[1682] | 1 | !> @file advec_s_bc.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1691] | 16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[247] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[1354] | 21 | ! |
---|
[1692] | 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: advec_s_bc.f90 1692 2015-10-26 16:29:17Z raasch $ |
---|
| 26 | ! |
---|
[1692] | 27 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 28 | ! Formatting corrections |
---|
| 29 | ! |
---|
[1683] | 30 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 31 | ! Code annotations made doxygen readable |
---|
| 32 | ! |
---|
[1518] | 33 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 34 | ! interface added to advec_s_bc |
---|
| 35 | ! |
---|
[1375] | 36 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 37 | ! missing variables added to ONLY list |
---|
| 38 | ! |
---|
[1362] | 39 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 40 | ! nr and qr added |
---|
| 41 | ! |
---|
[1354] | 42 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 43 | ! REAL constants provided with KIND-attribute |
---|
| 44 | ! |
---|
[1347] | 45 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 46 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 47 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 48 | ! |
---|
[1321] | 49 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 50 | ! ONLY-attribute added to USE-statements, |
---|
| 51 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 52 | ! kinds are defined in new module kinds, |
---|
| 53 | ! revision history before 2012 removed, |
---|
| 54 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 55 | ! all variable declaration statements |
---|
[1] | 56 | ! |
---|
[1319] | 57 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 58 | ! module interfaces removed |
---|
| 59 | ! |
---|
[1093] | 60 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 61 | ! unused variables removed |
---|
| 62 | ! |
---|
[1037] | 63 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 64 | ! code put under GPL (PALM 3.9) |
---|
| 65 | ! |
---|
[1011] | 66 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 67 | ! cpp switch __nopointer added for pointer free version |
---|
| 68 | ! |
---|
[1] | 69 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 70 | ! Initial revision |
---|
| 71 | ! |
---|
| 72 | ! |
---|
| 73 | ! Description: |
---|
| 74 | ! ------------ |
---|
[1682] | 75 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 76 | !> Computation in individual steps for each of the three dimensions. |
---|
| 77 | !> Limiting assumptions: |
---|
| 78 | !> So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 79 | !> the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 80 | !> a substitute for a constant grid length. This certainly causes incorrect |
---|
| 81 | !> results; however, it is hoped that they are not too apparent for weakly |
---|
| 82 | !> stretched grids. |
---|
| 83 | !> NOTE: This is a provisional, non-optimised version! |
---|
[63] | 84 | !------------------------------------------------------------------------------! |
---|
[1682] | 85 | MODULE advec_s_bc_mod |
---|
| 86 | |
---|
[1] | 87 | |
---|
[1517] | 88 | PRIVATE |
---|
| 89 | PUBLIC advec_s_bc |
---|
[1320] | 90 | |
---|
[1517] | 91 | INTERFACE advec_s_bc |
---|
| 92 | MODULE PROCEDURE advec_s_bc |
---|
| 93 | END INTERFACE advec_s_bc |
---|
[1320] | 94 | |
---|
[1517] | 95 | CONTAINS |
---|
[1320] | 96 | |
---|
[1682] | 97 | !------------------------------------------------------------------------------! |
---|
| 98 | ! Description: |
---|
| 99 | ! ------------ |
---|
| 100 | !> @todo Missing subroutine description. |
---|
| 101 | !------------------------------------------------------------------------------! |
---|
[1517] | 102 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 103 | |
---|
[1517] | 104 | USE advection, & |
---|
| 105 | ONLY: aex, bex, dex, eex |
---|
[1320] | 106 | |
---|
[1517] | 107 | USE arrays_3d, & |
---|
| 108 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 109 | |
---|
[1517] | 110 | USE control_parameters, & |
---|
| 111 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 112 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 113 | v_gtrans |
---|
[1320] | 114 | |
---|
[1517] | 115 | USE cpulog, & |
---|
| 116 | ONLY: cpu_log, log_point_s |
---|
[1] | 117 | |
---|
[1517] | 118 | USE grid_variables, & |
---|
| 119 | ONLY: ddx, ddy |
---|
[1320] | 120 | |
---|
[1517] | 121 | USE indices, & |
---|
| 122 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 123 | |
---|
[1517] | 124 | USE kinds |
---|
[1] | 125 | |
---|
[1517] | 126 | USE pegrid |
---|
[1] | 127 | |
---|
[1517] | 128 | USE statistics, & |
---|
| 129 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 130 | |
---|
[1320] | 131 | |
---|
[1517] | 132 | IMPLICIT NONE |
---|
| 133 | |
---|
[1682] | 134 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 135 | |
---|
[1682] | 136 | INTEGER(iwp) :: i !< |
---|
| 137 | INTEGER(iwp) :: ix !< |
---|
| 138 | INTEGER(iwp) :: j !< |
---|
| 139 | INTEGER(iwp) :: k !< |
---|
| 140 | INTEGER(iwp) :: ngp !< |
---|
| 141 | INTEGER(iwp) :: sr !< |
---|
| 142 | INTEGER(iwp) :: type_xz_2 !< |
---|
[1517] | 143 | |
---|
[1682] | 144 | REAL(wp) :: cim !< |
---|
| 145 | REAL(wp) :: cimf !< |
---|
| 146 | REAL(wp) :: cip !< |
---|
| 147 | REAL(wp) :: cipf !< |
---|
| 148 | REAL(wp) :: d_new !< |
---|
| 149 | REAL(wp) :: denomi !< denominator |
---|
| 150 | REAL(wp) :: fminus !< |
---|
| 151 | REAL(wp) :: fplus !< |
---|
| 152 | REAL(wp) :: f2 !< |
---|
| 153 | REAL(wp) :: f4 !< |
---|
| 154 | REAL(wp) :: f8 !< |
---|
| 155 | REAL(wp) :: f12 !< |
---|
| 156 | REAL(wp) :: f24 !< |
---|
| 157 | REAL(wp) :: f48 !< |
---|
| 158 | REAL(wp) :: f1920 !< |
---|
| 159 | REAL(wp) :: im !< |
---|
| 160 | REAL(wp) :: ip !< |
---|
| 161 | REAL(wp) :: m2 !< |
---|
| 162 | REAL(wp) :: m3 !< |
---|
| 163 | REAL(wp) :: numera !< numerator |
---|
| 164 | REAL(wp) :: snenn !< |
---|
| 165 | REAL(wp) :: sterm !< |
---|
| 166 | REAL(wp) :: tendcy !< |
---|
| 167 | REAL(wp) :: t1 !< |
---|
| 168 | REAL(wp) :: t2 !< |
---|
[1517] | 169 | |
---|
[1682] | 170 | REAL(wp) :: fmax(2) !< |
---|
| 171 | REAL(wp) :: fmax_l(2) !< |
---|
[1517] | 172 | |
---|
[1010] | 173 | #if defined( __nopointer ) |
---|
[1682] | 174 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !< |
---|
[1010] | 175 | #else |
---|
[1517] | 176 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 177 | #endif |
---|
[1] | 178 | |
---|
