[1682] | 1 | !> @file advec_s_bc.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[247] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1354] | 21 | ! |
---|
[1816] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: advec_s_bc.f90 1818 2016-04-06 15:53:27Z raasch $ |
---|
| 26 | ! |
---|
[1816] | 27 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 28 | ! comment change |
---|
| 29 | ! |
---|
[1692] | 30 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 31 | ! Formatting corrections |
---|
| 32 | ! |
---|
[1683] | 33 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 34 | ! Code annotations made doxygen readable |
---|
| 35 | ! |
---|
[1518] | 36 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 37 | ! interface added to advec_s_bc |
---|
| 38 | ! |
---|
[1375] | 39 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 40 | ! missing variables added to ONLY list |
---|
| 41 | ! |
---|
[1362] | 42 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 43 | ! nr and qr added |
---|
| 44 | ! |
---|
[1354] | 45 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 46 | ! REAL constants provided with KIND-attribute |
---|
| 47 | ! |
---|
[1347] | 48 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 49 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 50 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 51 | ! |
---|
[1321] | 52 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 53 | ! ONLY-attribute added to USE-statements, |
---|
| 54 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 55 | ! kinds are defined in new module kinds, |
---|
| 56 | ! revision history before 2012 removed, |
---|
| 57 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 58 | ! all variable declaration statements |
---|
[1] | 59 | ! |
---|
[1319] | 60 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 61 | ! module interfaces removed |
---|
| 62 | ! |
---|
[1093] | 63 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 64 | ! unused variables removed |
---|
| 65 | ! |
---|
[1037] | 66 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 67 | ! code put under GPL (PALM 3.9) |
---|
| 68 | ! |
---|
[1011] | 69 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 70 | ! cpp switch __nopointer added for pointer free version |
---|
| 71 | ! |
---|
[1] | 72 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 73 | ! Initial revision |
---|
| 74 | ! |
---|
| 75 | ! |
---|
| 76 | ! Description: |
---|
| 77 | ! ------------ |
---|
[1682] | 78 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 79 | !> Computation in individual steps for each of the three dimensions. |
---|
| 80 | !> Limiting assumptions: |
---|
| 81 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 82 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 83 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 84 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 85 | !> stretched grids. |
---|
| 86 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 87 | !------------------------------------------------------------------------------! |
---|
[1682] | 88 | MODULE advec_s_bc_mod |
---|
| 89 | |
---|
[1] | 90 | |
---|
[1517] | 91 | PRIVATE |
---|
| 92 | PUBLIC advec_s_bc |
---|
[1320] | 93 | |
---|
[1517] | 94 | INTERFACE advec_s_bc |
---|
| 95 | MODULE PROCEDURE advec_s_bc |
---|
| 96 | END INTERFACE advec_s_bc |
---|
[1320] | 97 | |
---|
[1517] | 98 | CONTAINS |
---|
[1320] | 99 | |
---|
[1682] | 100 | !------------------------------------------------------------------------------! |
---|
| 101 | ! Description: |
---|
| 102 | ! ------------ |
---|
| 103 | !> @todo Missing subroutine description. |
---|
| 104 | !------------------------------------------------------------------------------! |
---|
[1517] | 105 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 106 | |
---|
[1517] | 107 | USE advection, & |
---|
| 108 | ONLY: aex, bex, dex, eex |
---|
[1320] | 109 | |
---|
[1517] | 110 | USE arrays_3d, & |
---|
| 111 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 112 | |
---|
[1517] | 113 | USE control_parameters, & |
---|
| 114 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 115 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 116 | v_gtrans |
---|
[1320] | 117 | |
---|
[1517] | 118 | USE cpulog, & |
---|
| 119 | ONLY: cpu_log, log_point_s |
---|
[1] | 120 | |
---|
[1517] | 121 | USE grid_variables, & |
---|
| 122 | ONLY: ddx, ddy |
---|
[1320] | 123 | |
---|
[1517] | 124 | USE indices, & |
---|
| 125 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 126 | |
---|
[1517] | 127 | USE kinds |
---|
[1] | 128 | |
---|
[1517] | 129 | USE pegrid |
---|
[1] | 130 | |
---|
[1517] | 131 | USE statistics, & |
---|
| 132 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 133 | |
---|
[1320] | 134 | |
---|
[1517] | 135 | IMPLICIT NONE |
---|
| 136 | |
---|
[1682] | 137 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 138 | |
---|
[1682] | 139 | INTEGER(iwp) :: i !< |
---|
| 140 | INTEGER(iwp) :: ix !< |
---|
| 141 | INTEGER(iwp) :: j !< |
---|
| 142 | INTEGER(iwp) :: k !< |
---|
| 143 | INTEGER(iwp) :: ngp !< |
---|
| 144 | INTEGER(iwp) :: sr !< |
---|
| 145 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 146 | |
---|
[1682] | 147 | REAL(wp) :: cim !< |
---|
| 148 | REAL(wp) :: cimf !< |
---|
| 149 | REAL(wp) :: cip !< |
---|
| 150 | REAL(wp) :: cipf !< |
---|
| 151 | REAL(wp) :: d_new !< |
---|
| 152 | REAL(wp) :: denomi !< denominator |
---|
| 153 | REAL(wp) :: fminus !< |
---|
| 154 | REAL(wp) :: fplus !< |
---|
| 155 | REAL(wp) :: f2 !< |
---|
| 156 | REAL(wp) :: f4 !< |
---|
| 157 | REAL(wp) :: f8 !< |
---|
| 158 | REAL(wp) :: f12 !< |
---|
| 159 | REAL(wp) :: f24 !< |
---|
| 160 | REAL(wp) :: f48 !< |
---|
| 161 | REAL(wp) :: f1920 !< |
---|
| 162 | REAL(wp) :: im !< |
---|
| 163 | REAL(wp) :: ip !< |
---|
| 164 | REAL(wp) :: m2 !< |
---|
| 165 | REAL(wp) :: m3 !< |
---|
| 166 | REAL(wp) :: numera !< numerator |
---|
| 167 | REAL(wp) :: snenn !< |
---|
| 168 | REAL(wp) :: sterm !< |
---|
| 169 | REAL(wp) :: tendcy !< |
---|
| 170 | REAL(wp) :: t1 !< |
---|
| 171 | REAL(wp) :: t2 !< |
---|
[1517] | 172 | |
---|
[1682] | 173 | REAL(wp) :: fmax(2) !< |
---|
| 174 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 175 | |
---|
[1010] | 176 | #if defined( __nopointer ) |
---|
[1682] | 177 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 178 | #else |
---|
[1517] | 179 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 180 | #endif |
---|
[1] | 181 | |
---|
