[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[247] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1354] | 21 | ! |
---|
[1851] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: advec_s_bc.f90 1874 2016-04-18 14:51:10Z suehring $ |
---|
| 26 | ! |
---|
[1874] | 27 | ! 1873 2016-04-18 14:50:06Z maronga |
---|
| 28 | ! Module renamed (removed _mod) |
---|
| 29 | ! |
---|
| 30 | ! |
---|
[1851] | 31 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 32 | ! Module renamed |
---|
| 33 | ! |
---|
| 34 | ! |
---|
[1816] | 35 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 36 | ! comment change |
---|
| 37 | ! |
---|
[1692] | 38 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 39 | ! Formatting corrections |
---|
| 40 | ! |
---|
[1683] | 41 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 42 | ! Code annotations made doxygen readable |
---|
| 43 | ! |
---|
[1518] | 44 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 45 | ! interface added to advec_s_bc |
---|
| 46 | ! |
---|
[1375] | 47 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 48 | ! missing variables added to ONLY list |
---|
| 49 | ! |
---|
[1362] | 50 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 51 | ! nr and qr added |
---|
| 52 | ! |
---|
[1354] | 53 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 54 | ! REAL constants provided with KIND-attribute |
---|
| 55 | ! |
---|
[1347] | 56 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 57 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 58 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 59 | ! |
---|
[1321] | 60 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 61 | ! ONLY-attribute added to USE-statements, |
---|
| 62 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 63 | ! kinds are defined in new module kinds, |
---|
| 64 | ! revision history before 2012 removed, |
---|
| 65 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 66 | ! all variable declaration statements |
---|
[1] | 67 | ! |
---|
[1319] | 68 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 69 | ! module interfaces removed |
---|
| 70 | ! |
---|
[1093] | 71 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 72 | ! unused variables removed |
---|
| 73 | ! |
---|
[1037] | 74 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 75 | ! code put under GPL (PALM 3.9) |
---|
| 76 | ! |
---|
[1011] | 77 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 78 | ! cpp switch __nopointer added for pointer free version |
---|
| 79 | ! |
---|
[1] | 80 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 81 | ! Initial revision |
---|
| 82 | ! |
---|
| 83 | ! |
---|
| 84 | ! Description: |
---|
| 85 | ! ------------ |
---|
[1682] | 86 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 87 | !> Computation in individual steps for each of the three dimensions. |
---|
| 88 | !> Limiting assumptions: |
---|
| 89 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 90 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 91 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 92 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 93 | !> stretched grids. |
---|
| 94 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 95 | !------------------------------------------------------------------------------! |
---|
[1682] | 96 | MODULE advec_s_bc_mod |
---|
| 97 | |
---|
[1] | 98 | |
---|
[1517] | 99 | PRIVATE |
---|
| 100 | PUBLIC advec_s_bc |
---|
[1320] | 101 | |
---|
[1517] | 102 | INTERFACE advec_s_bc |
---|
| 103 | MODULE PROCEDURE advec_s_bc |
---|
| 104 | END INTERFACE advec_s_bc |
---|
[1320] | 105 | |
---|
[1517] | 106 | CONTAINS |
---|
[1320] | 107 | |
---|
[1682] | 108 | !------------------------------------------------------------------------------! |
---|
| 109 | ! Description: |
---|
| 110 | ! ------------ |
---|
| 111 | !> @todo Missing subroutine description. |
---|
| 112 | !------------------------------------------------------------------------------! |
---|
[1517] | 113 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 114 | |
---|
[1517] | 115 | USE advection, & |
---|
| 116 | ONLY: aex, bex, dex, eex |
---|
[1320] | 117 | |
---|
[1517] | 118 | USE arrays_3d, & |
---|
| 119 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 120 | |
---|
[1517] | 121 | USE control_parameters, & |
---|
| 122 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 123 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 124 | v_gtrans |
---|
[1320] | 125 | |
---|
[1517] | 126 | USE cpulog, & |
---|
| 127 | ONLY: cpu_log, log_point_s |
---|
[1] | 128 | |
---|
[1517] | 129 | USE grid_variables, & |
---|
| 130 | ONLY: ddx, ddy |
---|
[1320] | 131 | |
---|
[1517] | 132 | USE indices, & |
---|
| 133 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 134 | |
---|
[1517] | 135 | USE kinds |
---|
[1] | 136 | |
---|
[1517] | 137 | USE pegrid |
---|
[1] | 138 | |
---|
[1517] | 139 | USE statistics, & |
---|
| 140 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 141 | |
---|
[1320] | 142 | |
---|
[1517] | 143 | IMPLICIT NONE |
---|
| 144 | |
---|
[1682] | 145 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 146 | |
---|
[1682] | 147 | INTEGER(iwp) :: i !< |
---|
| 148 | INTEGER(iwp) :: ix !< |
---|
| 149 | INTEGER(iwp) :: j !< |
---|
| 150 | INTEGER(iwp) :: k !< |
---|
| 151 | INTEGER(iwp) :: ngp !< |
---|
| 152 | INTEGER(iwp) :: sr !< |
---|
| 153 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 154 | |
---|
[1682] | 155 | REAL(wp) :: cim !< |
---|
| 156 | REAL(wp) :: cimf !< |
---|
| 157 | REAL(wp) :: cip !< |
---|
| 158 | REAL(wp) :: cipf !< |
---|
| 159 | REAL(wp) :: d_new !< |
---|
| 160 | REAL(wp) :: denomi !< denominator |
---|
| 161 | REAL(wp) :: fminus !< |
---|
| 162 | REAL(wp) :: fplus !< |
---|
| 163 | REAL(wp) :: f2 !< |
---|
| 164 | REAL(wp) :: f4 !< |
---|
| 165 | REAL(wp) :: f8 !< |
---|
| 166 | REAL(wp) :: f12 !< |
---|
| 167 | REAL(wp) :: f24 !< |
---|
| 168 | REAL(wp) :: f48 !< |
---|
| 169 | REAL(wp) :: f1920 !< |
---|
| 170 | REAL(wp) :: im !< |
---|
| 171 | REAL(wp) :: ip !< |
---|
| 172 | REAL(wp) :: m2 !< |
---|
| 173 | REAL(wp) :: m3 !< |
---|
| 174 | REAL(wp) :: numera !< numerator |
---|
| 175 | REAL(wp) :: snenn !< |
---|
| 176 | REAL(wp) :: sterm !< |
---|
| 177 | REAL(wp) :: tendcy !< |
---|
| 178 | REAL(wp) :: t1 !< |
---|
| 179 | REAL(wp) :: t2 !< |
---|
[1517] | 180 | |
---|
[1682] | 181 | REAL(wp) :: fmax(2) !< |
---|
| 182 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 183 | |
---|
[1010] | 184 | #if defined( __nopointer ) |
---|
[1682] | 185 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 186 | #else |
---|
[1517] | 187 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 188 | #endif |
---|
[1] | 189 | |
---|