[1682] | 179 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 180 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 181 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 182 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 183 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 184 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 185 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 186 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 187 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 188 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 189 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 190 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 191 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[1517] | 192 | |
---|
[1682] | 193 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 194 | |
---|
[63] | 195 | #if defined( __nec ) |
---|
[1682] | 196 | REAL(sp) :: m1n, m1z !Wichtig: Division !< |
---|
| 197 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !< |
---|
[1] | 198 | #else |
---|
[1517] | 199 | REAL(wp) :: m1n, m1z |
---|
| 200 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 201 | #endif |
---|
| 202 | |
---|
| 203 | |
---|
| 204 | ! |
---|
[1517] | 205 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 206 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 207 | sk_p = 0.0_wp |
---|
[1] | 208 | |
---|
| 209 | ! |
---|
[1517] | 210 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 211 | f2 = 0.5_wp |
---|
| 212 | f4 = 0.25_wp |
---|
| 213 | f8 = 0.125_wp |
---|
| 214 | f12 = 0.8333333333333333E-01_wp |
---|
| 215 | f24 = 0.4166666666666666E-01_wp |
---|
| 216 | f48 = 0.2083333333333333E-01_wp |
---|
| 217 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 218 | |
---|
| 219 | ! |
---|
[1517] | 220 | !-- Advection in x-direction: |
---|
[1] | 221 | |
---|
| 222 | ! |
---|
[1517] | 223 | !-- Save the quantity to be advected in a local array |
---|
| 224 | !-- add an enlarged boundary in x-direction |
---|
| 225 | DO i = nxl-1, nxr+1 |
---|
| 226 | DO j = nys, nyn |
---|
| 227 | DO k = nzb, nzt+1 |
---|
| 228 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 229 | ENDDO |
---|
[1] | 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | #if defined( __parallel ) |
---|
[1517] | 233 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 234 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 235 | ! |
---|
[1517] | 236 | !-- Send left boundary, receive right boundary |
---|
| 237 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 238 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 239 | comm2d, status, ierr ) |
---|
[1] | 240 | ! |
---|
[1517] | 241 | !-- Send right boundary, receive left boundary |
---|
| 242 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 243 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 244 | comm2d, status, ierr ) |
---|
| 245 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 246 | #else |
---|
| 247 | |
---|
| 248 | ! |
---|
[1517] | 249 | !-- Cyclic boundary conditions |
---|
| 250 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 251 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 252 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 253 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 254 | #endif |
---|
| 255 | |
---|
| 256 | ! |
---|
[1517] | 257 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 258 | !-- of the temperature field at the left and right boundary of the total |
---|
| 259 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 260 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 261 | IF ( nxl == 0 ) THEN |
---|
| 262 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 263 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 264 | ENDIF |
---|
| 265 | IF ( nxr == nx ) THEN |
---|
| 266 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 267 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 268 | ENDIF |
---|
[1] | 269 | ENDIF |
---|
| 270 | |
---|
| 271 | ! |
---|
[1517] | 272 | !-- Initialise control density |
---|
| 273 | d = 0.0_wp |
---|
[1] | 274 | |
---|
| 275 | ! |
---|
[1517] | 276 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 277 | fmax_l = 0.0_wp |
---|
| 278 | DO i = nxl, nxr |
---|
| 279 | DO j = nys, nyn |
---|
| 280 | DO k = nzb+1, nzt |
---|
| 281 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 282 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 283 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 284 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 285 | ENDDO |
---|
[1] | 286 | ENDDO |
---|
| 287 | ENDDO |
---|
| 288 | #if defined( __parallel ) |
---|
[1517] | 289 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 290 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 291 | #else |
---|
[1517] | 292 | fmax = fmax_l |
---|
[1] | 293 | #endif |
---|
| 294 | |
---|
[1517] | 295 | fmax = 0.04_wp * fmax |
---|
[1] | 296 | |
---|
| 297 | ! |
---|
[1517] | 298 | !-- Allocate temporary arrays |
---|
| 299 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 300 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 301 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 302 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 303 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 304 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 305 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 306 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 307 | ) |
---|
| 308 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 309 | |
---|
| 310 | ! |
---|
[1517] | 311 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 312 | !-- not work if done locally within the loop) |
---|
| 313 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 314 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 315 | |
---|
| 316 | ! |
---|
[1517] | 317 | !-- Outer loop of all j |
---|
| 318 | DO j = nys, nyn |
---|
[1] | 319 | |
---|
| 320 | ! |
---|
[1517] | 321 | !-- Compute polynomial coefficients |
---|
| 322 | DO i = nxl-1, nxr+1 |
---|
| 323 | DO k = nzb+1, nzt |
---|
| 324 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 325 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 326 | + sk_p(k,j,i-1) ) |
---|
| 327 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 328 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 329 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 330 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 331 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 332 | ) * f48 |
---|
| 333 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 334 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 335 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 336 | ENDDO |
---|
[1] | 337 | ENDDO |
---|
| 338 | |
---|
| 339 | ! |
---|
[1517] | 340 | !-- Fluxes using the Bott scheme |
---|
| 341 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 342 | DO i = nxl, nxr |
---|
| 343 | DO k = nzb+1, nzt |
---|
