] | 1234 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1235 | |
---|
[1517] | 1236 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1237 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1238 | eex(ix) - & |
---|
| 1239 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1240 | ) & |
---|
| 1241 | ) |
---|
| 1242 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1243 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1244 | |
---|
[1517] | 1245 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1246 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1247 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1248 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1249 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1250 | |
---|
[1517] | 1251 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1252 | |
---|
[1517] | 1253 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1254 | |
---|
[1517] | 1255 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1256 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1257 | eex(ix) - & |
---|
| 1258 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1259 | ) & |
---|
| 1260 | ) |
---|
| 1261 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1262 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1263 | ENDIF |
---|
[1] | 1264 | |
---|
[1517] | 1265 | !-- *VOCL STMT,IF(10) |
---|
| 1266 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1267 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1268 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1269 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1270 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1271 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1272 | |
---|
[1517] | 1273 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1274 | |
---|
[1517] | 1275 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1276 | |
---|
[1517] | 1277 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1278 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1279 | eex(ix) - & |
---|
| 1280 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1281 | ) & |
---|
| 1282 | ) |
---|
| 1283 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1284 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1285 | ENDIF |
---|
[1] | 1286 | |
---|
[1517] | 1287 | !-- *VOCL STMT,IF(10) |
---|
| 1288 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1289 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1290 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1291 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1292 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1293 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1294 | |
---|
[1517] | 1295 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1296 | |
---|
[1517] | 1297 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1298 | |
---|
[1517] | 1299 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1300 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1301 | eex(ix) - & |
---|
| 1302 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1303 | ) & |
---|
| 1304 | ) |
---|
| 1305 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1306 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1307 | ENDIF |
---|
[1] | 1308 | |
---|
[1517] | 1309 | ENDDO |
---|
[1] | 1310 | ENDDO |
---|
[1517] | 1311 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1312 | |
---|
| 1313 | ! |
---|
[1517] | 1314 | !-- Prognostic equation |
---|
| 1315 | DO j = nys, nyn |
---|
| 1316 | DO k = nzb+1, nzt |
---|
| 1317 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1318 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1319 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1320 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1321 | tendcy = fplus - fminus |
---|
[1] | 1322 | ! |
---|
[1517] | 1323 | !-- Removed in order to optimise speed |
---|
| 1324 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1325 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1326 | ! |
---|
[1517] | 1327 | !-- Density correction because of possible remaining divergences |
---|
| 1328 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1329 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1330 | ( 1.0_wp + d_new ) |
---|
[1] | 1331 | ! |
---|
[1517] | 1332 | !-- Store heat flux for subsequent statistics output. |
---|
| 1333 | !-- array m1 is here used as temporary storage |
---|
| 1334 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1335 | ENDDO |
---|
[1] | 1336 | ENDDO |
---|
| 1337 | |
---|
| 1338 | ! |
---|
[1517] | 1339 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1340 | IF ( sk_char == 'pt' ) THEN |
---|
| 1341 | DO sr = 0, statistic_regions |
---|
| 1342 | DO j = nys, nyn |
---|
| 1343 | DO k = nzb+1, nzt |
---|
| 1344 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1345 | m1(k,j) * rmask(j,i,sr) |
---|
| 1346 | ENDDO |
---|
[1] | 1347 | ENDDO |
---|
| 1348 | ENDDO |
---|
[1517] | 1349 | ENDIF |
---|
[1] | 1350 | |
---|
[1517] | 1351 | ENDDO ! End of the advection in z-direction |
---|
| 1352 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1353 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1354 | |
---|
| 1355 | ! |
---|
[1517] | 1356 | !-- Deallocate temporary arrays |
---|
| 1357 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1358 | ippb, ippe, m1, sw ) |
---|
[1] | 1359 | |
---|
| 1360 | ! |
---|
[1517] | 1361 | !-- Store results as tendency and deallocate local array |
---|
| 1362 | DO i = nxl, nxr |
---|
| 1363 | DO j = nys, nyn |
---|
| 1364 | DO k = nzb+1, nzt |
---|
| 1365 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1366 | ENDDO |
---|
[1] | 1367 | ENDDO |
---|
| 1368 | ENDDO |
---|
| 1369 | |
---|
[1517] | 1370 | DEALLOCATE( sk_p ) |
---|
[1] | 1371 | |
---|
[1517] | 1372 | END SUBROUTINE advec_s_bc |
---|
| 1373 | |
---|
| 1374 | END MODULE advec_s_bc_mod |
---|