[1682] | 190 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 191 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 192 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 193 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 194 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 195 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 196 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 197 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 198 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 199 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 200 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 201 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 202 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[1517] | 203 | |
---|
[1682] | 204 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 205 | |
---|
[63] | 206 | #if defined( __nec ) |
---|
[1815] | 207 | REAL(sp) :: m1n, m1z !< important for optimisation of division |
---|
[1682] | 208 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !< |
---|
[1] | 209 | #else |
---|
[1517] | 210 | REAL(wp) :: m1n, m1z |
---|
| 211 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 212 | #endif |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | ! |
---|
[1517] | 216 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 217 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 218 | sk_p = 0.0_wp |
---|
[1] | 219 | |
---|
| 220 | ! |
---|
[1517] | 221 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 222 | f2 = 0.5_wp |
---|
| 223 | f4 = 0.25_wp |
---|
| 224 | f8 = 0.125_wp |
---|
| 225 | f12 = 0.8333333333333333E-01_wp |
---|
| 226 | f24 = 0.4166666666666666E-01_wp |
---|
| 227 | f48 = 0.2083333333333333E-01_wp |
---|
| 228 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 229 | |
---|
| 230 | ! |
---|
[1517] | 231 | !-- Advection in x-direction: |
---|
[1] | 232 | |
---|
| 233 | ! |
---|
[1517] | 234 | !-- Save the quantity to be advected in a local array |
---|
| 235 | !-- add an enlarged boundary in x-direction |
---|
| 236 | DO i = nxl-1, nxr+1 |
---|
| 237 | DO j = nys, nyn |
---|
| 238 | DO k = nzb, nzt+1 |
---|
| 239 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 240 | ENDDO |
---|
[1] | 241 | ENDDO |
---|
| 242 | ENDDO |
---|
| 243 | #if defined( __parallel ) |
---|
[1517] | 244 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 245 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 246 | ! |
---|
[1517] | 247 | !-- Send left boundary, receive right boundary |
---|
| 248 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 249 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 250 | comm2d, status, ierr ) |
---|
[1] | 251 | ! |
---|
[1517] | 252 | !-- Send right boundary, receive left boundary |
---|
| 253 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 254 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 255 | comm2d, status, ierr ) |
---|
| 256 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 257 | #else |
---|
| 258 | |
---|
| 259 | ! |
---|
[1517] | 260 | !-- Cyclic boundary conditions |
---|
| 261 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 262 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 263 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 264 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 265 | #endif |
---|
| 266 | |
---|
| 267 | ! |
---|
[1517] | 268 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 269 | !-- of the temperature field at the left and right boundary of the total |
---|
| 270 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 271 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 272 | IF ( nxl == 0 ) THEN |
---|
| 273 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 274 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 275 | ENDIF |
---|
| 276 | IF ( nxr == nx ) THEN |
---|
| 277 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 278 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 279 | ENDIF |
---|
[1] | 280 | ENDIF |
---|
| 281 | |
---|
| 282 | ! |
---|
[1517] | 283 | !-- Initialise control density |
---|
| 284 | d = 0.0_wp |
---|
[1] | 285 | |
---|
| 286 | ! |
---|
[1517] | 287 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 288 | fmax_l = 0.0_wp |
---|
| 289 | DO i = nxl, nxr |
---|
| 290 | DO j = nys, nyn |
---|
| 291 | DO k = nzb+1, nzt |
---|
| 292 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 293 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 294 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 295 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 296 | ENDDO |
---|
[1] | 297 | ENDDO |
---|
| 298 | ENDDO |
---|
| 299 | #if defined( __parallel ) |
---|
[1517] | 300 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 301 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 302 | #else |
---|
[1517] | 303 | fmax = fmax_l |
---|
[1] | 304 | #endif |
---|
| 305 | |
---|
[1517] | 306 | fmax = 0.04_wp * fmax |
---|
[1] | 307 | |
---|
| 308 | ! |
---|
[1517] | 309 | !-- Allocate temporary arrays |
---|
| 310 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 311 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 312 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 313 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 314 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 315 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 316 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 317 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 318 | ) |
---|
| 319 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 320 | |
---|
| 321 | ! |
---|
[1517] | 322 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 323 | !-- not work if done locally within the loop) |
---|
| 324 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 325 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 326 | |
---|
| 327 | ! |
---|
[1517] | 328 | !-- Outer loop of all j |
---|
| 329 | DO j = nys, nyn |
---|
[1] | 330 | |
---|
| 331 | ! |
---|
[1517] | 332 | !-- Compute polynomial coefficients |
---|
| 333 | DO i = nxl-1, nxr+1 |
---|
| 334 | DO k = nzb+1, nzt |
---|
| 335 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 336 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 337 | + sk_p(k,j,i-1) ) |
---|
| 338 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 339 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 340 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 341 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 342 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 343 | ) * f48 |
---|
| 344 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 345 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 346 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 347 | ENDDO |
---|
[1] | 348 | ENDDO |
---|
| 349 | |
---|
| 350 | ! |
---|
[1517] | 351 | !-- Fluxes using the Bott scheme |
---|