| 344 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 345 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 346 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 347 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 348 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 349 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 350 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 351 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 352 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 353 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 354 | ip = MAX( ip, 0.0_wp ) |
---|
| 355 | im = MAX( im, 0.0_wp ) |
---|
| 356 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 357 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 358 | |
---|
[1517] | 359 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 360 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 361 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 362 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 363 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 364 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 365 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 366 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 367 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 368 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 369 | ip = MAX( ip, 0.0_wp ) |
---|
| 370 | im = MAX( im, 0.0_wp ) |
---|
| 371 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 372 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 373 | ENDDO |
---|
[1] | 374 | ENDDO |
---|
| 375 | |
---|
| 376 | ! |
---|
[1517] | 377 | !-- Compute monitor function m1 |
---|
| 378 | DO i = nxl-2, nxr+2 |
---|
| 379 | DO k = nzb+1, nzt |
---|
| 380 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 381 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 382 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 383 | m1(k,i) = m1z / m1n |
---|
| 384 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 385 | ELSEIF ( m1n < m1z ) THEN |
---|
| 386 | m1(k,i) = -1.0_wp |
---|
| 387 | ELSE |
---|
| 388 | m1(k,i) = 0.0_wp |
---|
| 389 | ENDIF |
---|
| 390 | ENDDO |
---|
[1] | 391 | ENDDO |
---|
| 392 | |
---|
| 393 | ! |
---|
[1517] | 394 | !-- Compute switch sw |
---|
| 395 | sw = 0.0_wp |
---|
| 396 | DO i = nxl-1, nxr+1 |
---|
| 397 | DO k = nzb+1, nzt |
---|
| 398 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 399 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 400 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 401 | |
---|
[1517] | 402 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 403 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 404 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 405 | |
---|
[1517] | 406 | t1 = 0.35_wp |
---|
| 407 | t2 = 0.35_wp |
---|
| 408 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 409 | |
---|
[1517] | 410 | !-- *VOCL STMT,IF(10) |
---|
| 411 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 412 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 413 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 414 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 415 | ) sw(k,i) = 1.0_wp |
---|
| 416 | ENDDO |
---|
[1] | 417 | ENDDO |
---|
| 418 | |
---|
| 419 | ! |
---|
[1517] | 420 | !-- Fluxes using the exponential scheme |
---|
| 421 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 422 | DO i = nxl, nxr |
---|
| 423 | DO k = nzb+1, nzt |
---|
[1] | 424 | |
---|
[1517] | 425 | !-- *VOCL STMT,IF(10) |
---|
| 426 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 427 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 428 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 429 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 430 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 431 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 432 | |
---|
[1517] | 433 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 434 | |
---|
[1517] | 435 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 436 | |
---|
[1517] | 437 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 438 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 439 | eex(ix) - & |
---|
| 440 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 441 | ) & |
---|
| 442 | ) |
---|
| 443 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 444 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 445 | |
---|
[1517] | 446 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 447 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 448 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 449 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 450 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 451 | |
---|
[1517] | 452 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 453 | |
---|
[1517] | 454 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 455 | |
---|
[1517] | 456 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 457 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 458 | eex(ix) - & |
---|
| 459 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 460 | ) & |
---|
| 461 | ) |
---|
| 462 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 463 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 464 | ENDIF |
---|
[1] | 465 | |
---|
[1517] | 466 | !-- *VOCL STMT,IF(10) |
---|
| 467 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 468 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 469 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 470 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 471 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 472 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 473 | |
---|
[1517] | 474 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 475 | |
---|
[1517] | 476 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 477 | |
---|
[1517] | 478 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 479 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 480 | eex(ix) - & |
---|
| 481 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 482 | ) & |
---|
| 483 | ) |
---|
| 484 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 485 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 486 | ENDIF |
---|
[1] | 487 | |
---|
[1517] | 488 | !-- *VOCL STMT,IF(10) |
---|
| 489 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 490 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 491 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 492 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 493 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 494 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 495 | |
---|
[1517] | 496 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 497 | |
---|
[1517] | 498 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 499 | |
---|
