[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[247] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1354] | 21 | ! |
---|
[1961] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: advec_s_bc.f90 1961 2016-07-12 16:37:58Z gronemeier $ |
---|
| 26 | ! |
---|
[1961] | 27 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 28 | ! New CASE statement to treat scalars and humidity separately |
---|
| 29 | ! |
---|
[1874] | 30 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 31 | ! Module renamed (removed _mod) |
---|
| 32 | ! |
---|
| 33 | ! |
---|
[1851] | 34 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 35 | ! Module renamed |
---|
| 36 | ! |
---|
| 37 | ! |
---|
[1816] | 38 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 39 | ! comment change |
---|
| 40 | ! |
---|
[1692] | 41 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 42 | ! Formatting corrections |
---|
| 43 | ! |
---|
[1683] | 44 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 45 | ! Code annotations made doxygen readable |
---|
| 46 | ! |
---|
[1518] | 47 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 48 | ! interface added to advec_s_bc |
---|
| 49 | ! |
---|
[1375] | 50 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 51 | ! missing variables added to ONLY list |
---|
| 52 | ! |
---|
[1362] | 53 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 54 | ! nr and qr added |
---|
| 55 | ! |
---|
[1354] | 56 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 57 | ! REAL constants provided with KIND-attribute |
---|
| 58 | ! |
---|
[1347] | 59 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 60 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 61 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 62 | ! |
---|
[1321] | 63 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 64 | ! ONLY-attribute added to USE-statements, |
---|
| 65 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 66 | ! kinds are defined in new module kinds, |
---|
| 67 | ! revision history before 2012 removed, |
---|
| 68 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 69 | ! all variable declaration statements |
---|
[1] | 70 | ! |
---|
[1319] | 71 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 72 | ! module interfaces removed |
---|
| 73 | ! |
---|
[1093] | 74 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 75 | ! unused variables removed |
---|
| 76 | ! |
---|
[1037] | 77 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 78 | ! code put under GPL (PALM 3.9) |
---|
| 79 | ! |
---|
[1011] | 80 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 81 | ! cpp switch __nopointer added for pointer free version |
---|
| 82 | ! |
---|
[1] | 83 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 84 | ! Initial revision |
---|
| 85 | ! |
---|
| 86 | ! |
---|
| 87 | ! Description: |
---|
| 88 | ! ------------ |
---|
[1682] | 89 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 90 | !> Computation in individual steps for each of the three dimensions. |
---|
| 91 | !> Limiting assumptions: |
---|
| 92 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 93 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 94 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 95 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 96 | !> stretched grids. |
---|
| 97 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 98 | !------------------------------------------------------------------------------! |
---|
[1682] | 99 | MODULE advec_s_bc_mod |
---|
| 100 | |
---|
[1] | 101 | |
---|
[1517] | 102 | PRIVATE |
---|
| 103 | PUBLIC advec_s_bc |
---|
[1320] | 104 | |
---|
[1517] | 105 | INTERFACE advec_s_bc |
---|
| 106 | MODULE PROCEDURE advec_s_bc |
---|
| 107 | END INTERFACE advec_s_bc |
---|
[1320] | 108 | |
---|
[1517] | 109 | CONTAINS |
---|
[1320] | 110 | |
---|
[1682] | 111 | !------------------------------------------------------------------------------! |
---|
| 112 | ! Description: |
---|
| 113 | ! ------------ |
---|
| 114 | !> @todo Missing subroutine description. |
---|
| 115 | !------------------------------------------------------------------------------! |
---|
[1517] | 116 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 117 | |
---|
[1517] | 118 | USE advection, & |
---|
| 119 | ONLY: aex, bex, dex, eex |
---|
[1320] | 120 | |
---|
[1517] | 121 | USE arrays_3d, & |
---|
| 122 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 123 | |
---|
[1517] | 124 | USE control_parameters, & |
---|
[1960] | 125 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, bc_s_t_val, ibc_pt_b, ibc_pt_t, & |
---|
| 126 | ibc_q_t, ibc_s_t, message_string, pt_slope_offset, & |
---|
| 127 | sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 128 | |
---|
[1517] | 129 | USE cpulog, & |
---|
| 130 | ONLY: cpu_log, log_point_s |
---|
[1] | 131 | |
---|
[1517] | 132 | USE grid_variables, & |
---|
| 133 | ONLY: ddx, ddy |
---|
[1320] | 134 | |
---|
[1517] | 135 | USE indices, & |
---|
| 136 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 137 | |
---|
[1517] | 138 | USE kinds |
---|
[1] | 139 | |
---|
[1517] | 140 | USE pegrid |
---|
[1] | 141 | |
---|
[1517] | 142 | USE statistics, & |
---|
| 143 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 144 | |
---|
[1320] | 145 | |
---|
[1517] | 146 | IMPLICIT NONE |
---|
| 147 | |
---|
[1682] | 148 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 149 | |
---|
[1682] | 150 | INTEGER(iwp) :: i !< |
---|
| 151 | INTEGER(iwp) :: ix !< |
---|
| 152 | INTEGER(iwp) :: j !< |
---|
| 153 | INTEGER(iwp) :: k !< |
---|
| 154 | INTEGER(iwp) :: ngp !< |
---|
| 155 | INTEGER(iwp) :: sr !< |
---|
| 156 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 157 | |
---|
[1682] | 158 | REAL(wp) :: cim !< |
---|
| 159 | REAL(wp) :: cimf !< |
---|
| 160 | REAL(wp) :: cip !< |
---|
| 161 | REAL(wp) :: cipf !< |
---|
| 162 | REAL(wp) :: d_new !< |
---|
| 163 | REAL(wp) :: denomi !< denominator |
---|
| 164 | REAL(wp) :: fminus !< |
---|
| 165 | REAL(wp) :: fplus !< |
---|
| 166 | REAL(wp) :: f2 !< |
---|
| 167 | REAL(wp) :: f4 !< |
---|
| 168 | REAL(wp) :: f8 !< |
---|
| 169 | REAL(wp) :: f12 !< |
---|
| 170 | REAL(wp) :: f24 !< |
---|
| 171 | REAL(wp) :: f48 !< |
---|
| 172 | REAL(wp) :: f1920 !< |
---|
| 173 | REAL(wp) :: im !< |
---|
| 174 | REAL(wp) :: ip !< |
---|
| 175 | REAL(wp) :: m2 !< |
---|
| 176 | REAL(wp) :: m3 !< |
---|
| 177 | REAL(wp) :: numera !< numerator |
---|
| 178 | REAL(wp) :: snenn !< |
---|
| 179 | REAL(wp) :: sterm !< |
---|
| 180 | REAL(wp) :: tendcy !< |
---|
| 181 | REAL(wp) :: t1 !< |
---|
| 182 | REAL(wp) :: t2 !< |
---|
[1517] | 183 | |
---|
[1682] | 184 | REAL(wp) :: fmax(2) !< |
---|
| 185 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 186 | |
---|
[1010] | 187 | #if defined( __nopointer ) |
---|
[1682] | 188 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 189 | #else |
---|
[1517] | 190 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 191 | #endif |
---|
[1] | 192 | |
---|