| 352 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 353 | DO i = nxl, nxr |
---|
| 354 | DO k = nzb+1, nzt |
---|
| 355 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 356 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 357 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 358 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 359 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 360 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 361 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 362 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 363 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 364 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 365 | ip = MAX( ip, 0.0_wp ) |
---|
| 366 | im = MAX( im, 0.0_wp ) |
---|
| 367 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 368 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 369 | |
---|
[1517] | 370 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 371 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 372 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 373 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 374 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 375 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 376 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 377 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 378 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 379 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 380 | ip = MAX( ip, 0.0_wp ) |
---|
| 381 | im = MAX( im, 0.0_wp ) |
---|
| 382 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 383 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 384 | ENDDO |
---|
[1] | 385 | ENDDO |
---|
| 386 | |
---|
| 387 | ! |
---|
[1517] | 388 | !-- Compute monitor function m1 |
---|
| 389 | DO i = nxl-2, nxr+2 |
---|
| 390 | DO k = nzb+1, nzt |
---|
| 391 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 392 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 393 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 394 | m1(k,i) = m1z / m1n |
---|
| 395 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 396 | ELSEIF ( m1n < m1z ) THEN |
---|
| 397 | m1(k,i) = -1.0_wp |
---|
| 398 | ELSE |
---|
| 399 | m1(k,i) = 0.0_wp |
---|
| 400 | ENDIF |
---|
| 401 | ENDDO |
---|
[1] | 402 | ENDDO |
---|
| 403 | |
---|
| 404 | ! |
---|
[1517] | 405 | !-- Compute switch sw |
---|
| 406 | sw = 0.0_wp |
---|
| 407 | DO i = nxl-1, nxr+1 |
---|
| 408 | DO k = nzb+1, nzt |
---|
| 409 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 410 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 411 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 412 | |
---|
[1517] | 413 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 414 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 415 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 416 | |
---|
[1517] | 417 | t1 = 0.35_wp |
---|
| 418 | t2 = 0.35_wp |
---|
| 419 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 420 | |
---|
[1517] | 421 | !-- *VOCL STMT,IF(10) |
---|
| 422 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 423 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 424 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 425 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 426 | ) sw(k,i) = 1.0_wp |
---|
| 427 | ENDDO |
---|
[1] | 428 | ENDDO |
---|
| 429 | |
---|
| 430 | ! |
---|
[1517] | 431 | !-- Fluxes using the exponential scheme |
---|
| 432 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 433 | DO i = nxl, nxr |
---|
| 434 | DO k = nzb+1, nzt |
---|
[1] | 435 | |
---|
[1517] | 436 | !-- *VOCL STMT,IF(10) |
---|
| 437 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 438 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 439 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 440 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 441 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 442 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 443 | |
---|
[1517] | 444 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 445 | |
---|
[1517] | 446 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 447 | |
---|
[1517] | 448 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 449 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 450 | eex(ix) - & |
---|
| 451 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 452 | ) & |
---|
| 453 | ) |
---|
| 454 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 455 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 456 | |
---|
[1517] | 457 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 458 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 459 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 460 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 461 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 462 | |
---|
[1517] | 463 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 464 | |
---|
[1517] | 465 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 466 | |
---|
[1517] | 467 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 468 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 469 | eex(ix) - & |
---|
| 470 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 471 | ) & |
---|
| 472 | ) |
---|
| 473 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 474 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 475 | ENDIF |
---|
[1] | 476 | |
---|
[1517] | 477 | !-- *VOCL STMT,IF(10) |
---|
| 478 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 479 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 480 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 481 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 482 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 483 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 484 | |
---|
[1517] | 485 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 486 | |
---|
[1517] | 487 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 488 | |
---|
[1517] | 489 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 490 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 491 | eex(ix) - & |
---|
| 492 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 493 | ) & |
---|
| 494 | ) |
---|
| 495 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 496 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 497 | ENDIF |
---|
[1] | 498 | |
---|
[1517] | 499 | !-- *VOCL STMT,IF(10) |
---|
| 500 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 501 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 502 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 503 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 504 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 505 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 506 | |
---|
