[1517] | 1 | MODULE advec_s_bc_mod |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1518] | 22 | ! |
---|
[1354] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 1518 2015-01-07 19:18:17Z keck $ |
---|
| 27 | ! |
---|
[1518] | 28 | ! 1517 2015-01-07 19:12:25Z hoffmann |
---|
| 29 | ! interface added to advec_s_bc |
---|
| 30 | ! |
---|
[1375] | 31 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 32 | ! missing variables added to ONLY list |
---|
| 33 | ! |
---|
[1362] | 34 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 35 | ! nr and qr added |
---|
| 36 | ! |
---|
[1354] | 37 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 38 | ! REAL constants provided with KIND-attribute |
---|
| 39 | ! |
---|
[1347] | 40 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 41 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 42 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 43 | ! |
---|
[1321] | 44 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 45 | ! ONLY-attribute added to USE-statements, |
---|
| 46 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 47 | ! kinds are defined in new module kinds, |
---|
| 48 | ! revision history before 2012 removed, |
---|
| 49 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 50 | ! all variable declaration statements |
---|
[1] | 51 | ! |
---|
[1319] | 52 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 53 | ! module interfaces removed |
---|
| 54 | ! |
---|
[1093] | 55 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 56 | ! unused variables removed |
---|
| 57 | ! |
---|
[1037] | 58 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 59 | ! code put under GPL (PALM 3.9) |
---|
| 60 | ! |
---|
[1011] | 61 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 62 | ! cpp switch __nopointer added for pointer free version |
---|
| 63 | ! |
---|
[1] | 64 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 65 | ! Initial revision |
---|
| 66 | ! |
---|
| 67 | ! |
---|
| 68 | ! Description: |
---|
| 69 | ! ------------ |
---|
| 70 | ! Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 71 | ! Computation in individual steps for each of the three dimensions. |
---|
| 72 | ! Limiting assumptions: |
---|
| 73 | ! So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 74 | ! the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 75 | ! a substitute for a constant grid length. This certainly causes incorrect |
---|
| 76 | ! results; however, it is hoped that they are not too apparent for weakly |
---|
| 77 | ! stretched grids. |
---|
| 78 | ! NOTE: This is a provisional, non-optimised version! |
---|
[63] | 79 | !------------------------------------------------------------------------------! |
---|
[1] | 80 | |
---|
[1517] | 81 | PRIVATE |
---|
| 82 | PUBLIC advec_s_bc |
---|
[1320] | 83 | |
---|
[1517] | 84 | INTERFACE advec_s_bc |
---|
| 85 | MODULE PROCEDURE advec_s_bc |
---|
| 86 | END INTERFACE advec_s_bc |
---|
[1320] | 87 | |
---|
[1517] | 88 | CONTAINS |
---|
[1320] | 89 | |
---|
[1517] | 90 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 91 | |
---|
[1517] | 92 | USE advection, & |
---|
| 93 | ONLY: aex, bex, dex, eex |
---|
[1320] | 94 | |
---|
[1517] | 95 | USE arrays_3d, & |
---|
| 96 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 97 | |
---|
[1517] | 98 | USE control_parameters, & |
---|
| 99 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 100 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 101 | v_gtrans |
---|
[1320] | 102 | |
---|
[1517] | 103 | USE cpulog, & |
---|
| 104 | ONLY: cpu_log, log_point_s |
---|
[1] | 105 | |
---|
[1517] | 106 | USE grid_variables, & |
---|
| 107 | ONLY: ddx, ddy |
---|
[1320] | 108 | |
---|
[1517] | 109 | USE indices, & |
---|
| 110 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 111 | |
---|
[1517] | 112 | USE kinds |
---|
[1] | 113 | |
---|
[1517] | 114 | USE pegrid |
---|
[1] | 115 | |
---|
[1517] | 116 | USE statistics, & |
---|
| 117 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 118 | |
---|
[1320] | 119 | |
---|
[1517] | 120 | IMPLICIT NONE |
---|
| 121 | |
---|
| 122 | CHARACTER (LEN=*) :: sk_char !: |
---|
| 123 | |
---|
| 124 | INTEGER(iwp) :: i !: |
---|
| 125 | INTEGER(iwp) :: ix !: |
---|
| 126 | INTEGER(iwp) :: j !: |
---|
| 127 | INTEGER(iwp) :: k !: |
---|
| 128 | INTEGER(iwp) :: ngp !: |
---|
| 129 | INTEGER(iwp) :: sr !: |
---|
| 130 | INTEGER(iwp) :: type_xz_2 !: |
---|
| 131 | |
---|
| 132 | REAL(wp) :: cim !: |
---|
| 133 | REAL(wp) :: cimf !: |
---|
| 134 | REAL(wp) :: cip !: |
---|
| 135 | REAL(wp) :: cipf !: |
---|
| 136 | REAL(wp) :: d_new !: |
---|
| 137 | REAL(wp) :: denomi !: denominator |
---|
| 138 | REAL(wp) :: fminus !: |
---|
| 139 | REAL(wp) :: fplus !: |
---|
| 140 | REAL(wp) :: f2 !: |
---|
| 141 | REAL(wp) :: f4 !: |
---|
| 142 | REAL(wp) :: f8 !: |
---|
| 143 | REAL(wp) :: f12 !: |
---|
| 144 | REAL(wp) :: f24 !: |
---|
| 145 | REAL(wp) :: f48 !: |
---|
| 146 | REAL(wp) :: f1920 !: |
---|
| 147 | REAL(wp) :: im !: |
---|
| 148 | REAL(wp) :: ip !: |
---|
| 149 | REAL(wp) :: m2 !: |
---|
| 150 | REAL(wp) :: m3 !: |
---|
| 151 | REAL(wp) :: numera !: numerator |
---|
| 152 | REAL(wp) :: snenn !: |
---|
| 153 | REAL(wp) :: sterm !: |
---|
| 154 | REAL(wp) :: tendcy !: |
---|
| 155 | REAL(wp) :: t1 !: |
---|
| 156 | REAL(wp) :: t2 !: |
---|
| 157 | |
---|
| 158 | REAL(wp) :: fmax(2) !: |
---|
| 159 | REAL(wp) :: fmax_l(2) !: |
---|
| 160 | |
---|
[1010] | 161 | #if defined( __nopointer ) |
---|
[1517] | 162 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !: |
---|
[1010] | 163 | #else |
---|
[1517] | 164 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 165 | #endif |
---|
[1] | 166 | |
---|
[1517] | 167 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !: |
---|
| 168 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !: |
---|
| 169 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !: |
---|
| 170 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !: |
---|
| 171 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !: |
---|
| 172 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !: |
---|
| 173 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !: |
---|
| 174 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !: |
---|
| 175 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !: |
---|
| 176 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !: |
---|
| 177 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !: |
---|
| 178 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !: |
---|
| 179 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !: |
---|
| 180 | |
---|
| 181 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !: |
---|
[1] | 182 | |