[1682] | 193 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 194 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 195 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 196 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 197 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 198 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 199 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 200 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 201 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 202 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 203 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 204 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 205 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[1517] | 206 | |
---|
[1682] | 207 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 208 | |
---|
[63] | 209 | #if defined( __nec ) |
---|
[1815] | 210 | REAL(sp) :: m1n, m1z !< important for optimisation of division |
---|
[1682] | 211 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !< |
---|
[1] | 212 | #else |
---|
[1517] | 213 | REAL(wp) :: m1n, m1z |
---|
| 214 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 215 | #endif |
---|
| 216 | |
---|
| 217 | |
---|
| 218 | ! |
---|
[1517] | 219 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 220 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 221 | sk_p = 0.0_wp |
---|
[1] | 222 | |
---|
| 223 | ! |
---|
[1517] | 224 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 225 | f2 = 0.5_wp |
---|
| 226 | f4 = 0.25_wp |
---|
| 227 | f8 = 0.125_wp |
---|
| 228 | f12 = 0.8333333333333333E-01_wp |
---|
| 229 | f24 = 0.4166666666666666E-01_wp |
---|
| 230 | f48 = 0.2083333333333333E-01_wp |
---|
| 231 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 232 | |
---|
| 233 | ! |
---|
[1517] | 234 | !-- Advection in x-direction: |
---|
[1] | 235 | |
---|
| 236 | ! |
---|
[1517] | 237 | !-- Save the quantity to be advected in a local array |
---|
| 238 | !-- add an enlarged boundary in x-direction |
---|
| 239 | DO i = nxl-1, nxr+1 |
---|
| 240 | DO j = nys, nyn |
---|
| 241 | DO k = nzb, nzt+1 |
---|
| 242 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 243 | ENDDO |
---|
[1] | 244 | ENDDO |
---|
| 245 | ENDDO |
---|
| 246 | #if defined( __parallel ) |
---|
[1517] | 247 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 248 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 249 | ! |
---|
[1517] | 250 | !-- Send left boundary, receive right boundary |
---|
| 251 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 252 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 253 | comm2d, status, ierr ) |
---|
[1] | 254 | ! |
---|
[1517] | 255 | !-- Send right boundary, receive left boundary |
---|
| 256 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 257 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 258 | comm2d, status, ierr ) |
---|
| 259 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 260 | #else |
---|
| 261 | |
---|
| 262 | ! |
---|
[1517] | 263 | !-- Cyclic boundary conditions |
---|
| 264 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 265 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 266 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 267 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 268 | #endif |
---|
| 269 | |
---|
| 270 | ! |
---|
[1517] | 271 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 272 | !-- of the temperature field at the left and right boundary of the total |
---|
| 273 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 274 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 275 | IF ( nxl == 0 ) THEN |
---|
| 276 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 277 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 278 | ENDIF |
---|
| 279 | IF ( nxr == nx ) THEN |
---|
| 280 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 281 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 282 | ENDIF |
---|
[1] | 283 | ENDIF |
---|
| 284 | |
---|
| 285 | ! |
---|
[1517] | 286 | !-- Initialise control density |
---|
| 287 | d = 0.0_wp |
---|
[1] | 288 | |
---|
| 289 | ! |
---|
[1517] | 290 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 291 | fmax_l = 0.0_wp |
---|
| 292 | DO i = nxl, nxr |
---|
| 293 | DO j = nys, nyn |
---|
| 294 | DO k = nzb+1, nzt |
---|
| 295 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 296 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 297 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 298 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 299 | ENDDO |
---|
[1] | 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | #if defined( __parallel ) |
---|
[1517] | 303 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 304 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 305 | #else |
---|
[1517] | 306 | fmax = fmax_l |
---|
[1] | 307 | #endif |
---|
| 308 | |
---|
[1517] | 309 | fmax = 0.04_wp * fmax |
---|
[1] | 310 | |
---|
| 311 | ! |
---|
[1517] | 312 | !-- Allocate temporary arrays |
---|
| 313 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 314 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 315 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 316 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 317 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 318 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 319 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 320 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 321 | ) |
---|
| 322 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 323 | |
---|
| 324 | ! |
---|
[1517] | 325 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 326 | !-- not work if done locally within the loop) |
---|
| 327 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 328 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 329 | |
---|
| 330 | ! |
---|
[1517] | 331 | !-- Outer loop of all j |
---|
| 332 | DO j = nys, nyn |
---|
[1] | 333 | |
---|
| 334 | ! |
---|
[1517] | 335 | !-- Compute polynomial coefficients |
---|
| 336 | DO i = nxl-1, nxr+1 |
---|
| 337 | DO k = nzb+1, nzt |
---|
| 338 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 339 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 340 | + sk_p(k,j,i-1) ) |
---|
| 341 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 342 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 343 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 344 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 345 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 346 | ) * f48 |
---|
| 347 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 348 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 349 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 350 | ENDDO |
---|
[1] | 351 | ENDDO |
---|
| 352 | |
---|
| 353 | ! |
---|
[1517] | 354 | !-- Fluxes using the Bott scheme |
---|
| 355 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 356 | DO i = nxl, nxr |
---|
| 357 | DO k = nzb+1, nzt |
---|