[1682] | 182 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 183 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 184 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 185 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 186 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 187 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 188 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 189 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 190 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 191 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 192 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 193 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 194 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[1517] | 195 | |
---|
[1682] | 196 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 197 | |
---|
[63] | 198 | #if defined( __nec ) |
---|
[1815] | 199 | REAL(sp) :: m1n, m1z !< important for optimisation of division |
---|
[1682] | 200 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !< |
---|
[1] | 201 | #else |
---|
[1517] | 202 | REAL(wp) :: m1n, m1z |
---|
| 203 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 204 | #endif |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | ! |
---|
[1517] | 208 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 209 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 210 | sk_p = 0.0_wp |
---|
[1] | 211 | |
---|
| 212 | ! |
---|
[1517] | 213 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 214 | f2 = 0.5_wp |
---|
| 215 | f4 = 0.25_wp |
---|
| 216 | f8 = 0.125_wp |
---|
| 217 | f12 = 0.8333333333333333E-01_wp |
---|
| 218 | f24 = 0.4166666666666666E-01_wp |
---|
| 219 | f48 = 0.2083333333333333E-01_wp |
---|
| 220 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 221 | |
---|
| 222 | ! |
---|
[1517] | 223 | !-- Advection in x-direction: |
---|
[1] | 224 | |
---|
| 225 | ! |
---|
[1517] | 226 | !-- Save the quantity to be advected in a local array |
---|
| 227 | !-- add an enlarged boundary in x-direction |
---|
| 228 | DO i = nxl-1, nxr+1 |
---|
| 229 | DO j = nys, nyn |
---|
| 230 | DO k = nzb, nzt+1 |
---|
| 231 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 232 | ENDDO |
---|
[1] | 233 | ENDDO |
---|
| 234 | ENDDO |
---|
| 235 | #if defined( __parallel ) |
---|
[1517] | 236 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 237 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 238 | ! |
---|
[1517] | 239 | !-- Send left boundary, receive right boundary |
---|
| 240 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 241 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 242 | comm2d, status, ierr ) |
---|
[1] | 243 | ! |
---|
[1517] | 244 | !-- Send right boundary, receive left boundary |
---|
| 245 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 246 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 247 | comm2d, status, ierr ) |
---|
| 248 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 249 | #else |
---|
| 250 | |
---|
| 251 | ! |
---|
[1517] | 252 | !-- Cyclic boundary conditions |
---|
| 253 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 254 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 255 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 256 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 257 | #endif |
---|
| 258 | |
---|
| 259 | ! |
---|
[1517] | 260 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 261 | !-- of the temperature field at the left and right boundary of the total |
---|
| 262 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 263 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 264 | IF ( nxl == 0 ) THEN |
---|
| 265 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 266 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 267 | ENDIF |
---|
| 268 | IF ( nxr == nx ) THEN |
---|
| 269 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 270 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 271 | ENDIF |
---|
[1] | 272 | ENDIF |
---|
| 273 | |
---|
| 274 | ! |
---|
[1517] | 275 | !-- Initialise control density |
---|
| 276 | d = 0.0_wp |
---|
[1] | 277 | |
---|
| 278 | ! |
---|
[1517] | 279 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 280 | fmax_l = 0.0_wp |
---|
| 281 | DO i = nxl, nxr |
---|
| 282 | DO j = nys, nyn |
---|
| 283 | DO k = nzb+1, nzt |
---|
| 284 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 285 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 286 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 287 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 288 | ENDDO |
---|
[1] | 289 | ENDDO |
---|
| 290 | ENDDO |
---|
| 291 | #if defined( __parallel ) |
---|
[1517] | 292 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 293 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 294 | #else |
---|
[1517] | 295 | fmax = fmax_l |
---|
[1] | 296 | #endif |
---|
| 297 | |
---|
[1517] | 298 | fmax = 0.04_wp * fmax |
---|
[1] | 299 | |
---|
| 300 | ! |
---|
[1517] | 301 | !-- Allocate temporary arrays |
---|
| 302 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 303 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 304 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 305 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 306 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 307 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 308 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 309 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 310 | ) |
---|
| 311 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 312 | |
---|
| 313 | ! |
---|
[1517] | 314 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 315 | !-- not work if done locally within the loop) |
---|
| 316 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 317 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 318 | |
---|
| 319 | ! |
---|
[1517] | 320 | !-- Outer loop of all j |
---|
| 321 | DO j = nys, nyn |
---|
[1] | 322 | |
---|
| 323 | ! |
---|
[1517] | 324 | !-- Compute polynomial coefficients |
---|
| 325 | DO i = nxl-1, nxr+1 |
---|
| 326 | DO k = nzb+1, nzt |
---|
| 327 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 328 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 329 | + sk_p(k,j,i-1) ) |
---|
| 330 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 331 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 332 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 333 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 334 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 335 | ) * f48 |
---|
| 336 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 337 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 338 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 339 | ENDDO |
---|
[1] | 340 | ENDDO |
---|
| 341 | |
---|
| 342 | ! |
---|
[1517] | 343 | !-- Fluxes using the Bott scheme |
---|
| 344 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 345 | DO i = nxl, nxr |
---|
| 346 | DO k = nzb+1, nzt |
---|