[1517] | 507 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 508 | |
---|
[1517] | 509 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 510 | |
---|
[1517] | 511 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 512 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 513 | eex(ix) - & |
---|
| 514 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 515 | ) & |
---|
| 516 | ) |
---|
| 517 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 518 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 519 | ENDIF |
---|
[1] | 520 | |
---|
[1517] | 521 | ENDDO |
---|
[1] | 522 | ENDDO |
---|
[1517] | 523 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 524 | |
---|
| 525 | ! |
---|
[1517] | 526 | !-- Prognostic equation |
---|
| 527 | DO i = nxl, nxr |
---|
| 528 | DO k = nzb+1, nzt |
---|
| 529 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 530 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 531 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 532 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 533 | tendcy = fplus - fminus |
---|
[1] | 534 | ! |
---|
[1517] | 535 | !-- Removed in order to optimize speed |
---|
| 536 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 537 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 538 | ! |
---|
[1517] | 539 | !-- Density correction because of possible remaining divergences |
---|
| 540 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 541 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 542 | ( 1.0_wp + d_new ) |
---|
| 543 | d(k,j,i) = d_new |
---|
| 544 | ENDDO |
---|
[1] | 545 | ENDDO |
---|
| 546 | |
---|
[1517] | 547 | ENDDO ! End of the advection in x-direction |
---|
[1] | 548 | |
---|
| 549 | ! |
---|
[1517] | 550 | !-- Deallocate temporary arrays |
---|
| 551 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 552 | ippb, ippe, m1, sw ) |
---|
[1] | 553 | |
---|
| 554 | |
---|
| 555 | ! |
---|
[1517] | 556 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 557 | #if defined( __parallel ) |
---|
[1517] | 558 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 559 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 560 | type_xz_2, ierr ) |
---|
| 561 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 562 | ! |
---|
[1517] | 563 | !-- Send front boundary, receive rear boundary |
---|
| 564 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 565 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 566 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 567 | comm2d, status, ierr ) |
---|
[1] | 568 | ! |
---|
[1517] | 569 | !-- Send rear boundary, receive front boundary |
---|
| 570 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 571 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 572 | comm2d, status, ierr ) |
---|
| 573 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 574 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 575 | #else |
---|
[1517] | 576 | DO i = nxl, nxr |
---|
| 577 | DO k = nzb+1, nzt |
---|
| 578 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 579 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 580 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 581 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 582 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 583 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 584 | ENDDO |
---|
[1] | 585 | ENDDO |
---|
| 586 | #endif |
---|
| 587 | |
---|
| 588 | ! |
---|
[1517] | 589 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 590 | fmax_l = 0.0_wp |
---|
| 591 | DO i = nxl, nxr |
---|
| 592 | DO j = nys, nyn |
---|
| 593 | DO k = nzb+1, nzt |
---|
| 594 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 595 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 596 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 597 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 598 | ENDDO |
---|
[1] | 599 | ENDDO |
---|
| 600 | ENDDO |
---|
| 601 | #if defined( __parallel ) |
---|
[1517] | 602 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 603 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 604 | #else |
---|
[1517] | 605 | fmax = fmax_l |
---|
[1] | 606 | #endif |
---|
| 607 | |
---|
[1517] | 608 | fmax = 0.04_wp * fmax |
---|
[1] | 609 | |
---|
| 610 | ! |
---|
[1517] | 611 | !-- Allocate temporary arrays |
---|
| 612 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 613 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 614 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 615 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 616 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 617 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 618 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 619 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 620 | ) |
---|
| 621 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 622 | |
---|
| 623 | ! |
---|
[1517] | 624 | !-- Outer loop of all i |
---|
| 625 | DO i = nxl, nxr |
---|
[1] | 626 | |
---|
| 627 | ! |
---|
[1517] | 628 | !-- Compute polynomial coefficients |
---|
| 629 | DO j = nys-1, nyn+1 |
---|
| 630 | DO k = nzb+1, nzt |
---|
| 631 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 632 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 633 | + sk_p(k,j-1,i) ) |
---|
| 634 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 635 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 636 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 637 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 638 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 639 | ) * f48 |
---|
| 640 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 641 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 642 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 643 | ENDDO |
---|
[1] | 644 | ENDDO |
---|
| 645 | |
---|
| 646 | ! |
---|
[1517] | 647 | !-- Fluxes using the Bott scheme |
---|
| 648 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 649 | DO j = nys, nyn |
---|
| 650 | DO k = nzb+1, nzt |
---|
| 651 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 652 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 653 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 654 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 655 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 656 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 657 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 658 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 659 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 660 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 661 | ip = MAX( ip, 0.0_wp ) |
---|
| 662 | im = MAX( im, 0.0_wp ) |
---|
| 663 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 664 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 665 | |
---|