| 358 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 359 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 360 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 361 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 362 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 363 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 364 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 365 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 366 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 367 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 368 | ip = MAX( ip, 0.0_wp ) |
---|
| 369 | im = MAX( im, 0.0_wp ) |
---|
| 370 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 371 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 372 | |
---|
[1517] | 373 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 374 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 375 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 376 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 377 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 378 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 379 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 380 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 381 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 382 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 383 | ip = MAX( ip, 0.0_wp ) |
---|
| 384 | im = MAX( im, 0.0_wp ) |
---|
| 385 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 386 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 387 | ENDDO |
---|
[1] | 388 | ENDDO |
---|
| 389 | |
---|
| 390 | ! |
---|
[1517] | 391 | !-- Compute monitor function m1 |
---|
| 392 | DO i = nxl-2, nxr+2 |
---|
| 393 | DO k = nzb+1, nzt |
---|
| 394 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 395 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 396 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 397 | m1(k,i) = m1z / m1n |
---|
| 398 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 399 | ELSEIF ( m1n < m1z ) THEN |
---|
| 400 | m1(k,i) = -1.0_wp |
---|
| 401 | ELSE |
---|
| 402 | m1(k,i) = 0.0_wp |
---|
| 403 | ENDIF |
---|
| 404 | ENDDO |
---|
[1] | 405 | ENDDO |
---|
| 406 | |
---|
| 407 | ! |
---|
[1517] | 408 | !-- Compute switch sw |
---|
| 409 | sw = 0.0_wp |
---|
| 410 | DO i = nxl-1, nxr+1 |
---|
| 411 | DO k = nzb+1, nzt |
---|
| 412 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 413 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 414 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 415 | |
---|
[1517] | 416 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 417 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 418 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 419 | |
---|
[1517] | 420 | t1 = 0.35_wp |
---|
| 421 | t2 = 0.35_wp |
---|
| 422 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 423 | |
---|
[1517] | 424 | !-- *VOCL STMT,IF(10) |
---|
| 425 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 426 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 427 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 428 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 429 | ) sw(k,i) = 1.0_wp |
---|
| 430 | ENDDO |
---|
[1] | 431 | ENDDO |
---|
| 432 | |
---|
| 433 | ! |
---|
[1517] | 434 | !-- Fluxes using the exponential scheme |
---|
| 435 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 436 | DO i = nxl, nxr |
---|
| 437 | DO k = nzb+1, nzt |
---|
[1] | 438 | |
---|
[1517] | 439 | !-- *VOCL STMT,IF(10) |
---|
| 440 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 441 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 442 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 443 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 444 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 445 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 446 | |
---|
[1517] | 447 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 448 | |
---|
[1517] | 449 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 450 | |
---|
[1517] | 451 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 452 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 453 | eex(ix) - & |
---|
| 454 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 455 | ) & |
---|
| 456 | ) |
---|
| 457 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 458 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 459 | |
---|
[1517] | 460 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 461 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 462 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 463 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 464 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 465 | |
---|
[1517] | 466 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 467 | |
---|
[1517] | 468 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 469 | |
---|
[1517] | 470 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 471 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 472 | eex(ix) - & |
---|
| 473 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 474 | ) & |
---|
| 475 | ) |
---|
| 476 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 477 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 478 | ENDIF |
---|
[1] | 479 | |
---|
[1517] | 480 | !-- *VOCL STMT,IF(10) |
---|
| 481 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 482 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 483 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 484 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 485 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 486 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 487 | |
---|
[1517] | 488 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 489 | |
---|
[1517] | 490 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 491 | |
---|
[1517] | 492 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 493 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 494 | eex(ix) - & |
---|
| 495 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 496 | ) & |
---|
| 497 | ) |
---|
| 498 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 499 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 500 | ENDIF |
---|
[1] | 501 | |
---|
[1517] | 502 | !-- *VOCL STMT,IF(10) |
---|
| 503 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 504 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 505 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 506 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 507 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 508 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 509 | |
---|
[1517] | 510 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 511 | |
---|
[1517] | 512 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 513 | |
---|
[1517] | 514 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 515 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 516 | eex(ix) - & |
---|
| 517 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 518 | ) & |