| 347 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 348 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 349 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 350 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 351 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 352 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 353 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 354 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 355 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 356 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 357 | ip = MAX( ip, 0.0_wp ) |
---|
| 358 | im = MAX( im, 0.0_wp ) |
---|
| 359 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 360 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 361 | |
---|
[1517] | 362 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 363 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 364 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 365 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 366 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 367 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 368 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 369 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 370 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 371 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 372 | ip = MAX( ip, 0.0_wp ) |
---|
| 373 | im = MAX( im, 0.0_wp ) |
---|
| 374 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 375 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 376 | ENDDO |
---|
[1] | 377 | ENDDO |
---|
| 378 | |
---|
| 379 | ! |
---|
[1517] | 380 | !-- Compute monitor function m1 |
---|
| 381 | DO i = nxl-2, nxr+2 |
---|
| 382 | DO k = nzb+1, nzt |
---|
| 383 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 384 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 385 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 386 | m1(k,i) = m1z / m1n |
---|
| 387 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 388 | ELSEIF ( m1n < m1z ) THEN |
---|
| 389 | m1(k,i) = -1.0_wp |
---|
| 390 | ELSE |
---|
| 391 | m1(k,i) = 0.0_wp |
---|
| 392 | ENDIF |
---|
| 393 | ENDDO |
---|
[1] | 394 | ENDDO |
---|
| 395 | |
---|
| 396 | ! |
---|
[1517] | 397 | !-- Compute switch sw |
---|
| 398 | sw = 0.0_wp |
---|
| 399 | DO i = nxl-1, nxr+1 |
---|
| 400 | DO k = nzb+1, nzt |
---|
| 401 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 402 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 403 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 404 | |
---|
[1517] | 405 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 406 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 407 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 408 | |
---|
[1517] | 409 | t1 = 0.35_wp |
---|
| 410 | t2 = 0.35_wp |
---|
| 411 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 412 | |
---|
[1517] | 413 | !-- *VOCL STMT,IF(10) |
---|
| 414 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 415 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 416 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 417 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 418 | ) sw(k,i) = 1.0_wp |
---|
| 419 | ENDDO |
---|
[1] | 420 | ENDDO |
---|
| 421 | |
---|
| 422 | ! |
---|
[1517] | 423 | !-- Fluxes using the exponential scheme |
---|
| 424 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 425 | DO i = nxl, nxr |
---|
| 426 | DO k = nzb+1, nzt |
---|
[1] | 427 | |
---|
[1517] | 428 | !-- *VOCL STMT,IF(10) |
---|
| 429 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 430 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 431 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 432 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 433 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 434 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 435 | |
---|
[1517] | 436 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 437 | |
---|
[1517] | 438 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 439 | |
---|
[1517] | 440 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 441 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 442 | eex(ix) - & |
---|
| 443 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 444 | ) & |
---|
| 445 | ) |
---|
| 446 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 447 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 448 | |
---|
[1517] | 449 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 450 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 451 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 452 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 453 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 454 | |
---|
[1517] | 455 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 456 | |
---|
[1517] | 457 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 458 | |
---|
[1517] | 459 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 460 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 461 | eex(ix) - & |
---|
| 462 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 463 | ) & |
---|
| 464 | ) |
---|
| 465 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 466 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 467 | ENDIF |
---|
[1] | 468 | |
---|
[1517] | 469 | !-- *VOCL STMT,IF(10) |
---|
| 470 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 471 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 472 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 473 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 474 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 475 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 476 | |
---|
[1517] | 477 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 478 | |
---|
[1517] | 479 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 480 | |
---|
[1517] | 481 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 482 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 483 | eex(ix) - & |
---|
| 484 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 485 | ) & |
---|
| 486 | ) |
---|
| 487 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 488 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 489 | ENDIF |
---|
[1] | 490 | |
---|
[1517] | 491 | !-- *VOCL STMT,IF(10) |
---|
| 492 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 493 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 494 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 495 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 496 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 497 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 498 | |
---|
[1517] | 499 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 500 | |
---|
[1517] | 501 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 502 | |
---|