[1517] | 500 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 501 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 502 | eex(ix) - & |
---|
| 503 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 504 | ) & |
---|
| 505 | ) |
---|
| 506 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 507 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 508 | ENDIF |
---|
[1] | 509 | |
---|
[1517] | 510 | ENDDO |
---|
[1] | 511 | ENDDO |
---|
[1517] | 512 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 513 | |
---|
| 514 | ! |
---|
[1517] | 515 | !-- Prognostic equation |
---|
| 516 | DO i = nxl, nxr |
---|
| 517 | DO k = nzb+1, nzt |
---|
| 518 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 519 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 520 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 521 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 522 | tendcy = fplus - fminus |
---|
[1] | 523 | ! |
---|
[1517] | 524 | !-- Removed in order to optimize speed |
---|
| 525 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 526 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 527 | ! |
---|
[1517] | 528 | !-- Density correction because of possible remaining divergences |
---|
| 529 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 530 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 531 | ( 1.0_wp + d_new ) |
---|
| 532 | d(k,j,i) = d_new |
---|
| 533 | ENDDO |
---|
[1] | 534 | ENDDO |
---|
| 535 | |
---|
[1517] | 536 | ENDDO ! End of the advection in x-direction |
---|
[1] | 537 | |
---|
| 538 | ! |
---|
[1517] | 539 | !-- Deallocate temporary arrays |
---|
| 540 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 541 | ippb, ippe, m1, sw ) |
---|
[1] | 542 | |
---|
| 543 | |
---|
| 544 | ! |
---|
[1517] | 545 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 546 | #if defined( __parallel ) |
---|
[1517] | 547 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 548 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 549 | type_xz_2, ierr ) |
---|
| 550 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 551 | ! |
---|
[1517] | 552 | !-- Send front boundary, receive rear boundary |
---|
| 553 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 554 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 555 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 556 | comm2d, status, ierr ) |
---|
[1] | 557 | ! |
---|
[1517] | 558 | !-- Send rear boundary, receive front boundary |
---|
| 559 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 560 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 561 | comm2d, status, ierr ) |
---|
| 562 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 563 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 564 | #else |
---|
[1517] | 565 | DO i = nxl, nxr |
---|
| 566 | DO k = nzb+1, nzt |
---|
| 567 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 568 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 569 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 570 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 571 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 572 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 573 | ENDDO |
---|
[1] | 574 | ENDDO |
---|
| 575 | #endif |
---|
| 576 | |
---|
| 577 | ! |
---|
[1517] | 578 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 579 | fmax_l = 0.0_wp |
---|
| 580 | DO i = nxl, nxr |
---|
| 581 | DO j = nys, nyn |
---|
| 582 | DO k = nzb+1, nzt |
---|
| 583 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 584 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 585 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 586 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 587 | ENDDO |
---|
[1] | 588 | ENDDO |
---|
| 589 | ENDDO |
---|
| 590 | #if defined( __parallel ) |
---|
[1517] | 591 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 592 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 593 | #else |
---|
[1517] | 594 | fmax = fmax_l |
---|
[1] | 595 | #endif |
---|
| 596 | |
---|
[1517] | 597 | fmax = 0.04_wp * fmax |
---|
[1] | 598 | |
---|
| 599 | ! |
---|
[1517] | 600 | !-- Allocate temporary arrays |
---|
| 601 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 602 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 603 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 604 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 605 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 606 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 607 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 608 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 609 | ) |
---|
| 610 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 611 | |
---|
| 612 | ! |
---|
[1517] | 613 | !-- Outer loop of all i |
---|
| 614 | DO i = nxl, nxr |
---|
[1] | 615 | |
---|
| 616 | ! |
---|
[1517] | 617 | !-- Compute polynomial coefficients |
---|
| 618 | DO j = nys-1, nyn+1 |
---|
| 619 | DO k = nzb+1, nzt |
---|
| 620 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 621 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 622 | + sk_p(k,j-1,i) ) |
---|
| 623 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 624 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 625 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 626 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 627 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 628 | ) * f48 |
---|
| 629 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 630 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 631 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 632 | ENDDO |
---|
[1] | 633 | ENDDO |
---|
| 634 | |
---|
| 635 | ! |
---|
[1517] | 636 | !-- Fluxes using the Bott scheme |
---|
| 637 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 638 | DO j = nys, nyn |
---|
| 639 | DO k = nzb+1, nzt |
---|
| 640 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 641 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 642 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 643 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 644 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 645 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 646 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 647 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 648 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 649 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 650 | ip = MAX( ip, 0.0_wp ) |
---|
| 651 | im = MAX( im, 0.0_wp ) |
---|
| 652 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 653 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 654 | |
---|