[1517] | 666 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 667 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 668 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 669 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 670 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 671 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 672 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 673 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 674 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 675 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 676 | ip = MAX( ip, 0.0_wp ) |
---|
| 677 | im = MAX( im, 0.0_wp ) |
---|
| 678 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 679 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 680 | ENDDO |
---|
[1] | 681 | ENDDO |
---|
| 682 | |
---|
| 683 | ! |
---|
[1517] | 684 | !-- Compute monitor function m1 |
---|
| 685 | DO j = nys-2, nyn+2 |
---|
| 686 | DO k = nzb+1, nzt |
---|
| 687 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 688 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 689 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 690 | m1(k,j) = m1z / m1n |
---|
| 691 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 692 | ELSEIF ( m1n < m1z ) THEN |
---|
| 693 | m1(k,j) = -1.0_wp |
---|
| 694 | ELSE |
---|
| 695 | m1(k,j) = 0.0_wp |
---|
| 696 | ENDIF |
---|
| 697 | ENDDO |
---|
[1] | 698 | ENDDO |
---|
| 699 | |
---|
| 700 | ! |
---|
[1517] | 701 | !-- Compute switch sw |
---|
| 702 | sw = 0.0_wp |
---|
| 703 | DO j = nys-1, nyn+1 |
---|
| 704 | DO k = nzb+1, nzt |
---|
| 705 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 706 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 707 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 708 | |
---|
[1517] | 709 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 710 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 711 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 712 | |
---|
[1517] | 713 | t1 = 0.35_wp |
---|
| 714 | t2 = 0.35_wp |
---|
| 715 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 716 | |
---|
[1517] | 717 | !-- *VOCL STMT,IF(10) |
---|
| 718 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 719 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 720 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 721 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 722 | ) sw(k,j) = 1.0_wp |
---|
| 723 | ENDDO |
---|
[1] | 724 | ENDDO |
---|
| 725 | |
---|
| 726 | ! |
---|
[1517] | 727 | !-- Fluxes using exponential scheme |
---|
| 728 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 729 | DO j = nys, nyn |
---|
| 730 | DO k = nzb+1, nzt |
---|
[1] | 731 | |
---|
[1517] | 732 | !-- *VOCL STMT,IF(10) |
---|
| 733 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 734 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 735 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 736 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 737 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 738 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 739 | |
---|
[1517] | 740 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 741 | |
---|
[1517] | 742 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 743 | |
---|
[1517] | 744 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 745 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 746 | eex(ix) - & |
---|
| 747 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 748 | ) & |
---|
| 749 | ) |
---|
| 750 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 751 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 752 | |
---|
[1517] | 753 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 754 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 755 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 756 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 757 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 758 | |
---|
[1517] | 759 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 760 | |
---|
[1517] | 761 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 762 | |
---|
[1517] | 763 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 764 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 765 | eex(ix) - & |
---|
| 766 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 767 | ) & |
---|
| 768 | ) |
---|
| 769 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 770 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 771 | ENDIF |
---|
[1] | 772 | |
---|
[1517] | 773 | !-- *VOCL STMT,IF(10) |
---|
| 774 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 775 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 776 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 777 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 778 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 779 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 780 | |
---|
[1517] | 781 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 782 | |
---|
[1517] | 783 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 784 | |
---|
[1517] | 785 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 786 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 787 | eex(ix) - & |
---|
| 788 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 789 | ) & |
---|
| 790 | ) |
---|
| 791 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 792 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 793 | ENDIF |
---|
[1] | 794 | |
---|
[1517] | 795 | !-- *VOCL STMT,IF(10) |
---|
| 796 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 797 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 798 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 799 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 800 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 801 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 802 | |
---|
[1517] | 803 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 804 | |
---|
[1517] | 805 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 806 | |
---|
[1517] | 807 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 808 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 809 | eex(ix) - & |
---|
| 810 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 811 | ) & |
---|
| 812 | ) |
---|
| 813 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 814 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 815 | ENDIF |
---|
[1] | 816 | |
---|
[1517] | 817 | ENDDO |
---|
[1] | 818 | ENDDO |
---|
[1517] | 819 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 820 | |
---|
| 821 | ! |
---|
[1517] | 822 | !-- Prognostic equation |
---|
| 823 | DO j = nys, nyn |
---|
| 824 | DO k = nzb+1, nzt |
---|