---|
[63] | 183 | #if defined( __nec ) |
---|
[1517] | 184 | REAL(sp) :: m1n, m1z !Wichtig: Division !: |
---|
| 185 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !: |
---|
[1] | 186 | #else |
---|
[1517] | 187 | REAL(wp) :: m1n, m1z |
---|
| 188 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 189 | #endif |
---|
| 190 | |
---|
| 191 | |
---|
| 192 | ! |
---|
[1517] | 193 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 194 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 195 | sk_p = 0.0_wp |
---|
[1] | 196 | |
---|
| 197 | ! |
---|
[1517] | 198 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 199 | f2 = 0.5_wp |
---|
| 200 | f4 = 0.25_wp |
---|
| 201 | f8 = 0.125_wp |
---|
| 202 | f12 = 0.8333333333333333E-01_wp |
---|
| 203 | f24 = 0.4166666666666666E-01_wp |
---|
| 204 | f48 = 0.2083333333333333E-01_wp |
---|
| 205 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 206 | |
---|
| 207 | ! |
---|
[1517] | 208 | !-- Advection in x-direction: |
---|
[1] | 209 | |
---|
| 210 | ! |
---|
[1517] | 211 | !-- Save the quantity to be advected in a local array |
---|
| 212 | !-- add an enlarged boundary in x-direction |
---|
| 213 | DO i = nxl-1, nxr+1 |
---|
| 214 | DO j = nys, nyn |
---|
| 215 | DO k = nzb, nzt+1 |
---|
| 216 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 217 | ENDDO |
---|
[1] | 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | #if defined( __parallel ) |
---|
[1517] | 221 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 222 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 223 | ! |
---|
[1517] | 224 | !-- Send left boundary, receive right boundary |
---|
| 225 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 226 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
| 227 | comm2d, status, ierr ) |
---|
[1] | 228 | ! |
---|
[1517] | 229 | !-- Send right boundary, receive left boundary |
---|
| 230 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 231 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
| 232 | comm2d, status, ierr ) |
---|
| 233 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 234 | #else |
---|
| 235 | |
---|
| 236 | ! |
---|
[1517] | 237 | !-- Cyclic boundary conditions |
---|
| 238 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 239 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 240 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 241 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 242 | #endif |
---|
| 243 | |
---|
| 244 | ! |
---|
[1517] | 245 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 246 | !-- of the temperature field at the left and right boundary of the total |
---|
| 247 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 248 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 249 | IF ( nxl == 0 ) THEN |
---|
| 250 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 251 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 252 | ENDIF |
---|
| 253 | IF ( nxr == nx ) THEN |
---|
| 254 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 255 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 256 | ENDIF |
---|
[1] | 257 | ENDIF |
---|
| 258 | |
---|
| 259 | ! |
---|
[1517] | 260 | !-- Initialise control density |
---|
| 261 | d = 0.0_wp |
---|
[1] | 262 | |
---|
| 263 | ! |
---|
[1517] | 264 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 265 | fmax_l = 0.0_wp |
---|
| 266 | DO i = nxl, nxr |
---|
| 267 | DO j = nys, nyn |
---|
| 268 | DO k = nzb+1, nzt |
---|
| 269 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 270 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 271 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 272 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 273 | ENDDO |
---|
[1] | 274 | ENDDO |
---|
| 275 | ENDDO |
---|
| 276 | #if defined( __parallel ) |
---|
[1517] | 277 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 278 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 279 | #else |
---|
[1517] | 280 | fmax = fmax_l |
---|
[1] | 281 | #endif |
---|
| 282 | |
---|
[1517] | 283 | fmax = 0.04_wp * fmax |
---|
[1] | 284 | |
---|
| 285 | ! |
---|
[1517] | 286 | !-- Allocate temporary arrays |
---|
| 287 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 288 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 289 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 290 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 291 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 292 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 293 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 294 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
| 295 | ) |
---|
| 296 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 297 | |
---|
| 298 | ! |
---|
[1517] | 299 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 300 | !-- not work if done locally within the loop) |
---|
| 301 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 302 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 303 | |
---|
| 304 | ! |
---|
[1517] | 305 | !-- Outer loop of all j |
---|
| 306 | DO j = nys, nyn |
---|
[1] | 307 | |
---|
| 308 | ! |
---|
[1517] | 309 | !-- Compute polynomial coefficients |
---|
| 310 | DO i = nxl-1, nxr+1 |
---|
| 311 | DO k = nzb+1, nzt |
---|
| 312 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 313 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 314 | + sk_p(k,j,i-1) ) |
---|
| 315 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 316 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 317 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 318 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 319 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
| 320 | ) * f48 |
---|
| 321 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 322 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 323 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
| 324 | ENDDO |
---|
[1] | 325 | ENDDO |
---|
| 326 | |
---|
| 327 | ! |
---|
[1517] | 328 | !-- Fluxes using the Bott scheme |
---|
| 329 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 330 | DO i = nxl, nxr |
---|
| 331 | DO k = nzb+1, nzt |
---|
| 332 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 333 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 334 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 335 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 336 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 337 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 338 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 339 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 340 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 341 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 342 | ip = MAX( ip, 0.0_wp ) |