[1517] | 655 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 656 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 657 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 658 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 659 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 660 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 661 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 662 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 663 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 664 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 665 | ip = MAX( ip, 0.0_wp ) |
---|
| 666 | im = MAX( im, 0.0_wp ) |
---|
| 667 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 668 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 669 | ENDDO |
---|
[1] | 670 | ENDDO |
---|
| 671 | |
---|
| 672 | ! |
---|
[1517] | 673 | !-- Compute monitor function m1 |
---|
| 674 | DO j = nys-2, nyn+2 |
---|
| 675 | DO k = nzb+1, nzt |
---|
| 676 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 677 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 678 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 679 | m1(k,j) = m1z / m1n |
---|
| 680 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 681 | ELSEIF ( m1n < m1z ) THEN |
---|
| 682 | m1(k,j) = -1.0_wp |
---|
| 683 | ELSE |
---|
| 684 | m1(k,j) = 0.0_wp |
---|
| 685 | ENDIF |
---|
| 686 | ENDDO |
---|
[1] | 687 | ENDDO |
---|
| 688 | |
---|
| 689 | ! |
---|
[1517] | 690 | !-- Compute switch sw |
---|
| 691 | sw = 0.0_wp |
---|
| 692 | DO j = nys-1, nyn+1 |
---|
| 693 | DO k = nzb+1, nzt |
---|
| 694 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 695 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 696 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 697 | |
---|
[1517] | 698 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 699 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 700 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 701 | |
---|
[1517] | 702 | t1 = 0.35_wp |
---|
| 703 | t2 = 0.35_wp |
---|
| 704 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 705 | |
---|
[1517] | 706 | !-- *VOCL STMT,IF(10) |
---|
| 707 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 708 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 709 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 710 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 711 | ) sw(k,j) = 1.0_wp |
---|
| 712 | ENDDO |
---|
[1] | 713 | ENDDO |
---|
| 714 | |
---|
| 715 | ! |
---|
[1517] | 716 | !-- Fluxes using exponential scheme |
---|
| 717 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 718 | DO j = nys, nyn |
---|
| 719 | DO k = nzb+1, nzt |
---|
[1] | 720 | |
---|
[1517] | 721 | !-- *VOCL STMT,IF(10) |
---|
| 722 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 723 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 724 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 725 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 726 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 727 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 728 | |
---|
[1517] | 729 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 730 | |
---|
[1517] | 731 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 732 | |
---|
[1517] | 733 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 734 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 735 | eex(ix) - & |
---|
| 736 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 737 | ) & |
---|
| 738 | ) |
---|
| 739 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 740 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 741 | |
---|
[1517] | 742 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 743 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 744 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 745 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 746 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 747 | |
---|
[1517] | 748 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 749 | |
---|
[1517] | 750 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 751 | |
---|
[1517] | 752 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 753 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 754 | eex(ix) - & |
---|
| 755 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 756 | ) & |
---|
| 757 | ) |
---|
| 758 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 759 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 760 | ENDIF |
---|
[1] | 761 | |
---|
[1517] | 762 | !-- *VOCL STMT,IF(10) |
---|
| 763 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 764 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 765 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 766 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 767 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 768 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 769 | |
---|
[1517] | 770 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 771 | |
---|
[1517] | 772 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 773 | |
---|
[1517] | 774 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 775 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 776 | eex(ix) - & |
---|
| 777 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 778 | ) & |
---|
| 779 | ) |
---|
| 780 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 781 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 782 | ENDIF |
---|
[1] | 783 | |
---|
[1517] | 784 | !-- *VOCL STMT,IF(10) |
---|
| 785 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 786 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 787 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 788 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 789 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 790 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 791 | |
---|
[1517] | 792 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 793 | |
---|
[1517] | 794 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 795 | |
---|
[1517] | 796 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 797 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 798 | eex(ix) - & |
---|
| 799 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 800 | ) & |
---|
| 801 | ) |
---|
| 802 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 803 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 804 | ENDIF |
---|
[1] | 805 | |
---|
[1517] | 806 | ENDDO |
---|
[1] | 807 | ENDDO |
---|
[1517] | 808 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 809 | |
---|
| 810 | ! |
---|
[1517] | 811 | !-- Prognostic equation |
---|
| 812 | DO j = nys, nyn |
---|
| 813 | DO k = nzb+1, nzt |
---|
| 814 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 815 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 816 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 817 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 818 | tendcy = fplus - fminus |
---|
[1] | 819 | ! |
---|