| 825 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 826 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 827 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 828 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 829 | tendcy = fplus - fminus |
---|
[1] | 830 | ! |
---|
[1517] | 831 | !-- Removed in order to optimise speed |
---|
| 832 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 833 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 834 | ! |
---|
[1517] | 835 | !-- Density correction because of possible remaining divergences |
---|
| 836 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 837 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 838 | ( 1.0_wp + d_new ) |
---|
| 839 | d(k,j,i) = d_new |
---|
| 840 | ENDDO |
---|
[1] | 841 | ENDDO |
---|
| 842 | |
---|
[1517] | 843 | ENDDO ! End of the advection in y-direction |
---|
| 844 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 845 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 846 | |
---|
| 847 | ! |
---|
[1517] | 848 | !-- Deallocate temporary arrays |
---|
| 849 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 850 | ippb, ippe, m1, sw ) |
---|
[1] | 851 | |
---|
| 852 | |
---|
| 853 | ! |
---|
[1517] | 854 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 855 | !-- UP flow_statistics) |
---|
| 856 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 857 | |
---|
| 858 | ! |
---|
[1517] | 859 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 860 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 861 | |
---|
| 862 | ! |
---|
[1517] | 863 | !-- Temperature boundary condition at the bottom boundary |
---|
| 864 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 865 | ! |
---|
| 866 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 867 | DO i = nxl, nxr |
---|
| 868 | DO j = nys, nyn |
---|
| 869 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 870 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 871 | ENDDO |
---|
[1] | 872 | ENDDO |
---|
| 873 | |
---|
[1517] | 874 | ELSE |
---|
[1] | 875 | ! |
---|
[1517] | 876 | !-- Neumann (i.e. here zero gradient) |
---|
| 877 | DO i = nxl, nxr |
---|
| 878 | DO j = nys, nyn |
---|
| 879 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 880 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 881 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 882 | ENDDO |
---|
| 883 | ENDDO |
---|
| 884 | |
---|
| 885 | ENDIF |
---|
| 886 | |
---|
| 887 | ! |
---|
| 888 | !-- Temperature boundary condition at the top boundary |
---|
| 889 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 890 | ! |
---|
| 891 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 892 | DO i = nxl, nxr |
---|
| 893 | DO j = nys, nyn |
---|
| 894 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 895 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 896 | ENDDO |
---|
| 897 | ENDDO |
---|
| 898 | |
---|
| 899 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 900 | ! |
---|
| 901 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 902 | DO i = nxl, nxr |
---|
| 903 | DO j = nys, nyn |
---|
| 904 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 905 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 906 | ENDDO |
---|
| 907 | ENDDO |
---|
| 908 | |
---|
| 909 | ENDIF |
---|
| 910 | |
---|
| 911 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 912 | |
---|
| 913 | ! |
---|
| 914 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 915 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 916 | DO i = nxl, nxr |
---|
| 917 | DO j = nys, nyn |
---|
[216] | 918 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 919 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 920 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | |
---|
| 924 | ! |
---|
[1517] | 925 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 926 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 927 | DO i = nxl, nxr |
---|
| 928 | DO j = nys, nyn |
---|
[63] | 929 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 930 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 931 | ENDDO |
---|
| 932 | ENDDO |
---|
| 933 | |
---|
[1517] | 934 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 935 | |
---|
[1] | 936 | ! |
---|
[1517] | 937 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 938 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nys, nyn |
---|
[1517] | 941 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 942 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 943 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | |
---|
| 947 | ! |
---|
[1517] | 948 | !-- Specific humidity boundary condition at the top boundary |
---|
| 949 | IF ( ibc_q_t == 0 ) THEN |
---|
| 950 | ! |
---|
| 951 | !-- Dirichlet |
---|
| 952 | DO i = nxl, nxr |
---|
| 953 | DO j = nys, nyn |
---|
| 954 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 955 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 956 | ENDDO |
---|
| 957 | ENDDO |
---|
[1] | 958 | |
---|
[1517] | 959 | ELSE |
---|
[1] | 960 | ! |
---|
[1517] | 961 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 962 | DO i = nxl, nxr |
---|
| 963 | DO j = nys, nyn |
---|
| 964 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 965 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 966 | ENDDO |
---|
| 967 | ENDDO |
---|
[1] | 968 | |
---|
[1517] | 969 | ENDIF |
---|
[1] | 970 | |
---|
[1517] | 971 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 972 | |
---|
[1] | 973 | ! |
---|
[1517] | 974 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 975 | !-- Dirichlet (fixed surface rain water content). |
---|
| 976 | DO i = nxl, nxr |
---|
| 977 | DO j = nys, nyn |
---|
| 978 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 979 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 980 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 981 | ENDDO |
---|
[97] | 982 | ENDDO |
---|
| 983 | |
---|
| 984 | ! |
---|
[1517] | 985 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 986 | DO i = nxl, nxr |
---|
| 987 | DO j = nys, nyn |
---|
[63] | 988 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 989 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 990 | ENDDO |
---|
| 991 | ENDDO |
---|
| 992 | |
---|
[1517] | 993 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 994 | |
---|
[1] | 995 | ! |
---|
[1517] | 996 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 997 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 998 | DO i = nxl, nxr |
---|
| 999 | DO j = nys, nyn |
---|
[1517] | 1000 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1001 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1002 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 1003 | ENDDO |
---|
| 1004 | ENDDO |
---|
| 1005 | |
---|
[1361] | 1006 | ! |
---|
[1517] | 1007 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1008 | DO i = nxl, nxr |
---|
| 1009 | DO j = nys, nyn |
---|