[1517] | 503 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 504 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 505 | eex(ix) - & |
---|
| 506 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 507 | ) & |
---|
| 508 | ) |
---|
| 509 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 510 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 511 | ENDIF |
---|
[1] | 512 | |
---|
[1517] | 513 | ENDDO |
---|
[1] | 514 | ENDDO |
---|
[1517] | 515 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 516 | |
---|
| 517 | ! |
---|
[1517] | 518 | !-- Prognostic equation |
---|
| 519 | DO i = nxl, nxr |
---|
| 520 | DO k = nzb+1, nzt |
---|
| 521 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 522 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 523 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 524 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 525 | tendcy = fplus - fminus |
---|
[1] | 526 | ! |
---|
[1517] | 527 | !-- Removed in order to optimize speed |
---|
| 528 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 529 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 530 | ! |
---|
[1517] | 531 | !-- Density correction because of possible remaining divergences |
---|
| 532 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 533 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 534 | ( 1.0_wp + d_new ) |
---|
| 535 | d(k,j,i) = d_new |
---|
| 536 | ENDDO |
---|
[1] | 537 | ENDDO |
---|
| 538 | |
---|
[1517] | 539 | ENDDO ! End of the advection in x-direction |
---|
[1] | 540 | |
---|
| 541 | ! |
---|
[1517] | 542 | !-- Deallocate temporary arrays |
---|
| 543 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 544 | ippb, ippe, m1, sw ) |
---|
[1] | 545 | |
---|
| 546 | |
---|
| 547 | ! |
---|
[1517] | 548 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 549 | #if defined( __parallel ) |
---|
[1517] | 550 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 551 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 552 | type_xz_2, ierr ) |
---|
| 553 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 554 | ! |
---|
[1517] | 555 | !-- Send front boundary, receive rear boundary |
---|
| 556 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 557 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 558 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 559 | comm2d, status, ierr ) |
---|
[1] | 560 | ! |
---|
[1517] | 561 | !-- Send rear boundary, receive front boundary |
---|
| 562 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 563 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 564 | comm2d, status, ierr ) |
---|
| 565 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 566 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 567 | #else |
---|
[1517] | 568 | DO i = nxl, nxr |
---|
| 569 | DO k = nzb+1, nzt |
---|
| 570 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 571 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 572 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 573 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 574 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 575 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 576 | ENDDO |
---|
[1] | 577 | ENDDO |
---|
| 578 | #endif |
---|
| 579 | |
---|
| 580 | ! |
---|
[1517] | 581 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 582 | fmax_l = 0.0_wp |
---|
| 583 | DO i = nxl, nxr |
---|
| 584 | DO j = nys, nyn |
---|
| 585 | DO k = nzb+1, nzt |
---|
| 586 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 587 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 588 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 589 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 590 | ENDDO |
---|
[1] | 591 | ENDDO |
---|
| 592 | ENDDO |
---|
| 593 | #if defined( __parallel ) |
---|
[1517] | 594 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 595 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 596 | #else |
---|
[1517] | 597 | fmax = fmax_l |
---|
[1] | 598 | #endif |
---|
| 599 | |
---|
[1517] | 600 | fmax = 0.04_wp * fmax |
---|
[1] | 601 | |
---|
| 602 | ! |
---|
[1517] | 603 | !-- Allocate temporary arrays |
---|
| 604 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 605 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 606 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 607 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 608 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 609 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 610 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 611 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 612 | ) |
---|
| 613 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 614 | |
---|
| 615 | ! |
---|
[1517] | 616 | !-- Outer loop of all i |
---|
| 617 | DO i = nxl, nxr |
---|
[1] | 618 | |
---|
| 619 | ! |
---|
[1517] | 620 | !-- Compute polynomial coefficients |
---|
| 621 | DO j = nys-1, nyn+1 |
---|
| 622 | DO k = nzb+1, nzt |
---|
| 623 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 624 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 625 | + sk_p(k,j-1,i) ) |
---|
| 626 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 627 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 628 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 629 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 630 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 631 | ) * f48 |
---|
| 632 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 633 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 634 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 635 | ENDDO |
---|
[1] | 636 | ENDDO |
---|
| 637 | |
---|
| 638 | ! |
---|
[1517] | 639 | !-- Fluxes using the Bott scheme |
---|
| 640 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 641 | DO j = nys, nyn |
---|
| 642 | DO k = nzb+1, nzt |
---|
| 643 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 644 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 645 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 646 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 647 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 648 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 649 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 650 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 651 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 652 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 653 | ip = MAX( ip, 0.0_wp ) |
---|
| 654 | im = MAX( im, 0.0_wp ) |
---|
| 655 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 656 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 657 | |
---|