[1517] | 820 | !-- Removed in order to optimise speed |
---|
| 821 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 822 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 823 | ! |
---|
[1517] | 824 | !-- Density correction because of possible remaining divergences |
---|
| 825 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 826 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 827 | ( 1.0_wp + d_new ) |
---|
| 828 | d(k,j,i) = d_new |
---|
| 829 | ENDDO |
---|
[1] | 830 | ENDDO |
---|
| 831 | |
---|
[1517] | 832 | ENDDO ! End of the advection in y-direction |
---|
| 833 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 834 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 835 | |
---|
| 836 | ! |
---|
[1517] | 837 | !-- Deallocate temporary arrays |
---|
| 838 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 839 | ippb, ippe, m1, sw ) |
---|
[1] | 840 | |
---|
| 841 | |
---|
| 842 | ! |
---|
[1517] | 843 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 844 | !-- UP flow_statistics) |
---|
| 845 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 846 | |
---|
| 847 | ! |
---|
[1517] | 848 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 849 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 850 | |
---|
| 851 | ! |
---|
[1517] | 852 | !-- Temperature boundary condition at the bottom boundary |
---|
| 853 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 854 | ! |
---|
| 855 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 856 | DO i = nxl, nxr |
---|
| 857 | DO j = nys, nyn |
---|
| 858 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 859 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 860 | ENDDO |
---|
[1] | 861 | ENDDO |
---|
| 862 | |
---|
[1517] | 863 | ELSE |
---|
[1] | 864 | ! |
---|
[1517] | 865 | !-- Neumann (i.e. here zero gradient) |
---|
| 866 | DO i = nxl, nxr |
---|
| 867 | DO j = nys, nyn |
---|
| 868 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 869 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 870 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 871 | ENDDO |
---|
| 872 | ENDDO |
---|
| 873 | |
---|
| 874 | ENDIF |
---|
| 875 | |
---|
| 876 | ! |
---|
| 877 | !-- Temperature boundary condition at the top boundary |
---|
| 878 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 879 | ! |
---|
| 880 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 881 | DO i = nxl, nxr |
---|
| 882 | DO j = nys, nyn |
---|
| 883 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 884 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 885 | ENDDO |
---|
| 886 | ENDDO |
---|
| 887 | |
---|
| 888 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 889 | ! |
---|
| 890 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 891 | DO i = nxl, nxr |
---|
| 892 | DO j = nys, nyn |
---|
| 893 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 894 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 895 | ENDDO |
---|
| 896 | ENDDO |
---|
| 897 | |
---|
| 898 | ENDIF |
---|
| 899 | |
---|
| 900 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 901 | |
---|
| 902 | ! |
---|
| 903 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 904 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 905 | DO i = nxl, nxr |
---|
| 906 | DO j = nys, nyn |
---|
[216] | 907 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 908 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 909 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 910 | ENDDO |
---|
| 911 | ENDDO |
---|
| 912 | |
---|
| 913 | ! |
---|
[1517] | 914 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 915 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 916 | DO i = nxl, nxr |
---|
| 917 | DO j = nys, nyn |
---|
[63] | 918 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 919 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 920 | ENDDO |
---|
| 921 | ENDDO |
---|
| 922 | |
---|
[1517] | 923 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 924 | |
---|
[1] | 925 | ! |
---|
[1517] | 926 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 927 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 928 | DO i = nxl, nxr |
---|
| 929 | DO j = nys, nyn |
---|
[1517] | 930 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 931 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 932 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 933 | ENDDO |
---|
| 934 | ENDDO |
---|
| 935 | |
---|
| 936 | ! |
---|
[1517] | 937 | !-- Specific humidity boundary condition at the top boundary |
---|
| 938 | IF ( ibc_q_t == 0 ) THEN |
---|
| 939 | ! |
---|
| 940 | !-- Dirichlet |
---|
| 941 | DO i = nxl, nxr |
---|
| 942 | DO j = nys, nyn |
---|
| 943 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 944 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 945 | ENDDO |
---|
| 946 | ENDDO |
---|
[1] | 947 | |
---|
[1517] | 948 | ELSE |
---|
[1] | 949 | ! |
---|
[1517] | 950 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 951 | DO i = nxl, nxr |
---|
| 952 | DO j = nys, nyn |
---|
| 953 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 954 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 955 | ENDDO |
---|
| 956 | ENDDO |
---|
[1] | 957 | |
---|
[1517] | 958 | ENDIF |
---|
[1] | 959 | |
---|
[1517] | 960 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 961 | |
---|
[1] | 962 | ! |
---|
[1517] | 963 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 964 | !-- Dirichlet (fixed surface rain water content). |
---|
| 965 | DO i = nxl, nxr |
---|
| 966 | DO j = nys, nyn |
---|
| 967 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 968 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 969 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 970 | ENDDO |
---|
[97] | 971 | ENDDO |
---|
| 972 | |
---|
| 973 | ! |
---|
[1517] | 974 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 975 | DO i = nxl, nxr |
---|
| 976 | DO j = nys, nyn |
---|
[63] | 977 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 978 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 979 | ENDDO |
---|
| 980 | ENDDO |
---|
| 981 | |
---|
[1517] | 982 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 983 | |
---|
[1] | 984 | ! |
---|
[1517] | 985 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 986 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 987 | DO i = nxl, nxr |
---|
| 988 | DO j = nys, nyn |
---|
[1517] | 989 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 990 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 991 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 992 | ENDDO |
---|
| 993 | ENDDO |
---|
| 994 | |
---|
[1361] | 995 | ! |
---|
[1517] | 996 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 997 | DO i = nxl, nxr |
---|
| 998 | DO j = nys, nyn |
---|