---|
| 343 | im = MAX( im, 0.0_wp ) |
---|
| 344 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 345 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 346 | |
---|
[1517] | 347 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 348 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 349 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 350 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 351 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 352 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 353 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 354 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 355 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 356 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 357 | ip = MAX( ip, 0.0_wp ) |
---|
| 358 | im = MAX( im, 0.0_wp ) |
---|
| 359 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 360 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 361 | ENDDO |
---|
[1] | 362 | ENDDO |
---|
| 363 | |
---|
| 364 | ! |
---|
[1517] | 365 | !-- Compute monitor function m1 |
---|
| 366 | DO i = nxl-2, nxr+2 |
---|
| 367 | DO k = nzb+1, nzt |
---|
| 368 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 369 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 370 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 371 | m1(k,i) = m1z / m1n |
---|
| 372 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 373 | ELSEIF ( m1n < m1z ) THEN |
---|
| 374 | m1(k,i) = -1.0_wp |
---|
| 375 | ELSE |
---|
| 376 | m1(k,i) = 0.0_wp |
---|
| 377 | ENDIF |
---|
| 378 | ENDDO |
---|
[1] | 379 | ENDDO |
---|
| 380 | |
---|
| 381 | ! |
---|
[1517] | 382 | !-- Compute switch sw |
---|
| 383 | sw = 0.0_wp |
---|
| 384 | DO i = nxl-1, nxr+1 |
---|
| 385 | DO k = nzb+1, nzt |
---|
| 386 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
| 387 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
| 388 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 389 | |
---|
[1517] | 390 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
| 391 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
| 392 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 393 | |
---|
[1517] | 394 | t1 = 0.35_wp |
---|
| 395 | t2 = 0.35_wp |
---|
| 396 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 397 | |
---|
[1517] | 398 | !-- *VOCL STMT,IF(10) |
---|
| 399 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 400 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 401 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 402 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 403 | ) sw(k,i) = 1.0_wp |
---|
| 404 | ENDDO |
---|
[1] | 405 | ENDDO |
---|
| 406 | |
---|
| 407 | ! |
---|
[1517] | 408 | !-- Fluxes using the exponential scheme |
---|
| 409 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 410 | DO i = nxl, nxr |
---|
| 411 | DO k = nzb+1, nzt |
---|
[1] | 412 | |
---|
[1517] | 413 | !-- *VOCL STMT,IF(10) |
---|
| 414 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 415 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 416 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 417 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 418 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 419 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 420 | |
---|
[1517] | 421 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 422 | |
---|
[1517] | 423 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 424 | |
---|
[1517] | 425 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 426 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 427 | eex(ix) - & |
---|
| 428 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 429 | ) & |
---|
| 430 | ) |
---|
| 431 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 432 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 433 | |
---|
[1517] | 434 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 435 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 436 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 437 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 438 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 439 | |
---|
[1517] | 440 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 441 | |
---|
[1517] | 442 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 443 | |
---|
[1517] | 444 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 445 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 446 | eex(ix) - & |
---|
| 447 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 448 | ) & |
---|
| 449 | ) |
---|
| 450 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 451 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 452 | ENDIF |
---|
[1] | 453 | |
---|
[1517] | 454 | !-- *VOCL STMT,IF(10) |
---|
| 455 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 456 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
| 457 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
| 458 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 459 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 460 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 461 | |
---|
[1517] | 462 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 463 | |
---|
[1517] | 464 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 465 | |
---|
[1517] | 466 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 467 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 468 | eex(ix) - & |
---|
| 469 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 470 | ) & |
---|
| 471 | ) |
---|
| 472 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 473 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 474 | ENDIF |
---|
[1] | 475 | |
---|
[1517] | 476 | !-- *VOCL STMT,IF(10) |
---|
| 477 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 478 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 479 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 480 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 481 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 482 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 483 | |
---|
[1517] | 484 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 485 | |
---|
[1517] | 486 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 487 | |
---|
[1517] | 488 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 489 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 490 | eex(ix) - & |
---|
| 491 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 492 | ) & |
---|
| 493 | ) |
---|
| 494 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 495 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 496 | ENDIF |
---|
[1] | 497 | |