---|
| 519 | ) |
---|
| 520 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 521 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 522 | ENDIF |
---|
[1] | 523 | |
---|
[1517] | 524 | ENDDO |
---|
[1] | 525 | ENDDO |
---|
[1517] | 526 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 527 | |
---|
| 528 | ! |
---|
[1517] | 529 | !-- Prognostic equation |
---|
| 530 | DO i = nxl, nxr |
---|
| 531 | DO k = nzb+1, nzt |
---|
| 532 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 533 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 534 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 535 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 536 | tendcy = fplus - fminus |
---|
[1] | 537 | ! |
---|
[1517] | 538 | !-- Removed in order to optimize speed |
---|
| 539 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 540 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 541 | ! |
---|
[1517] | 542 | !-- Density correction because of possible remaining divergences |
---|
| 543 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 544 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 545 | ( 1.0_wp + d_new ) |
---|
| 546 | d(k,j,i) = d_new |
---|
| 547 | ENDDO |
---|
[1] | 548 | ENDDO |
---|
| 549 | |
---|
[1517] | 550 | ENDDO ! End of the advection in x-direction |
---|
[1] | 551 | |
---|
| 552 | ! |
---|
[1517] | 553 | !-- Deallocate temporary arrays |
---|
| 554 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 555 | ippb, ippe, m1, sw ) |
---|
[1] | 556 | |
---|
| 557 | |
---|
| 558 | ! |
---|
[1517] | 559 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 560 | #if defined( __parallel ) |
---|
[1517] | 561 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 562 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 563 | type_xz_2, ierr ) |
---|
| 564 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 565 | ! |
---|
[1517] | 566 | !-- Send front boundary, receive rear boundary |
---|
| 567 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 568 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 569 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 570 | comm2d, status, ierr ) |
---|
[1] | 571 | ! |
---|
[1517] | 572 | !-- Send rear boundary, receive front boundary |
---|
| 573 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 574 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 575 | comm2d, status, ierr ) |
---|
| 576 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 577 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 578 | #else |
---|
[1517] | 579 | DO i = nxl, nxr |
---|
| 580 | DO k = nzb+1, nzt |
---|
| 581 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 582 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 583 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 584 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 585 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 586 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 587 | ENDDO |
---|
[1] | 588 | ENDDO |
---|
| 589 | #endif |
---|
| 590 | |
---|
| 591 | ! |
---|
[1517] | 592 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 593 | fmax_l = 0.0_wp |
---|
| 594 | DO i = nxl, nxr |
---|
| 595 | DO j = nys, nyn |
---|
| 596 | DO k = nzb+1, nzt |
---|
| 597 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 598 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 599 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 600 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 601 | ENDDO |
---|
[1] | 602 | ENDDO |
---|
| 603 | ENDDO |
---|
| 604 | #if defined( __parallel ) |
---|
[1517] | 605 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 606 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 607 | #else |
---|
[1517] | 608 | fmax = fmax_l |
---|
[1] | 609 | #endif |
---|
| 610 | |
---|
[1517] | 611 | fmax = 0.04_wp * fmax |
---|
[1] | 612 | |
---|
| 613 | ! |
---|
[1517] | 614 | !-- Allocate temporary arrays |
---|
| 615 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 616 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 617 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 618 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 619 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 620 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 621 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 622 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 623 | ) |
---|
| 624 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 625 | |
---|
| 626 | ! |
---|
[1517] | 627 | !-- Outer loop of all i |
---|
| 628 | DO i = nxl, nxr |
---|
[1] | 629 | |
---|
| 630 | ! |
---|
[1517] | 631 | !-- Compute polynomial coefficients |
---|
| 632 | DO j = nys-1, nyn+1 |
---|
| 633 | DO k = nzb+1, nzt |
---|
| 634 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 635 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 636 | + sk_p(k,j-1,i) ) |
---|
| 637 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 638 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 639 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 640 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 641 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 642 | ) * f48 |
---|
| 643 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 644 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 645 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 646 | ENDDO |
---|
[1] | 647 | ENDDO |
---|
| 648 | |
---|
| 649 | ! |
---|
[1517] | 650 | !-- Fluxes using the Bott scheme |
---|
| 651 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 652 | DO j = nys, nyn |
---|
| 653 | DO k = nzb+1, nzt |
---|
| 654 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 655 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 656 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 657 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 658 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 659 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 660 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 661 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 662 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 663 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 664 | ip = MAX( ip, 0.0_wp ) |
---|
| 665 | im = MAX( im, 0.0_wp ) |
---|
| 666 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 667 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 668 | |
---|
[1517] | 669 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 670 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 671 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 672 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 673 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 674 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 675 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 676 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 677 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 678 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 679 | ip = MAX( ip, 0.0_wp ) |