| 999 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1000 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1001 | ENDDO |
---|
[1361] | 1002 | ENDDO |
---|
| 1003 | |
---|
[1517] | 1004 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 1005 | |
---|
| 1006 | ! |
---|
[1517] | 1007 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 1008 | DO i = nxl, nxr |
---|
| 1009 | DO j = nys, nyn |
---|
| 1010 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 1011 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1012 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1013 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1014 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1015 | ENDDO |
---|
[1361] | 1016 | ENDDO |
---|
| 1017 | |
---|
[1517] | 1018 | ELSE |
---|
[1361] | 1019 | |
---|
[1517] | 1020 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1021 | 'tion for variable "', sk_char, '"' |
---|
| 1022 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1023 | |
---|
| 1024 | ENDIF |
---|
[1] | 1025 | |
---|
| 1026 | ! |
---|
[1517] | 1027 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1028 | fmax_l = 0.0_wp |
---|
[97] | 1029 | DO i = nxl, nxr |
---|
| 1030 | DO j = nys, nyn |
---|
[1517] | 1031 | DO k = nzb, nzt+1 |
---|
| 1032 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1033 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1034 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1035 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1036 | ENDDO |
---|
[97] | 1037 | ENDDO |
---|
| 1038 | ENDDO |
---|
[1] | 1039 | #if defined( __parallel ) |
---|
[1517] | 1040 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1041 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1042 | #else |
---|
[1517] | 1043 | fmax = fmax_l |
---|
[1] | 1044 | #endif |
---|
| 1045 | |
---|
[1517] | 1046 | fmax = 0.04_wp * fmax |
---|
[1] | 1047 | |
---|
| 1048 | ! |
---|
[1517] | 1049 | !-- Allocate temporary arrays |
---|
| 1050 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1051 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1052 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1053 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1054 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1055 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1056 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1057 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1058 | ) |
---|
| 1059 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1060 | |
---|
| 1061 | ! |
---|
[1517] | 1062 | !-- Outer loop of all i |
---|
| 1063 | DO i = nxl, nxr |
---|
[1] | 1064 | |
---|
| 1065 | ! |
---|
[1517] | 1066 | !-- Compute polynomial coefficients |
---|
| 1067 | DO j = nys, nyn |
---|
| 1068 | DO k = nzb, nzt+1 |
---|
| 1069 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1070 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1071 | + sk_p(k-1,j,i) ) |
---|
| 1072 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1073 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1074 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1075 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1076 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1077 | ) * f48 |
---|
| 1078 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1079 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1080 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1081 | ENDDO |
---|
[1] | 1082 | ENDDO |
---|
| 1083 | |
---|
| 1084 | ! |
---|
[1517] | 1085 | !-- Fluxes using the Bott scheme |
---|
| 1086 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1087 | DO j = nys, nyn |
---|
| 1088 | DO k = nzb+1, nzt |
---|
| 1089 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1090 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1091 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1092 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1093 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1094 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1095 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1096 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1097 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1098 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1099 | ip = MAX( ip, 0.0_wp ) |
---|
| 1100 | im = MAX( im, 0.0_wp ) |
---|
| 1101 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1102 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1103 | |
---|
[1517] | 1104 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1105 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1106 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1107 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1108 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1109 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1110 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1111 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1112 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1113 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1114 | ip = MAX( ip, 0.0_wp ) |
---|
| 1115 | im = MAX( im, 0.0_wp ) |
---|
| 1116 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1117 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1118 | ENDDO |
---|
[1] | 1119 | ENDDO |
---|
| 1120 | |
---|
| 1121 | ! |
---|
[1517] | 1122 | !-- Compute monitor function m1 |
---|
| 1123 | DO j = nys, nyn |
---|
| 1124 | DO k = nzb-1, nzt+2 |
---|
| 1125 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1126 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1127 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1128 | m1(k,j) = m1z / m1n |
---|
| 1129 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1130 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1131 | m1(k,j) = -1.0_wp |
---|
| 1132 | ELSE |
---|
| 1133 | m1(k,j) = 0.0_wp |
---|
| 1134 | ENDIF |
---|
| 1135 | ENDDO |
---|
[1] | 1136 | ENDDO |
---|
| 1137 | |
---|
| 1138 | ! |
---|
[1517] | 1139 | !-- Compute switch sw |
---|
| 1140 | sw = 0.0_wp |
---|
| 1141 | DO j = nys, nyn |
---|
| 1142 | DO k = nzb, nzt+1 |
---|
| 1143 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1144 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1145 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1146 | |
---|
[1517] | 1147 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1148 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1149 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1150 | |
---|
[1517] | 1151 | t1 = 0.35_wp |
---|
| 1152 | t2 = 0.35_wp |
---|
| 1153 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1154 | |
---|
[1517] | 1155 | !-- *VOCL STMT,IF(10) |
---|
| 1156 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1157 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1158 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1159 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1160 | ) sw(k,j) = 1.0_wp |