---|
[1517] | 498 | ENDDO |
---|
[1] | 499 | ENDDO |
---|
[1517] | 500 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 501 | |
---|
| 502 | ! |
---|
[1517] | 503 | !-- Prognostic equation |
---|
| 504 | DO i = nxl, nxr |
---|
| 505 | DO k = nzb+1, nzt |
---|
| 506 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 507 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 508 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 509 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
| 510 | tendcy = fplus - fminus |
---|
[1] | 511 | ! |
---|
[1517] | 512 | !-- Removed in order to optimize speed |
---|
| 513 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 514 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 515 | ! |
---|
[1517] | 516 | !-- Density correction because of possible remaining divergences |
---|
| 517 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
| 518 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 519 | ( 1.0_wp + d_new ) |
---|
| 520 | d(k,j,i) = d_new |
---|
| 521 | ENDDO |
---|
[1] | 522 | ENDDO |
---|
| 523 | |
---|
[1517] | 524 | ENDDO ! End of the advection in x-direction |
---|
[1] | 525 | |
---|
| 526 | ! |
---|
[1517] | 527 | !-- Deallocate temporary arrays |
---|
| 528 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 529 | ippb, ippe, m1, sw ) |
---|
[1] | 530 | |
---|
| 531 | |
---|
| 532 | ! |
---|
[1517] | 533 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 534 | #if defined( __parallel ) |
---|
[1517] | 535 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 536 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
| 537 | type_xz_2, ierr ) |
---|
| 538 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 539 | ! |
---|
[1517] | 540 | !-- Send front boundary, receive rear boundary |
---|
| 541 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 542 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 543 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
| 544 | comm2d, status, ierr ) |
---|
[1] | 545 | ! |
---|
[1517] | 546 | !-- Send rear boundary, receive front boundary |
---|
| 547 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 548 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
| 549 | comm2d, status, ierr ) |
---|
| 550 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 551 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 552 | #else |
---|
[1517] | 553 | DO i = nxl, nxr |
---|
| 554 | DO k = nzb+1, nzt |
---|
| 555 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 556 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 557 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 558 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 559 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 560 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 561 | ENDDO |
---|
[1] | 562 | ENDDO |
---|
| 563 | #endif |
---|
| 564 | |
---|
| 565 | ! |
---|
[1517] | 566 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 567 | fmax_l = 0.0_wp |
---|
| 568 | DO i = nxl, nxr |
---|
| 569 | DO j = nys, nyn |
---|
| 570 | DO k = nzb+1, nzt |
---|
| 571 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 572 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 573 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 574 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 575 | ENDDO |
---|
[1] | 576 | ENDDO |
---|
| 577 | ENDDO |
---|
| 578 | #if defined( __parallel ) |
---|
[1517] | 579 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 580 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 581 | #else |
---|
[1517] | 582 | fmax = fmax_l |
---|
[1] | 583 | #endif |
---|
| 584 | |
---|
[1517] | 585 | fmax = 0.04_wp * fmax |
---|
[1] | 586 | |
---|
| 587 | ! |
---|
[1517] | 588 | !-- Allocate temporary arrays |
---|
| 589 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 590 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 591 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 592 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 593 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 594 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 595 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 596 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
| 597 | ) |
---|
| 598 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 599 | |
---|
| 600 | ! |
---|
[1517] | 601 | !-- Outer loop of all i |
---|
| 602 | DO i = nxl, nxr |
---|
[1] | 603 | |
---|
| 604 | ! |
---|
[1517] | 605 | !-- Compute polynomial coefficients |
---|
| 606 | DO j = nys-1, nyn+1 |
---|
| 607 | DO k = nzb+1, nzt |
---|
| 608 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 609 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 610 | + sk_p(k,j-1,i) ) |
---|
| 611 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 612 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 613 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 614 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 615 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
| 616 | ) * f48 |
---|
| 617 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 618 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 619 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
| 620 | ENDDO |
---|
[1] | 621 | ENDDO |
---|
| 622 | |
---|
| 623 | ! |
---|
[1517] | 624 | !-- Fluxes using the Bott scheme |
---|
| 625 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 626 | DO j = nys, nyn |
---|
| 627 | DO k = nzb+1, nzt |
---|
| 628 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 629 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 630 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 631 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 632 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 633 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 634 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 635 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 636 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 637 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 638 | ip = MAX( ip, 0.0_wp ) |
---|
| 639 | im = MAX( im, 0.0_wp ) |
---|
| 640 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 641 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 642 | |
---|
[1517] | 643 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 644 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 645 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 646 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 647 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 648 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 649 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 650 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 651 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 652 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 653 | ip = MAX( ip, 0.0_wp ) |