---|
| 680 | im = MAX( im, 0.0_wp ) |
---|
| 681 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 682 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 683 | ENDDO |
---|
[1] | 684 | ENDDO |
---|
| 685 | |
---|
| 686 | ! |
---|
[1517] | 687 | !-- Compute monitor function m1 |
---|
| 688 | DO j = nys-2, nyn+2 |
---|
| 689 | DO k = nzb+1, nzt |
---|
| 690 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 691 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 692 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 693 | m1(k,j) = m1z / m1n |
---|
| 694 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 695 | ELSEIF ( m1n < m1z ) THEN |
---|
| 696 | m1(k,j) = -1.0_wp |
---|
| 697 | ELSE |
---|
| 698 | m1(k,j) = 0.0_wp |
---|
| 699 | ENDIF |
---|
| 700 | ENDDO |
---|
[1] | 701 | ENDDO |
---|
| 702 | |
---|
| 703 | ! |
---|
[1517] | 704 | !-- Compute switch sw |
---|
| 705 | sw = 0.0_wp |
---|
| 706 | DO j = nys-1, nyn+1 |
---|
| 707 | DO k = nzb+1, nzt |
---|
| 708 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 709 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 710 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 711 | |
---|
[1517] | 712 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 713 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 714 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 715 | |
---|
[1517] | 716 | t1 = 0.35_wp |
---|
| 717 | t2 = 0.35_wp |
---|
| 718 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 719 | |
---|
[1517] | 720 | !-- *VOCL STMT,IF(10) |
---|
| 721 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 722 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 723 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 724 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 725 | ) sw(k,j) = 1.0_wp |
---|
| 726 | ENDDO |
---|
[1] | 727 | ENDDO |
---|
| 728 | |
---|
| 729 | ! |
---|
[1517] | 730 | !-- Fluxes using exponential scheme |
---|
| 731 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 732 | DO j = nys, nyn |
---|
| 733 | DO k = nzb+1, nzt |
---|
[1] | 734 | |
---|
[1517] | 735 | !-- *VOCL STMT,IF(10) |
---|
| 736 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 737 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 738 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 739 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 740 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 741 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 742 | |
---|
[1517] | 743 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 744 | |
---|
[1517] | 745 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 746 | |
---|
[1517] | 747 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 748 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 749 | eex(ix) - & |
---|
| 750 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 751 | ) & |
---|
| 752 | ) |
---|
| 753 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 754 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 755 | |
---|
[1517] | 756 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 757 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 758 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 759 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 760 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 761 | |
---|
[1517] | 762 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 763 | |
---|
[1517] | 764 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 765 | |
---|
[1517] | 766 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 767 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 768 | eex(ix) - & |
---|
| 769 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 770 | ) & |
---|
| 771 | ) |
---|
| 772 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 773 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 774 | ENDIF |
---|
[1] | 775 | |
---|
[1517] | 776 | !-- *VOCL STMT,IF(10) |
---|
| 777 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 778 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 779 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 780 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 781 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 782 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 783 | |
---|
[1517] | 784 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 785 | |
---|
[1517] | 786 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 787 | |
---|
[1517] | 788 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 789 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 790 | eex(ix) - & |
---|
| 791 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 792 | ) & |
---|
| 793 | ) |
---|
| 794 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 795 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 796 | ENDIF |
---|
[1] | 797 | |
---|
[1517] | 798 | !-- *VOCL STMT,IF(10) |
---|
| 799 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 800 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 801 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 802 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 803 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 804 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 805 | |
---|
[1517] | 806 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 807 | |
---|
[1517] | 808 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 809 | |
---|
[1517] | 810 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 811 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 812 | eex(ix) - & |
---|
| 813 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 814 | ) & |
---|
| 815 | ) |
---|
| 816 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 817 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 818 | ENDIF |
---|
[1] | 819 | |
---|
[1517] | 820 | ENDDO |
---|
[1] | 821 | ENDDO |
---|
[1517] | 822 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 823 | |
---|
| 824 | ! |
---|
[1517] | 825 | !-- Prognostic equation |
---|
| 826 | DO j = nys, nyn |
---|
| 827 | DO k = nzb+1, nzt |
---|
| 828 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 829 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 830 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 831 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 832 | tendcy = fplus - fminus |
---|
[1] | 833 | ! |
---|
[1517] | 834 | !-- Removed in order to optimise speed |
---|
| 835 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 836 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 837 | ! |
---|
[1517] | 838 | !-- Density correction because of possible remaining divergences |
---|
| 839 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 840 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 841 | ( 1.0_wp + d_new ) |
---|
| 842 | d(k,j,i) = d_new |
---|
| 843 | ENDDO |
---|
[1] | 844 | ENDDO |
---|
| 845 | |
---|
[1517] | 846 | ENDDO ! End of the advection in y-direction |
---|