[1517] | 658 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 659 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 660 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 661 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 662 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 663 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 664 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 665 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 666 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 667 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 668 | ip = MAX( ip, 0.0_wp ) |
---|
| 669 | im = MAX( im, 0.0_wp ) |
---|
| 670 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 671 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 672 | ENDDO |
---|
[1] | 673 | ENDDO |
---|
| 674 | |
---|
| 675 | ! |
---|
[1517] | 676 | !-- Compute monitor function m1 |
---|
| 677 | DO j = nys-2, nyn+2 |
---|
| 678 | DO k = nzb+1, nzt |
---|
| 679 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 680 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 681 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 682 | m1(k,j) = m1z / m1n |
---|
| 683 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 684 | ELSEIF ( m1n < m1z ) THEN |
---|
| 685 | m1(k,j) = -1.0_wp |
---|
| 686 | ELSE |
---|
| 687 | m1(k,j) = 0.0_wp |
---|
| 688 | ENDIF |
---|
| 689 | ENDDO |
---|
[1] | 690 | ENDDO |
---|
| 691 | |
---|
| 692 | ! |
---|
[1517] | 693 | !-- Compute switch sw |
---|
| 694 | sw = 0.0_wp |
---|
| 695 | DO j = nys-1, nyn+1 |
---|
| 696 | DO k = nzb+1, nzt |
---|
| 697 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 698 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 699 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 700 | |
---|
[1517] | 701 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 702 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 703 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 704 | |
---|
[1517] | 705 | t1 = 0.35_wp |
---|
| 706 | t2 = 0.35_wp |
---|
| 707 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 708 | |
---|
[1517] | 709 | !-- *VOCL STMT,IF(10) |
---|
| 710 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 711 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 712 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 713 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 714 | ) sw(k,j) = 1.0_wp |
---|
| 715 | ENDDO |
---|
[1] | 716 | ENDDO |
---|
| 717 | |
---|
| 718 | ! |
---|
[1517] | 719 | !-- Fluxes using exponential scheme |
---|
| 720 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 721 | DO j = nys, nyn |
---|
| 722 | DO k = nzb+1, nzt |
---|
[1] | 723 | |
---|
[1517] | 724 | !-- *VOCL STMT,IF(10) |
---|
| 725 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 726 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 727 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 728 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 729 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 730 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 731 | |
---|
[1517] | 732 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 733 | |
---|
[1517] | 734 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 735 | |
---|
[1517] | 736 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 737 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 738 | eex(ix) - & |
---|
| 739 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 740 | ) & |
---|
| 741 | ) |
---|
| 742 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 743 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 744 | |
---|
[1517] | 745 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 746 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 747 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 748 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 749 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 750 | |
---|
[1517] | 751 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 752 | |
---|
[1517] | 753 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 754 | |
---|
[1517] | 755 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 756 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 757 | eex(ix) - & |
---|
| 758 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 759 | ) & |
---|
| 760 | ) |
---|
| 761 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 762 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 763 | ENDIF |
---|
[1] | 764 | |
---|
[1517] | 765 | !-- *VOCL STMT,IF(10) |
---|
| 766 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 767 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 768 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 769 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 770 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 771 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 772 | |
---|
[1517] | 773 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 774 | |
---|
[1517] | 775 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 776 | |
---|
[1517] | 777 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 778 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 779 | eex(ix) - & |
---|
| 780 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 781 | ) & |
---|
| 782 | ) |
---|
| 783 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 784 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 785 | ENDIF |
---|
[1] | 786 | |
---|
[1517] | 787 | !-- *VOCL STMT,IF(10) |
---|
| 788 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 789 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 790 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 791 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 792 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 793 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 794 | |
---|
[1517] | 795 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 796 | |
---|
[1517] | 797 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 798 | |
---|
[1517] | 799 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 800 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 801 | eex(ix) - & |
---|
| 802 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 803 | ) & |
---|
| 804 | ) |
---|
| 805 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 806 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 807 | ENDIF |
---|
[1] | 808 | |
---|
[1517] | 809 | ENDDO |
---|
[1] | 810 | ENDDO |
---|
[1517] | 811 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 812 | |
---|
| 813 | ! |
---|
[1517] | 814 | !-- Prognostic equation |
---|
| 815 | DO j = nys, nyn |
---|
| 816 | DO k = nzb+1, nzt |
---|
| 817 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 818 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 819 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 820 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 821 | tendcy = fplus - fminus |