---|
| 654 | im = MAX( im, 0.0_wp ) |
---|
| 655 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 656 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 657 | ENDDO |
---|
[1] | 658 | ENDDO |
---|
| 659 | |
---|
| 660 | ! |
---|
[1517] | 661 | !-- Compute monitor function m1 |
---|
| 662 | DO j = nys-2, nyn+2 |
---|
| 663 | DO k = nzb+1, nzt |
---|
| 664 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 665 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 666 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 667 | m1(k,j) = m1z / m1n |
---|
| 668 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 669 | ELSEIF ( m1n < m1z ) THEN |
---|
| 670 | m1(k,j) = -1.0_wp |
---|
| 671 | ELSE |
---|
| 672 | m1(k,j) = 0.0_wp |
---|
| 673 | ENDIF |
---|
| 674 | ENDDO |
---|
[1] | 675 | ENDDO |
---|
| 676 | |
---|
| 677 | ! |
---|
[1517] | 678 | !-- Compute switch sw |
---|
| 679 | sw = 0.0_wp |
---|
| 680 | DO j = nys-1, nyn+1 |
---|
| 681 | DO k = nzb+1, nzt |
---|
| 682 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 683 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 684 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 685 | |
---|
[1517] | 686 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 687 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 688 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 689 | |
---|
[1517] | 690 | t1 = 0.35_wp |
---|
| 691 | t2 = 0.35_wp |
---|
| 692 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 693 | |
---|
[1517] | 694 | !-- *VOCL STMT,IF(10) |
---|
| 695 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 696 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 697 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 698 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 699 | ) sw(k,j) = 1.0_wp |
---|
| 700 | ENDDO |
---|
[1] | 701 | ENDDO |
---|
| 702 | |
---|
| 703 | ! |
---|
[1517] | 704 | !-- Fluxes using exponential scheme |
---|
| 705 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 706 | DO j = nys, nyn |
---|
| 707 | DO k = nzb+1, nzt |
---|
[1] | 708 | |
---|
[1517] | 709 | !-- *VOCL STMT,IF(10) |
---|
| 710 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 711 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 712 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 713 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 714 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 715 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 716 | |
---|
[1517] | 717 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 718 | |
---|
[1517] | 719 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 720 | |
---|
[1517] | 721 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 722 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 723 | eex(ix) - & |
---|
| 724 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 725 | ) & |
---|
| 726 | ) |
---|
| 727 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 728 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 729 | |
---|
[1517] | 730 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 731 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 732 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 733 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 734 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 735 | |
---|
[1517] | 736 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 737 | |
---|
[1517] | 738 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 739 | |
---|
[1517] | 740 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 741 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 742 | eex(ix) - & |
---|
| 743 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 744 | ) & |
---|
| 745 | ) |
---|
| 746 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 747 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 748 | ENDIF |
---|
[1] | 749 | |
---|
[1517] | 750 | !-- *VOCL STMT,IF(10) |
---|
| 751 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 752 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
| 753 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
| 754 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 755 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 756 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 757 | |
---|
[1517] | 758 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 759 | |
---|
[1517] | 760 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 761 | |
---|
[1517] | 762 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 763 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 764 | eex(ix) - & |
---|
| 765 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 766 | ) & |
---|
| 767 | ) |
---|
| 768 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 769 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 770 | ENDIF |
---|
[1] | 771 | |
---|
[1517] | 772 | !-- *VOCL STMT,IF(10) |
---|
| 773 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 774 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 775 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 776 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 777 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 778 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 779 | |
---|
[1517] | 780 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 781 | |
---|
[1517] | 782 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 783 | |
---|
[1517] | 784 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 785 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 786 | eex(ix) - & |
---|
| 787 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 788 | ) & |
---|
| 789 | ) |
---|
| 790 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 791 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 792 | ENDIF |
---|
[1] | 793 | |
---|
[1517] | 794 | ENDDO |
---|
[1] | 795 | ENDDO |
---|
[1517] | 796 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 797 | |
---|
| 798 | ! |
---|
[1517] | 799 | !-- Prognostic equation |
---|
| 800 | DO j = nys, nyn |
---|
| 801 | DO k = nzb+1, nzt |
---|
| 802 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 803 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 804 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 805 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 806 | tendcy = fplus - fminus |
---|
[1] | 807 | ! |
---|
[1517] | 808 | !-- Removed in order to optimise speed |
---|