| 1010 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1011 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1012 | ENDDO |
---|
[1361] | 1013 | ENDDO |
---|
| 1014 | |
---|
[1517] | 1015 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1016 | |
---|
| 1017 | ! |
---|
[1517] | 1018 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1019 | DO i = nxl, nxr |
---|
| 1020 | DO j = nys, nyn |
---|
| 1021 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1022 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1023 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1024 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1025 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1026 | ENDDO |
---|
[1361] | 1027 | ENDDO |
---|
| 1028 | |
---|
[1517] | 1029 | ELSE |
---|
[1361] | 1030 | |
---|
[1517] | 1031 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1032 | 'tion for variable "', sk_char, '"' |
---|
| 1033 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1034 | |
---|
| 1035 | ENDIF |
---|
[1] | 1036 | |
---|
| 1037 | ! |
---|
[1517] | 1038 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1039 | fmax_l = 0.0_wp |
---|
[97] | 1040 | DO i = nxl, nxr |
---|
| 1041 | DO j = nys, nyn |
---|
[1517] | 1042 | DO k = nzb, nzt+1 |
---|
| 1043 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1044 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1045 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1046 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1047 | ENDDO |
---|
[97] | 1048 | ENDDO |
---|
| 1049 | ENDDO |
---|
[1] | 1050 | #if defined( __parallel ) |
---|
[1517] | 1051 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1052 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1053 | #else |
---|
[1517] | 1054 | fmax = fmax_l |
---|
[1] | 1055 | #endif |
---|
| 1056 | |
---|
[1517] | 1057 | fmax = 0.04_wp * fmax |
---|
[1] | 1058 | |
---|
| 1059 | ! |
---|
[1517] | 1060 | !-- Allocate temporary arrays |
---|
| 1061 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1062 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1063 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1064 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1065 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1066 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1067 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1068 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1069 | ) |
---|
| 1070 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1071 | |
---|
| 1072 | ! |
---|
[1517] | 1073 | !-- Outer loop of all i |
---|
| 1074 | DO i = nxl, nxr |
---|
[1] | 1075 | |
---|
| 1076 | ! |
---|
[1517] | 1077 | !-- Compute polynomial coefficients |
---|
| 1078 | DO j = nys, nyn |
---|
| 1079 | DO k = nzb, nzt+1 |
---|
| 1080 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1081 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1082 | + sk_p(k-1,j,i) ) |
---|
| 1083 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1084 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1085 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1086 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1087 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1088 | ) * f48 |
---|
| 1089 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1090 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1091 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1092 | ENDDO |
---|
[1] | 1093 | ENDDO |
---|
| 1094 | |
---|
| 1095 | ! |
---|
[1517] | 1096 | !-- Fluxes using the Bott scheme |
---|
| 1097 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1098 | DO j = nys, nyn |
---|
| 1099 | DO k = nzb+1, nzt |
---|
| 1100 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1101 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1102 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1103 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1104 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1105 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1106 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1107 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1108 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1109 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1110 | ip = MAX( ip, 0.0_wp ) |
---|
| 1111 | im = MAX( im, 0.0_wp ) |
---|
| 1112 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1113 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1114 | |
---|
[1517] | 1115 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1116 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1117 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1118 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1119 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1120 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1121 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1122 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1123 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1124 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1125 | ip = MAX( ip, 0.0_wp ) |
---|
| 1126 | im = MAX( im, 0.0_wp ) |
---|
| 1127 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1128 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1129 | ENDDO |
---|
[1] | 1130 | ENDDO |
---|
| 1131 | |
---|
| 1132 | ! |
---|
[1517] | 1133 | !-- Compute monitor function m1 |
---|
| 1134 | DO j = nys, nyn |
---|
| 1135 | DO k = nzb-1, nzt+2 |
---|
| 1136 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1137 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1138 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1139 | m1(k,j) = m1z / m1n |
---|
| 1140 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1141 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1142 | m1(k,j) = -1.0_wp |
---|
| 1143 | ELSE |
---|
| 1144 | m1(k,j) = 0.0_wp |
---|
| 1145 | ENDIF |
---|
| 1146 | ENDDO |
---|
[1] | 1147 | ENDDO |
---|
| 1148 | |
---|
| 1149 | ! |
---|
[1517] | 1150 | !-- Compute switch sw |
---|
| 1151 | sw = 0.0_wp |
---|
| 1152 | DO j = nys, nyn |
---|
| 1153 | DO k = nzb, nzt+1 |
---|
| 1154 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1155 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1156 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1157 | |
---|
[1517] | 1158 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1159 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1160 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1161 | |
---|
[1517] | 1162 | t1 = 0.35_wp |
---|
| 1163 | t2 = 0.35_wp |
---|
| 1164 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1165 | |
---|
[1517] | 1166 | !-- *VOCL STMT,IF(10) |
---|
| 1167 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1168 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1169 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1170 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1171 | ) sw(k,j) = 1.0_wp |