| 847 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 848 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 849 | |
---|
| 850 | ! |
---|
[1517] | 851 | !-- Deallocate temporary arrays |
---|
| 852 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 853 | ippb, ippe, m1, sw ) |
---|
[1] | 854 | |
---|
| 855 | |
---|
| 856 | ! |
---|
[1517] | 857 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 858 | !-- UP flow_statistics) |
---|
| 859 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 860 | |
---|
| 861 | ! |
---|
[1517] | 862 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 863 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 864 | |
---|
| 865 | ! |
---|
[1517] | 866 | !-- Temperature boundary condition at the bottom boundary |
---|
| 867 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 868 | ! |
---|
| 869 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 870 | DO i = nxl, nxr |
---|
| 871 | DO j = nys, nyn |
---|
| 872 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 873 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 874 | ENDDO |
---|
[1] | 875 | ENDDO |
---|
| 876 | |
---|
[1517] | 877 | ELSE |
---|
[1] | 878 | ! |
---|
[1517] | 879 | !-- Neumann (i.e. here zero gradient) |
---|
| 880 | DO i = nxl, nxr |
---|
| 881 | DO j = nys, nyn |
---|
| 882 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 883 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 884 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 885 | ENDDO |
---|
| 886 | ENDDO |
---|
| 887 | |
---|
| 888 | ENDIF |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Temperature boundary condition at the top boundary |
---|
| 892 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 893 | ! |
---|
| 894 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 895 | DO i = nxl, nxr |
---|
| 896 | DO j = nys, nyn |
---|
| 897 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 898 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 899 | ENDDO |
---|
| 900 | ENDDO |
---|
| 901 | |
---|
| 902 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 903 | ! |
---|
| 904 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 905 | DO i = nxl, nxr |
---|
| 906 | DO j = nys, nyn |
---|
| 907 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 908 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 909 | ENDDO |
---|
| 910 | ENDDO |
---|
| 911 | |
---|
| 912 | ENDIF |
---|
| 913 | |
---|
| 914 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 915 | |
---|
| 916 | ! |
---|
| 917 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 918 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 919 | DO i = nxl, nxr |
---|
| 920 | DO j = nys, nyn |
---|
[216] | 921 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 922 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 923 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 924 | ENDDO |
---|
| 925 | ENDDO |
---|
| 926 | |
---|
| 927 | ! |
---|
[1517] | 928 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 929 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 930 | DO i = nxl, nxr |
---|
| 931 | DO j = nys, nyn |
---|
[63] | 932 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 933 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 934 | ENDDO |
---|
| 935 | ENDDO |
---|
| 936 | |
---|
[1517] | 937 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 938 | |
---|
[1] | 939 | ! |
---|
[1517] | 940 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 941 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 942 | DO i = nxl, nxr |
---|
| 943 | DO j = nys, nyn |
---|
[1517] | 944 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 945 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 946 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 947 | ENDDO |
---|
| 948 | ENDDO |
---|
| 949 | |
---|
| 950 | ! |
---|
[1517] | 951 | !-- Specific humidity boundary condition at the top boundary |
---|
| 952 | IF ( ibc_q_t == 0 ) THEN |
---|
| 953 | ! |
---|
| 954 | !-- Dirichlet |
---|
| 955 | DO i = nxl, nxr |
---|
| 956 | DO j = nys, nyn |
---|
| 957 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 958 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 959 | ENDDO |
---|
| 960 | ENDDO |
---|
[1] | 961 | |
---|
[1517] | 962 | ELSE |
---|
[1] | 963 | ! |
---|
[1517] | 964 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 965 | DO i = nxl, nxr |
---|
| 966 | DO j = nys, nyn |
---|
| 967 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 968 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 969 | ENDDO |
---|
| 970 | ENDDO |
---|
[1] | 971 | |
---|
[1517] | 972 | ENDIF |
---|
[1] | 973 | |
---|
[1960] | 974 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 975 | ! |
---|
| 976 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 977 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 978 | DO i = nxl, nxr |
---|
| 979 | DO j = nys, nyn |
---|
| 980 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 981 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 982 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 983 | ENDDO |
---|
| 984 | ENDDO |
---|
| 985 | |
---|
| 986 | ! |
---|
| 987 | !-- Specific scalar boundary condition at the top boundary |
---|
| 988 | IF ( ibc_s_t == 0 ) THEN |
---|
| 989 | ! |
---|
| 990 | !-- Dirichlet |
---|
| 991 | DO i = nxl, nxr |
---|
| 992 | DO j = nys, nyn |
---|
| 993 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 994 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 995 | ENDDO |
---|
| 996 | ENDDO |
---|
| 997 | |
---|
| 998 | ELSE |
---|
| 999 | ! |
---|
| 1000 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 1001 | DO i = nxl, nxr |
---|
| 1002 | DO j = nys, nyn |
---|
| 1003 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1004 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 1005 | ENDDO |
---|
| 1006 | ENDDO |
---|
| 1007 | |
---|
| 1008 | ENDIF |
---|
| 1009 | |
---|
[1517] | 1010 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 1011 | |
---|
[1] | 1012 | ! |
---|
[1517] | 1013 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 1014 | !-- Dirichlet (fixed surface rain water content). |
---|
| 1015 | DO i = nxl, nxr |
---|
| 1016 | DO j = nys, nyn |
---|
| 1017 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1018 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1019 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1020 | ENDDO |
---|
[97] | 1021 | ENDDO |
---|
| 1022 | |
---|
| 1023 | ! |
---|
[1517] | 1024 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 1025 | DO i = nxl, nxr |
---|
| 1026 | DO j = nys, nyn |
---|
[63] | 1027 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1028 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 1029 | ENDDO |
---|
| 1030 | ENDDO |
---|
| 1031 | |
---|
[1517] | 1032 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 1033 | |
---|
[1] | 1034 | ! |
---|
[1517] | 1035 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 1036 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 1037 | DO i = nxl, nxr |