| 809 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 810 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 811 | ! |
---|
[1517] | 812 | !-- Density correction because of possible remaining divergences |
---|
| 813 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
| 814 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 815 | ( 1.0_wp + d_new ) |
---|
| 816 | d(k,j,i) = d_new |
---|
| 817 | ENDDO |
---|
[1] | 818 | ENDDO |
---|
| 819 | |
---|
[1517] | 820 | ENDDO ! End of the advection in y-direction |
---|
| 821 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 822 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 823 | |
---|
| 824 | ! |
---|
[1517] | 825 | !-- Deallocate temporary arrays |
---|
| 826 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 827 | ippb, ippe, m1, sw ) |
---|
[1] | 828 | |
---|
| 829 | |
---|
| 830 | ! |
---|
[1517] | 831 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 832 | !-- UP flow_statistics) |
---|
| 833 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 834 | |
---|
| 835 | ! |
---|
[1517] | 836 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 837 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 838 | |
---|
| 839 | ! |
---|
[1517] | 840 | !-- Temperature boundary condition at the bottom boundary |
---|
| 841 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 842 | ! |
---|
| 843 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 844 | DO i = nxl, nxr |
---|
| 845 | DO j = nys, nyn |
---|
| 846 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 847 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 848 | ENDDO |
---|
[1] | 849 | ENDDO |
---|
| 850 | |
---|
[1517] | 851 | ELSE |
---|
[1] | 852 | ! |
---|
[1517] | 853 | !-- Neumann (i.e. here zero gradient) |
---|
| 854 | DO i = nxl, nxr |
---|
| 855 | DO j = nys, nyn |
---|
| 856 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 857 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 858 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 859 | ENDDO |
---|
| 860 | ENDDO |
---|
| 861 | |
---|
| 862 | ENDIF |
---|
| 863 | |
---|
| 864 | ! |
---|
| 865 | !-- Temperature boundary condition at the top boundary |
---|
| 866 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 867 | ! |
---|
| 868 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 869 | DO i = nxl, nxr |
---|
| 870 | DO j = nys, nyn |
---|
| 871 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 872 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 873 | ENDDO |
---|
| 874 | ENDDO |
---|
| 875 | |
---|
| 876 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 877 | ! |
---|
| 878 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 879 | DO i = nxl, nxr |
---|
| 880 | DO j = nys, nyn |
---|
| 881 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 882 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 883 | ENDDO |
---|
| 884 | ENDDO |
---|
| 885 | |
---|
| 886 | ENDIF |
---|
| 887 | |
---|
| 888 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 892 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 893 | DO i = nxl, nxr |
---|
| 894 | DO j = nys, nyn |
---|
[216] | 895 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 896 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 897 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 898 | ENDDO |
---|
| 899 | ENDDO |
---|
| 900 | |
---|
| 901 | ! |
---|
[1517] | 902 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 903 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 904 | DO i = nxl, nxr |
---|
| 905 | DO j = nys, nyn |
---|
[63] | 906 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 907 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 908 | ENDDO |
---|
| 909 | ENDDO |
---|
| 910 | |
---|
[1517] | 911 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 912 | |
---|
[1] | 913 | ! |
---|
[1517] | 914 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 915 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 916 | DO i = nxl, nxr |
---|
| 917 | DO j = nys, nyn |
---|
[1517] | 918 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 919 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 920 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | |
---|
| 924 | ! |
---|
[1517] | 925 | !-- Specific humidity boundary condition at the top boundary |
---|
| 926 | IF ( ibc_q_t == 0 ) THEN |
---|
| 927 | ! |
---|
| 928 | !-- Dirichlet |
---|
| 929 | DO i = nxl, nxr |
---|
| 930 | DO j = nys, nyn |
---|
| 931 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 932 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 933 | ENDDO |
---|
| 934 | ENDDO |
---|
[1] | 935 | |
---|
[1517] | 936 | ELSE |
---|
[1] | 937 | ! |
---|
[1517] | 938 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nys, nyn |
---|
| 941 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 942 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 943 | ENDDO |
---|
| 944 | ENDDO |
---|
[1] | 945 | |
---|
[1517] | 946 | ENDIF |
---|
[1] | 947 | |
---|
[1517] | 948 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 949 | |
---|
[1] | 950 | ! |
---|
[1517] | 951 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 952 | !-- Dirichlet (fixed surface rain water content). |
---|
| 953 | DO i = nxl, nxr |
---|
| 954 | DO j = nys, nyn |
---|
| 955 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 956 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 957 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 958 | ENDDO |
---|
[97] | 959 | ENDDO |
---|
| 960 | |
---|
| 961 | ! |
---|
[1517] | 962 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
[1] | 963 | DO i = nxl, nxr |
---|
| 964 | DO j = nys, nyn |
---|
[63] | 965 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 966 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 967 | ENDDO |
---|
| 968 | ENDDO |
---|
| 969 | |
---|
[1517] | 970 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 971 | |
---|
[1] | 972 | ! |
---|
[1517] | 973 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 974 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
[1] | 975 | DO i = nxl, nxr |
---|
| 976 | DO j = nys, nyn |
---|
[1517] | 977 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 978 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 979 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 980 | ENDDO |
---|
| 981 | ENDDO |
---|
| 982 | |
---|
[1361] | 983 | ! |
---|
[1517] | 984 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 985 | DO i = nxl, nxr |
---|
| 986 | DO j = nys, nyn |
---|
| 987 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 988 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 989 | ENDDO |
---|
[1361] | 990 | ENDDO |
---|
| 991 | |
---|