---|
| 1172 | ENDDO |
---|
[1] | 1173 | ENDDO |
---|
| 1174 | |
---|
| 1175 | ! |
---|
[1517] | 1176 | !-- Fluxes using exponential scheme |
---|
| 1177 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1178 | DO j = nys, nyn |
---|
| 1179 | DO k = nzb+1, nzt |
---|
[1] | 1180 | |
---|
[1517] | 1181 | !-- *VOCL STMT,IF(10) |
---|
| 1182 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1183 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1184 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1185 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1186 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1187 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1188 | |
---|
[1517] | 1189 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1190 | |
---|
[1517] | 1191 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1192 | |
---|
[1517] | 1193 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1194 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1195 | eex(ix) - & |
---|
| 1196 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1197 | ) & |
---|
| 1198 | ) |
---|
| 1199 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1200 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1201 | |
---|
[1517] | 1202 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1203 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1204 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1205 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1206 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1207 | |
---|
[1517] | 1208 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1209 | |
---|
[1517] | 1210 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1211 | |
---|
[1517] | 1212 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1213 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1214 | eex(ix) - & |
---|
| 1215 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1216 | ) & |
---|
| 1217 | ) |
---|
| 1218 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1219 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1220 | ENDIF |
---|
[1] | 1221 | |
---|
[1517] | 1222 | !-- *VOCL STMT,IF(10) |
---|
| 1223 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1224 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1225 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1226 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1227 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1228 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1229 | |
---|
[1517] | 1230 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1231 | |
---|
[1517] | 1232 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1233 | |
---|
[1517] | 1234 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1235 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1236 | eex(ix) - & |
---|
| 1237 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1238 | ) & |
---|
| 1239 | ) |
---|
| 1240 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1241 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1242 | ENDIF |
---|
[1] | 1243 | |
---|
[1517] | 1244 | !-- *VOCL STMT,IF(10) |
---|
| 1245 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1246 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1247 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1248 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1249 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1250 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1251 | |
---|
[1517] | 1252 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1253 | |
---|
[1517] | 1254 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1255 | |
---|
[1517] | 1256 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1257 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1258 | eex(ix) - & |
---|
| 1259 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1260 | ) & |
---|
| 1261 | ) |
---|
| 1262 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1263 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1264 | ENDIF |
---|
[1] | 1265 | |
---|
[1517] | 1266 | ENDDO |
---|
[1] | 1267 | ENDDO |
---|
[1517] | 1268 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1269 | |
---|
| 1270 | ! |
---|
[1517] | 1271 | !-- Prognostic equation |
---|
| 1272 | DO j = nys, nyn |
---|
| 1273 | DO k = nzb+1, nzt |
---|
| 1274 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1275 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1276 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1277 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1278 | tendcy = fplus - fminus |
---|
[1] | 1279 | ! |
---|
[1517] | 1280 | !-- Removed in order to optimise speed |
---|
| 1281 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1282 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1283 | ! |
---|
[1517] | 1284 | !-- Density correction because of possible remaining divergences |
---|
| 1285 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1286 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1287 | ( 1.0_wp + d_new ) |
---|
[1] | 1288 | ! |
---|
[1517] | 1289 | !-- Store heat flux for subsequent statistics output. |
---|
| 1290 | !-- array m1 is here used as temporary storage |
---|
| 1291 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1292 | ENDDO |
---|
[1] | 1293 | ENDDO |
---|
| 1294 | |
---|
| 1295 | ! |
---|
[1517] | 1296 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1297 | IF ( sk_char == 'pt' ) THEN |
---|
| 1298 | DO sr = 0, statistic_regions |
---|
| 1299 | DO j = nys, nyn |
---|
| 1300 | DO k = nzb+1, nzt |
---|
| 1301 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1302 | m1(k,j) * rmask(j,i,sr) |
---|
| 1303 | ENDDO |
---|
[1] | 1304 | ENDDO |
---|
| 1305 | ENDDO |
---|
[1517] | 1306 | ENDIF |
---|
[1] | 1307 | |
---|
[1517] | 1308 | ENDDO ! End of the advection in z-direction |
---|
| 1309 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1310 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1311 | |
---|
| 1312 | ! |
---|
[1517] | 1313 | !-- Deallocate temporary arrays |
---|
| 1314 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1315 | ippb, ippe, m1, sw ) |
---|
[1] | 1316 | |
---|
| 1317 | ! |
---|
[1517] | 1318 | !-- Store results as tendency and deallocate local array |
---|
| 1319 | DO i = nxl, nxr |
---|
| 1320 | DO j = nys, nyn |
---|
| 1321 | DO k = nzb+1, nzt |
---|
| 1322 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1323 | ENDDO |
---|
[1] | 1324 | ENDDO |
---|
| 1325 | ENDDO |
---|
| 1326 | |
---|
[1517] | 1327 | DEALLOCATE( sk_p ) |
---|
[1] | 1328 | |
---|
[1517] | 1329 | END SUBROUTINE advec_s_bc |
---|
| 1330 | |
---|
| 1331 | END MODULE advec_s_bc_mod |
---|