---|
| 1038 | DO j = nys, nyn |
---|
[1517] | 1039 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1040 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1041 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | |
---|
[1361] | 1045 | ! |
---|
[1517] | 1046 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1047 | DO i = nxl, nxr |
---|
| 1048 | DO j = nys, nyn |
---|
| 1049 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1050 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1051 | ENDDO |
---|
[1361] | 1052 | ENDDO |
---|
| 1053 | |
---|
[1517] | 1054 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1055 | |
---|
| 1056 | ! |
---|
[1517] | 1057 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1058 | DO i = nxl, nxr |
---|
| 1059 | DO j = nys, nyn |
---|
| 1060 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1061 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1062 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1063 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1064 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1065 | ENDDO |
---|
[1361] | 1066 | ENDDO |
---|
| 1067 | |
---|
[1517] | 1068 | ELSE |
---|
[1361] | 1069 | |
---|
[1517] | 1070 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1071 | 'tion for variable "', sk_char, '"' |
---|
| 1072 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1073 | |
---|
| 1074 | ENDIF |
---|
[1] | 1075 | |
---|
| 1076 | ! |
---|
[1517] | 1077 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1078 | fmax_l = 0.0_wp |
---|
[97] | 1079 | DO i = nxl, nxr |
---|
| 1080 | DO j = nys, nyn |
---|
[1517] | 1081 | DO k = nzb, nzt+1 |
---|
| 1082 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1083 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1084 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1085 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1086 | ENDDO |
---|
[97] | 1087 | ENDDO |
---|
| 1088 | ENDDO |
---|
[1] | 1089 | #if defined( __parallel ) |
---|
[1517] | 1090 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1091 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1092 | #else |
---|
[1517] | 1093 | fmax = fmax_l |
---|
[1] | 1094 | #endif |
---|
| 1095 | |
---|
[1517] | 1096 | fmax = 0.04_wp * fmax |
---|
[1] | 1097 | |
---|
| 1098 | ! |
---|
[1517] | 1099 | !-- Allocate temporary arrays |
---|
| 1100 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1101 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1102 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1103 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1104 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1105 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1106 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1107 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1108 | ) |
---|
| 1109 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1110 | |
---|
| 1111 | ! |
---|
[1517] | 1112 | !-- Outer loop of all i |
---|
| 1113 | DO i = nxl, nxr |
---|
[1] | 1114 | |
---|
| 1115 | ! |
---|
[1517] | 1116 | !-- Compute polynomial coefficients |
---|
| 1117 | DO j = nys, nyn |
---|
| 1118 | DO k = nzb, nzt+1 |
---|
| 1119 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1120 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1121 | + sk_p(k-1,j,i) ) |
---|
| 1122 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1123 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1124 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1125 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1126 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1127 | ) * f48 |
---|
| 1128 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1129 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1130 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1131 | ENDDO |
---|
[1] | 1132 | ENDDO |
---|
| 1133 | |
---|
| 1134 | ! |
---|
[1517] | 1135 | !-- Fluxes using the Bott scheme |
---|
| 1136 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1137 | DO j = nys, nyn |
---|
| 1138 | DO k = nzb+1, nzt |
---|
| 1139 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1140 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1141 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1142 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1143 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1144 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1145 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1146 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1147 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1148 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1149 | ip = MAX( ip, 0.0_wp ) |
---|
| 1150 | im = MAX( im, 0.0_wp ) |
---|
| 1151 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1152 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1153 | |
---|
[1517] | 1154 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1155 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1156 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1157 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1158 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1159 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1160 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1161 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1162 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1163 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1164 | ip = MAX( ip, 0.0_wp ) |
---|
| 1165 | im = MAX( im, 0.0_wp ) |
---|
| 1166 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1167 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1168 | ENDDO |
---|
[1] | 1169 | ENDDO |
---|
| 1170 | |
---|
| 1171 | ! |
---|
[1517] | 1172 | !-- Compute monitor function m1 |
---|
| 1173 | DO j = nys, nyn |
---|
| 1174 | DO k = nzb-1, nzt+2 |
---|
| 1175 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1176 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1177 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1178 | m1(k,j) = m1z / m1n |
---|
| 1179 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1180 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1181 | m1(k,j) = -1.0_wp |
---|
| 1182 | ELSE |
---|
| 1183 | m1(k,j) = 0.0_wp |
---|
| 1184 | ENDIF |
---|
| 1185 | ENDDO |
---|
[1] | 1186 | ENDDO |
---|
| 1187 | |
---|
| 1188 | ! |
---|
[1517] | 1189 | !-- Compute switch sw |
---|
| 1190 | sw = 0.0_wp |
---|
| 1191 | DO j = nys, nyn |
---|
| 1192 | DO k = nzb, nzt+1 |
---|
| 1193 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1194 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1195 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1196 | |
---|
[1517] | 1197 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1198 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1199 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1200 | |
---|
[1517] | 1201 | t1 = 0.35_wp |
---|
| 1202 | t2 = 0.35_wp |
---|
| 1203 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1204 | |