[1517] | 992 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 993 | |
---|
| 994 | ! |
---|
[1517] | 995 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 996 | DO i = nxl, nxr |
---|
| 997 | DO j = nys, nyn |
---|
| 998 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 999 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 1000 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 1001 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 1002 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 1003 | ENDDO |
---|
[1361] | 1004 | ENDDO |
---|
| 1005 | |
---|
[1517] | 1006 | ELSE |
---|
[1361] | 1007 | |
---|
[1517] | 1008 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
| 1009 | 'tion for variable "', sk_char, '"' |
---|
| 1010 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 1011 | |
---|
| 1012 | ENDIF |
---|
[1] | 1013 | |
---|
| 1014 | ! |
---|
[1517] | 1015 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 1016 | fmax_l = 0.0_wp |
---|
[97] | 1017 | DO i = nxl, nxr |
---|
| 1018 | DO j = nys, nyn |
---|
[1517] | 1019 | DO k = nzb, nzt+1 |
---|
| 1020 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1021 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1022 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1023 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 1024 | ENDDO |
---|
[97] | 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
[1] | 1027 | #if defined( __parallel ) |
---|
[1517] | 1028 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1029 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1030 | #else |
---|
[1517] | 1031 | fmax = fmax_l |
---|
[1] | 1032 | #endif |
---|
| 1033 | |
---|
[1517] | 1034 | fmax = 0.04_wp * fmax |
---|
[1] | 1035 | |
---|
| 1036 | ! |
---|
[1517] | 1037 | !-- Allocate temporary arrays |
---|
| 1038 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1039 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1040 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1041 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1042 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1043 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1044 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1045 | sw(nzb:nzt+1,nys:nyn) & |
---|
| 1046 | ) |
---|
| 1047 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1048 | |
---|
| 1049 | ! |
---|
[1517] | 1050 | !-- Outer loop of all i |
---|
| 1051 | DO i = nxl, nxr |
---|
[1] | 1052 | |
---|
| 1053 | ! |
---|
[1517] | 1054 | !-- Compute polynomial coefficients |
---|
| 1055 | DO j = nys, nyn |
---|
| 1056 | DO k = nzb, nzt+1 |
---|
| 1057 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1058 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1059 | + sk_p(k-1,j,i) ) |
---|
| 1060 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1061 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1062 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1063 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1064 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
| 1065 | ) * f48 |
---|
| 1066 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1067 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1068 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
| 1069 | ENDDO |
---|
[1] | 1070 | ENDDO |
---|
| 1071 | |
---|
| 1072 | ! |
---|
[1517] | 1073 | !-- Fluxes using the Bott scheme |
---|
| 1074 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1075 | DO j = nys, nyn |
---|
| 1076 | DO k = nzb+1, nzt |
---|
| 1077 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1078 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1079 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1080 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1081 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1082 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1083 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1084 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1085 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1086 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1087 | ip = MAX( ip, 0.0_wp ) |
---|
| 1088 | im = MAX( im, 0.0_wp ) |
---|
| 1089 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1090 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1091 | |
---|
[1517] | 1092 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1093 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1094 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1095 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1096 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1097 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1098 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1099 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1100 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1101 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1102 | ip = MAX( ip, 0.0_wp ) |
---|
| 1103 | im = MAX( im, 0.0_wp ) |
---|
| 1104 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1105 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1106 | ENDDO |
---|
[1] | 1107 | ENDDO |
---|
| 1108 | |
---|
| 1109 | ! |
---|
[1517] | 1110 | !-- Compute monitor function m1 |
---|
| 1111 | DO j = nys, nyn |
---|
| 1112 | DO k = nzb-1, nzt+2 |
---|
| 1113 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1114 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1115 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1116 | m1(k,j) = m1z / m1n |
---|
| 1117 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1118 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1119 | m1(k,j) = -1.0_wp |
---|
| 1120 | ELSE |
---|
| 1121 | m1(k,j) = 0.0_wp |
---|
| 1122 | ENDIF |
---|
| 1123 | ENDDO |
---|
[1] | 1124 | ENDDO |
---|
| 1125 | |
---|
| 1126 | ! |
---|
[1517] | 1127 | !-- Compute switch sw |
---|
| 1128 | sw = 0.0_wp |
---|
| 1129 | DO j = nys, nyn |
---|
| 1130 | DO k = nzb, nzt+1 |
---|
| 1131 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
| 1132 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1133 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1134 | |
---|
[1517] | 1135 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
| 1136 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1137 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1138 | |
---|
[1517] | 1139 | t1 = 0.35_wp |
---|
| 1140 | t2 = 0.35_wp |
---|
| 1141 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1142 | |
---|
[1517] | 1143 | !-- *VOCL STMT,IF(10) |
---|
| 1144 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1145 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1146 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1147 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1148 | ) sw(k,j) = 1.0_wp |