---|
[1] | 822 | ! |
---|
[1517] | 823 | !-- Removed in order to optimise speed |
---|
| 824 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 825 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 826 | ! |
---|
[1517] | 827 | !-- Density correction because of possible remaining divergences |
---|
| 828 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 829 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 830 | ( 1.0_wp + d_new ) |
---|
| 831 | d(k,j,i) = d_new |
---|
| 832 | ENDDO |
---|
[1] | 833 | ENDDO |
---|
| 834 | |
---|
[1517] | 835 | ENDDO ! End of the advection in y-direction |
---|
| 836 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 837 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 838 | |
---|
| 839 | ! |
---|
[1517] | 840 | !-- Deallocate temporary arrays |
---|
| 841 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 842 | ippb, ippe, m1, sw ) |
---|
[1] | 843 | |
---|
| 844 | |
---|
| 845 | ! |
---|
[1517] | 846 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 847 | !-- UP flow_statistics) |
---|
| 848 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 849 | |
---|
| 850 | ! |
---|
[1517] | 851 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 852 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 853 | |
---|
| 854 | ! |
---|
[1517] | 855 | !-- Temperature boundary condition at the bottom boundary |
---|
| 856 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 857 | ! |
---|
| 858 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 859 | DO i = nxl, nxr |
---|
| 860 | DO j = nys, nyn |
---|
| 861 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 862 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 863 | ENDDO |
---|
[1] | 864 | ENDDO |
---|
| 865 | |
---|
[1517] | 866 | ELSE |
---|
[1] | 867 | ! |
---|
[1517] | 868 | !-- Neumann (i.e. here zero gradient) |
---|
| 869 | DO i = nxl, nxr |
---|
| 870 | DO j = nys, nyn |
---|
| 871 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 872 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 873 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 874 | ENDDO |
---|
| 875 | ENDDO |
---|
| 876 | |
---|
| 877 | ENDIF |
---|
| 878 | |
---|
| 879 | ! |
---|
| 880 | !-- Temperature boundary condition at the top boundary |
---|
| 881 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 882 | ! |
---|
| 883 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 884 | DO i = nxl, nxr |
---|
| 885 | DO j = nys, nyn |
---|
| 886 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 887 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 888 | ENDDO |
---|
| 889 | ENDDO |
---|
| 890 | |
---|
| 891 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 892 | ! |
---|
| 893 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 894 | DO i = nxl, nxr |
---|
| 895 | DO j = nys, nyn |
---|
| 896 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 897 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
| 901 | ENDIF |
---|
| 902 | |
---|
| 903 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 904 | |
---|
| 905 | ! |
---|
| 906 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 907 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 908 | DO i = nxl, nxr |
---|
| 909 | DO j = nys, nyn |
---|
[216] | 910 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 911 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 912 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | |
---|
| 916 | ! |
---|
[1517] | 917 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 918 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 919 | DO i = nxl, nxr |
---|
| 920 | DO j = nys, nyn |
---|
[63] | 921 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 922 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 923 | ENDDO |
---|
| 924 | ENDDO |
---|
| 925 | |
---|
[1517] | 926 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 927 | |
---|
[1] | 928 | ! |
---|
[1517] | 929 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 930 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 931 | DO i = nxl, nxr |
---|
| 932 | DO j = nys, nyn |
---|
[1517] | 933 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 934 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 935 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 936 | ENDDO |
---|
| 937 | ENDDO |
---|
| 938 | |
---|
| 939 | ! |
---|
[1517] | 940 | !-- Specific humidity boundary condition at the top boundary |
---|
| 941 | IF ( ibc_q_t == 0 ) THEN |
---|
| 942 | ! |
---|
| 943 | !-- Dirichlet |
---|
| 944 | DO i = nxl, nxr |
---|
| 945 | DO j = nys, nyn |
---|
| 946 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 947 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 948 | ENDDO |
---|
| 949 | ENDDO |
---|
[1] | 950 | |
---|
[1517] | 951 | ELSE |
---|
[1] | 952 | ! |
---|
[1517] | 953 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 954 | DO i = nxl, nxr |
---|
| 955 | DO j = nys, nyn |
---|
| 956 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 957 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 958 | ENDDO |
---|
| 959 | ENDDO |
---|
[1] | 960 | |
---|
[1517] | 961 | ENDIF |
---|
[1] | 962 | |
---|
[1517] | 963 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 964 | |
---|
[1] | 965 | ! |
---|
[1517] | 966 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 967 | !-- Dirichlet (fixed surface rain water content). |
---|
| 968 | DO i = nxl, nxr |
---|
| 969 | DO j = nys, nyn |
---|
| 970 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 971 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 972 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 973 | ENDDO |
---|
[97] | 974 | ENDDO |
---|
| 975 | |
---|
| 976 | ! |
---|
[1517] | 977 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 978 | DO i = nxl, nxr |
---|
| 979 | DO j = nys, nyn |
---|
[63] | 980 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 981 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 982 | ENDDO |
---|
| 983 | ENDDO |
---|
| 984 | |
---|
[1517] | 985 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 986 | |
---|
[1] | 987 | ! |
---|
[1517] | 988 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 989 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 990 | DO i = nxl, nxr |
---|
| 991 | DO j = nys, nyn |
---|
[1517] | 992 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 993 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 994 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 995 | ENDDO |
---|
| 996 | ENDDO |
---|
| 997 | |
---|
[1361] | 998 | ! |
---|
[1517] | 999 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 1000 | DO i = nxl, nxr |
---|
| 1001 | DO j = nys, nyn |
---|