---|
[1517] | 1205 | !-- *VOCL STMT,IF(10) |
---|
| 1206 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1207 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1208 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1209 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1210 | ) sw(k,j) = 1.0_wp |
---|
| 1211 | ENDDO |
---|
[1] | 1212 | ENDDO |
---|
| 1213 | |
---|
| 1214 | ! |
---|
[1517] | 1215 | !-- Fluxes using exponential scheme |
---|
| 1216 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1217 | DO j = nys, nyn |
---|
| 1218 | DO k = nzb+1, nzt |
---|
[1] | 1219 | |
---|
[1517] | 1220 | !-- *VOCL STMT,IF(10) |
---|
| 1221 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1222 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1223 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1224 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1225 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1226 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1227 | |
---|
[1517] | 1228 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1229 | |
---|
[1517] | 1230 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1231 | |
---|
[1517] | 1232 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1233 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1234 | eex(ix) - & |
---|
| 1235 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1236 | ) & |
---|
| 1237 | ) |
---|
| 1238 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1239 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1240 | |
---|
[1517] | 1241 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1242 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1243 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1244 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1245 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1246 | |
---|
[1517] | 1247 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1248 | |
---|
[1517] | 1249 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1250 | |
---|
[1517] | 1251 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1252 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1253 | eex(ix) - & |
---|
| 1254 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1255 | ) & |
---|
| 1256 | ) |
---|
| 1257 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1258 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1259 | ENDIF |
---|
[1] | 1260 | |
---|
[1517] | 1261 | !-- *VOCL STMT,IF(10) |
---|
| 1262 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1263 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1264 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1265 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1266 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1267 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1268 | |
---|
[1517] | 1269 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1270 | |
---|
[1517] | 1271 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1272 | |
---|
[1517] | 1273 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1274 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1275 | eex(ix) - & |
---|
| 1276 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1277 | ) & |
---|
| 1278 | ) |
---|
| 1279 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1280 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1281 | ENDIF |
---|
[1] | 1282 | |
---|
[1517] | 1283 | !-- *VOCL STMT,IF(10) |
---|
| 1284 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1285 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1286 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1287 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1288 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1289 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1290 | |
---|
[1517] | 1291 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1292 | |
---|
[1517] | 1293 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1294 | |
---|
[1517] | 1295 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1296 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1297 | eex(ix) - & |
---|
| 1298 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1299 | ) & |
---|
| 1300 | ) |
---|
| 1301 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1302 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1303 | ENDIF |
---|
[1] | 1304 | |
---|
[1517] | 1305 | ENDDO |
---|
[1] | 1306 | ENDDO |
---|
[1517] | 1307 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1308 | |
---|
| 1309 | ! |
---|
[1517] | 1310 | !-- Prognostic equation |
---|
| 1311 | DO j = nys, nyn |
---|
| 1312 | DO k = nzb+1, nzt |
---|
| 1313 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1314 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1315 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1316 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1317 | tendcy = fplus - fminus |
---|
[1] | 1318 | ! |
---|
[1517] | 1319 | !-- Removed in order to optimise speed |
---|
| 1320 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1321 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1322 | ! |
---|
[1517] | 1323 | !-- Density correction because of possible remaining divergences |
---|
| 1324 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1325 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1326 | ( 1.0_wp + d_new ) |
---|
[1] | 1327 | ! |
---|
[1517] | 1328 | !-- Store heat flux for subsequent statistics output. |
---|
| 1329 | !-- array m1 is here used as temporary storage |
---|
| 1330 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1331 | ENDDO |
---|
[1] | 1332 | ENDDO |
---|
| 1333 | |
---|
| 1334 | ! |
---|
[1517] | 1335 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1336 | IF ( sk_char == 'pt' ) THEN |
---|
| 1337 | DO sr = 0, statistic_regions |
---|
| 1338 | DO j = nys, nyn |
---|
| 1339 | DO k = nzb+1, nzt |
---|
| 1340 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1341 | m1(k,j) * rmask(j,i,sr) |
---|
| 1342 | ENDDO |
---|
[1] | 1343 | ENDDO |
---|
| 1344 | ENDDO |
---|
[1517] | 1345 | ENDIF |
---|
[1] | 1346 | |
---|
[1517] | 1347 | ENDDO ! End of the advection in z-direction |
---|
| 1348 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1349 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1350 | |
---|
| 1351 | ! |
---|
[1517] | 1352 | !-- Deallocate temporary arrays |
---|
| 1353 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1354 | ippb, ippe, m1, sw ) |
---|
[1] | 1355 | |
---|
| 1356 | ! |
---|
[1517] | 1357 | !-- Store results as tendency and deallocate local array |
---|
| 1358 | DO i = nxl, nxr |
---|
| 1359 | DO j = nys, nyn |
---|
| 1360 | DO k = nzb+1, nzt |
---|
| 1361 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1362 | ENDDO |
---|
[1] | 1363 | ENDDO |
---|
| 1364 | ENDDO |
---|
| 1365 | |
---|
[1517] | 1366 | DEALLOCATE( sk_p ) |
---|
[1] | 1367 | |
---|
[1517] | 1368 | END SUBROUTINE advec_s_bc |
---|
| 1369 | |
---|
| 1370 | END MODULE advec_s_bc_mod |
---|