---|
| 1161 | ENDDO |
---|
[1] | 1162 | ENDDO |
---|
| 1163 | |
---|
| 1164 | ! |
---|
[1517] | 1165 | !-- Fluxes using exponential scheme |
---|
| 1166 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1167 | DO j = nys, nyn |
---|
| 1168 | DO k = nzb+1, nzt |
---|
[1] | 1169 | |
---|
[1517] | 1170 | !-- *VOCL STMT,IF(10) |
---|
| 1171 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1172 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1173 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1174 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1175 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1176 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1177 | |
---|
[1517] | 1178 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1179 | |
---|
[1517] | 1180 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1181 | |
---|
[1517] | 1182 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1183 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1184 | eex(ix) - & |
---|
| 1185 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1186 | ) & |
---|
| 1187 | ) |
---|
| 1188 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1189 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1190 | |
---|
[1517] | 1191 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1192 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1193 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1194 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1195 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1196 | |
---|
[1517] | 1197 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1198 | |
---|
[1517] | 1199 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1200 | |
---|
[1517] | 1201 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1202 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1203 | eex(ix) - & |
---|
| 1204 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1205 | ) & |
---|
| 1206 | ) |
---|
| 1207 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1208 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1209 | ENDIF |
---|
[1] | 1210 | |
---|
[1517] | 1211 | !-- *VOCL STMT,IF(10) |
---|
| 1212 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1213 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1214 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1215 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1216 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1217 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1218 | |
---|
[1517] | 1219 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1220 | |
---|
[1517] | 1221 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1222 | |
---|
[1517] | 1223 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1224 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1225 | eex(ix) - & |
---|
| 1226 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1227 | ) & |
---|
| 1228 | ) |
---|
| 1229 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1230 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1231 | ENDIF |
---|
[1] | 1232 | |
---|
[1517] | 1233 | !-- *VOCL STMT,IF(10) |
---|
| 1234 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1235 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1236 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1237 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1238 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1239 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1240 | |
---|
[1517] | 1241 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1242 | |
---|
[1517] | 1243 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1244 | |
---|
[1517] | 1245 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1246 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1247 | eex(ix) - & |
---|
| 1248 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1249 | ) & |
---|
| 1250 | ) |
---|
| 1251 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1252 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1253 | ENDIF |
---|
[1] | 1254 | |
---|
[1517] | 1255 | ENDDO |
---|
[1] | 1256 | ENDDO |
---|
[1517] | 1257 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1258 | |
---|
| 1259 | ! |
---|
[1517] | 1260 | !-- Prognostic equation |
---|
| 1261 | DO j = nys, nyn |
---|
| 1262 | DO k = nzb+1, nzt |
---|
| 1263 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1264 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1265 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1266 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1267 | tendcy = fplus - fminus |
---|
[1] | 1268 | ! |
---|
[1517] | 1269 | !-- Removed in order to optimise speed |
---|
| 1270 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1271 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1272 | ! |
---|
[1517] | 1273 | !-- Density correction because of possible remaining divergences |
---|
| 1274 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1275 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1276 | ( 1.0_wp + d_new ) |
---|
[1] | 1277 | ! |
---|
[1517] | 1278 | !-- Store heat flux for subsequent statistics output. |
---|
| 1279 | !-- array m1 is here used as temporary storage |
---|
| 1280 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1281 | ENDDO |
---|
[1] | 1282 | ENDDO |
---|
| 1283 | |
---|
| 1284 | ! |
---|
[1517] | 1285 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1286 | IF ( sk_char == 'pt' ) THEN |
---|
| 1287 | DO sr = 0, statistic_regions |
---|
| 1288 | DO j = nys, nyn |
---|
| 1289 | DO k = nzb+1, nzt |
---|
| 1290 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1291 | m1(k,j) * rmask(j,i,sr) |
---|
| 1292 | ENDDO |
---|
[1] | 1293 | ENDDO |
---|
| 1294 | ENDDO |
---|
[1517] | 1295 | ENDIF |
---|
[1] | 1296 | |
---|
[1517] | 1297 | ENDDO ! End of the advection in z-direction |
---|
| 1298 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1299 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1300 | |
---|
| 1301 | ! |
---|
[1517] | 1302 | !-- Deallocate temporary arrays |
---|
| 1303 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1304 | ippb, ippe, m1, sw ) |
---|
[1] | 1305 | |
---|
| 1306 | ! |
---|
[1517] | 1307 | !-- Store results as tendency and deallocate local array |
---|
| 1308 | DO i = nxl, nxr |
---|
| 1309 | DO j = nys, nyn |
---|
| 1310 | DO k = nzb+1, nzt |
---|
| 1311 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1312 | ENDDO |
---|
[1] | 1313 | ENDDO |
---|
| 1314 | ENDDO |
---|
| 1315 | |
---|
[1517] | 1316 | DEALLOCATE( sk_p ) |
---|
[1] | 1317 | |
---|
[1517] | 1318 | END SUBROUTINE advec_s_bc |
---|
| 1319 | |
---|
| 1320 | END MODULE advec_s_bc_mod |
---|