| 1002 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1003 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1004 | ENDDO |
---|
[1361] | 1005 | ENDDO |
---|
| 1006 | |
---|
[1517] | 1007 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1008 | |
---|
| 1009 | ! |
---|
[1517] | 1010 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1011 | DO i = nxl, nxr |
---|
| 1012 | DO j = nys, nyn |
---|
| 1013 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1014 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1015 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1016 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1017 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1018 | ENDDO |
---|
[1361] | 1019 | ENDDO |
---|
| 1020 | |
---|
[1517] | 1021 | ELSE |
---|
[1361] | 1022 | |
---|
[1517] | 1023 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1024 | 'tion for variable "', sk_char, '"' |
---|
| 1025 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1026 | |
---|
| 1027 | ENDIF |
---|
[1] | 1028 | |
---|
| 1029 | ! |
---|
[1517] | 1030 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1031 | fmax_l = 0.0_wp |
---|
[97] | 1032 | DO i = nxl, nxr |
---|
| 1033 | DO j = nys, nyn |
---|
[1517] | 1034 | DO k = nzb, nzt+1 |
---|
| 1035 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1036 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1037 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1038 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1039 | ENDDO |
---|
[97] | 1040 | ENDDO |
---|
| 1041 | ENDDO |
---|
[1] | 1042 | #if defined( __parallel ) |
---|
[1517] | 1043 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1044 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1045 | #else |
---|
[1517] | 1046 | fmax = fmax_l |
---|
[1] | 1047 | #endif |
---|
| 1048 | |
---|
[1517] | 1049 | fmax = 0.04_wp * fmax |
---|
[1] | 1050 | |
---|
| 1051 | ! |
---|
[1517] | 1052 | !-- Allocate temporary arrays |
---|
| 1053 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1054 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1055 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1056 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1057 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1058 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1059 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1060 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1061 | ) |
---|
| 1062 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1063 | |
---|
| 1064 | ! |
---|
[1517] | 1065 | !-- Outer loop of all i |
---|
| 1066 | DO i = nxl, nxr |
---|
[1] | 1067 | |
---|
| 1068 | ! |
---|
[1517] | 1069 | !-- Compute polynomial coefficients |
---|
| 1070 | DO j = nys, nyn |
---|
| 1071 | DO k = nzb, nzt+1 |
---|
| 1072 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1073 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1074 | + sk_p(k-1,j,i) ) |
---|
| 1075 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1076 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1077 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1078 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1079 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1080 | ) * f48 |
---|
| 1081 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1082 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1083 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1084 | ENDDO |
---|
[1] | 1085 | ENDDO |
---|
| 1086 | |
---|
| 1087 | ! |
---|
[1517] | 1088 | !-- Fluxes using the Bott scheme |
---|
| 1089 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1090 | DO j = nys, nyn |
---|
| 1091 | DO k = nzb+1, nzt |
---|
| 1092 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1093 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1094 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1095 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1096 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1097 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1098 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1099 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1100 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1101 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1102 | ip = MAX( ip, 0.0_wp ) |
---|
| 1103 | im = MAX( im, 0.0_wp ) |
---|
| 1104 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1105 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1106 | |
---|
[1517] | 1107 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1108 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1109 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1110 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1111 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1112 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1113 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1114 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1115 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1116 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1117 | ip = MAX( ip, 0.0_wp ) |
---|
| 1118 | im = MAX( im, 0.0_wp ) |
---|
| 1119 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1120 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1121 | ENDDO |
---|
[1] | 1122 | ENDDO |
---|
| 1123 | |
---|
| 1124 | ! |
---|
[1517] | 1125 | !-- Compute monitor function m1 |
---|
| 1126 | DO j = nys, nyn |
---|
| 1127 | DO k = nzb-1, nzt+2 |
---|
| 1128 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1129 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1130 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1131 | m1(k,j) = m1z / m1n |
---|
| 1132 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1133 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1134 | m1(k,j) = -1.0_wp |
---|
| 1135 | ELSE |
---|
| 1136 | m1(k,j) = 0.0_wp |
---|
| 1137 | ENDIF |
---|
| 1138 | ENDDO |
---|
[1] | 1139 | ENDDO |
---|
| 1140 | |
---|
| 1141 | ! |
---|
[1517] | 1142 | !-- Compute switch sw |
---|
| 1143 | sw = 0.0_wp |
---|
| 1144 | DO j = nys, nyn |
---|
| 1145 | DO k = nzb, nzt+1 |
---|
| 1146 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1147 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1148 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1149 | |
---|
[1517] | 1150 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1151 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1152 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1153 | |
---|
[1517] | 1154 | t1 = 0.35_wp |
---|
| 1155 | t2 = 0.35_wp |
---|
| 1156 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1157 | |
---|
[1517] | 1158 | !-- *VOCL STMT,IF(10) |
---|
| 1159 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1160 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1161 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1162 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1163 | ) sw(k,j) = 1.0_wp |
---|
| 1164 | ENDDO |
---|
[1] | 1165 | ENDDO |
---|
| 1166 | |
---|
| 1167 | ! |
---|
[1517] | 1168 | !-- Fluxes using exponential scheme |
---|
| 1169 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1170 | DO j = nys, nyn |
---|
| 1171 | DO k = nzb+1, nzt |
---|
[1] | 1172 | |
---|
[1517] | 1173 | !-- *VOCL STMT,IF(10) |
---|
| 1174 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1175 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1176 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1177 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1178 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1179 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1180 | |
---|
[1517] | 1181 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1182 | |
---|
[1517] | 1183 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1184 | |
---|
[1517] | 1185 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1186 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1187 | eex(ix) - & |
---|
| 1188 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1189 | ) & |
---|
| 1190 | ) |
---|
| 1191 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1192 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1193 | |
---|
[1517] | 1194 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1195 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1196 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1197 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1198 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1199 | |
---|
[1517] | 1200 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1201 | |
---|
[1517] | 1202 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1203 | |
---|
[1517] | 1204 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1205 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1206 | eex(ix) - & |
---|
| 1207 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1208 | ) & |
---|
| 1209 | ) |
---|
| 1210 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1211 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1212 | ENDIF |
---|
[1] | 1213 | |
---|
[1517] | 1214 | !-- *VOCL STMT,IF(10) |
---|
| 1215 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1216 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1217 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1218 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1219 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1220 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1221 | |
---|
[1517] | 1222 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1223 | |
---|
[1517] | 1224 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1225 | |
---|
[1517] | 1226 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1227 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1228 | eex(ix) - & |
---|
| 1229 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1230 | ) & |
---|
| 1231 | ) |
---|
| 1232 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1233 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1234 | ENDIF |
---|
[1] | 1235 | |
---|
[1517] | 1236 | !-- *VOCL STMT,IF(10) |
---|
| 1237 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1238 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1239 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1240 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1241 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1242 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1243 | |
---|
[1517] | 1244 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1245 | |
---|
[1517] | 1246 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1247 | |
---|
[1517] | 1248 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1249 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1250 | eex(ix) - & |
---|
| 1251 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1252 | ) & |
---|
| 1253 | ) |
---|
| 1254 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1255 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1256 | ENDIF |
---|
[1] | 1257 | |
---|
[1517] | 1258 | ENDDO |
---|
[1] | 1259 | ENDDO |
---|
[1517] | 1260 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1261 | |
---|
| 1262 | ! |
---|
[1517] | 1263 | !-- Prognostic equation |
---|
| 1264 | DO j = nys, nyn |
---|
| 1265 | DO k = nzb+1, nzt |
---|
| 1266 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1267 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1268 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1269 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1270 | tendcy = fplus - fminus |
---|
[1] | 1271 | ! |
---|
[1517] | 1272 | !-- Removed in order to optimise speed |
---|
| 1273 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1274 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1275 | ! |
---|
[1517] | 1276 | !-- Density correction because of possible remaining divergences |
---|
| 1277 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1278 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1279 | ( 1.0_wp + d_new ) |
---|
[1] | 1280 | ! |
---|
[1517] | 1281 | !-- Store heat flux for subsequent statistics output. |
---|
| 1282 | !-- array m1 is here used as temporary storage |
---|
| 1283 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1284 | ENDDO |
---|
[1] | 1285 | ENDDO |
---|
| 1286 | |
---|
| 1287 | ! |
---|
[1517] | 1288 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1289 | IF ( sk_char == 'pt' ) THEN |
---|
| 1290 | DO sr = 0, statistic_regions |
---|
| 1291 | DO j = nys, nyn |
---|
| 1292 | DO k = nzb+1, nzt |
---|
| 1293 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1294 | m1(k,j) * rmask(j,i,sr) |
---|
| 1295 | ENDDO |
---|
[1] | 1296 | ENDDO |
---|
| 1297 | ENDDO |
---|
[1517] | 1298 | ENDIF |
---|
[1] | 1299 | |
---|
[1517] | 1300 | ENDDO ! End of the advection in z-direction |
---|
| 1301 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1302 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1303 | |
---|
| 1304 | ! |
---|
[1517] | 1305 | !-- Deallocate temporary arrays |
---|
| 1306 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1307 | ippb, ippe, m1, sw ) |
---|
[1] | 1308 | |
---|
| 1309 | ! |
---|
[1517] | 1310 | !-- Store results as tendency and deallocate local array |
---|
| 1311 | DO i = nxl, nxr |
---|
| 1312 | DO j = nys, nyn |
---|
| 1313 | DO k = nzb+1, nzt |
---|
| 1314 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1315 | ENDDO |
---|
[1] | 1316 | ENDDO |
---|
| 1317 | ENDDO |
---|
| 1318 | |
---|
[1517] | 1319 | DEALLOCATE( sk_p ) |
---|
[1] | 1320 | |
---|
[1517] | 1321 | END SUBROUTINE advec_s_bc |
---|
| 1322 | |
---|
| 1323 | END MODULE advec_s_bc_mod |
---|