---|
| 1149 | ENDDO |
---|
[1] | 1150 | ENDDO |
---|
| 1151 | |
---|
| 1152 | ! |
---|
[1517] | 1153 | !-- Fluxes using exponential scheme |
---|
| 1154 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1155 | DO j = nys, nyn |
---|
| 1156 | DO k = nzb+1, nzt |
---|
[1] | 1157 | |
---|
[1517] | 1158 | !-- *VOCL STMT,IF(10) |
---|
| 1159 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1160 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1161 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1162 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1163 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1164 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1165 | |
---|
[1517] | 1166 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1167 | |
---|
[1517] | 1168 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1169 | |
---|
[1517] | 1170 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1171 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1172 | eex(ix) - & |
---|
| 1173 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1174 | ) & |
---|
| 1175 | ) |
---|
| 1176 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1177 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1178 | |
---|
[1517] | 1179 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1180 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1181 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1182 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1183 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1184 | |
---|
[1517] | 1185 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1186 | |
---|
[1517] | 1187 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1188 | |
---|
[1517] | 1189 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1190 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1191 | eex(ix) - & |
---|
| 1192 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1193 | ) & |
---|
| 1194 | ) |
---|
| 1195 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1196 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1197 | ENDIF |
---|
[1] | 1198 | |
---|
[1517] | 1199 | !-- *VOCL STMT,IF(10) |
---|
| 1200 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1201 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
| 1202 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1203 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1204 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1205 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1206 | |
---|
[1517] | 1207 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1208 | |
---|
[1517] | 1209 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1210 | |
---|
[1517] | 1211 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1212 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1213 | eex(ix) - & |
---|
| 1214 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1215 | ) & |
---|
| 1216 | ) |
---|
| 1217 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1218 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1219 | ENDIF |
---|
[1] | 1220 | |
---|
[1517] | 1221 | !-- *VOCL STMT,IF(10) |
---|
| 1222 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1223 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1224 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1225 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1226 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1227 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1228 | |
---|
[1517] | 1229 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1230 | |
---|
[1517] | 1231 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1232 | |
---|
[1517] | 1233 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1234 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1235 | eex(ix) - & |
---|
| 1236 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1237 | ) & |
---|
| 1238 | ) |
---|
| 1239 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1240 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1241 | ENDIF |
---|
[1] | 1242 | |
---|
[1517] | 1243 | ENDDO |
---|
[1] | 1244 | ENDDO |
---|
[1517] | 1245 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1246 | |
---|
| 1247 | ! |
---|
[1517] | 1248 | !-- Prognostic equation |
---|
| 1249 | DO j = nys, nyn |
---|
| 1250 | DO k = nzb+1, nzt |
---|
| 1251 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1252 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1253 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1254 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
| 1255 | tendcy = fplus - fminus |
---|
[1] | 1256 | ! |
---|
[1517] | 1257 | !-- Removed in order to optimise speed |
---|
| 1258 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1259 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1260 | ! |
---|
[1517] | 1261 | !-- Density correction because of possible remaining divergences |
---|
| 1262 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
| 1263 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1264 | ( 1.0_wp + d_new ) |
---|
[1] | 1265 | ! |
---|
[1517] | 1266 | !-- Store heat flux for subsequent statistics output. |
---|
| 1267 | !-- array m1 is here used as temporary storage |
---|
| 1268 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1269 | ENDDO |
---|
[1] | 1270 | ENDDO |
---|
| 1271 | |
---|
| 1272 | ! |
---|
[1517] | 1273 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1274 | IF ( sk_char == 'pt' ) THEN |
---|
| 1275 | DO sr = 0, statistic_regions |
---|
| 1276 | DO j = nys, nyn |
---|
| 1277 | DO k = nzb+1, nzt |
---|
| 1278 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
| 1279 | m1(k,j) * rmask(j,i,sr) |
---|
| 1280 | ENDDO |
---|
[1] | 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
[1517] | 1283 | ENDIF |
---|
[1] | 1284 | |
---|
[1517] | 1285 | ENDDO ! End of the advection in z-direction |
---|
| 1286 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1287 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1288 | |
---|
| 1289 | ! |
---|
[1517] | 1290 | !-- Deallocate temporary arrays |
---|
| 1291 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
| 1292 | ippb, ippe, m1, sw ) |
---|
[1] | 1293 | |
---|
| 1294 | ! |
---|
[1517] | 1295 | !-- Store results as tendency and deallocate local array |
---|
| 1296 | DO i = nxl, nxr |
---|
| 1297 | DO j = nys, nyn |
---|
| 1298 | DO k = nzb+1, nzt |
---|
| 1299 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1300 | ENDDO |
---|
[1] | 1301 | ENDDO |
---|
| 1302 | ENDDO |
---|
| 1303 | |
---|
[1517] | 1304 | DEALLOCATE( sk_p ) |
---|
[1] | 1305 | |
---|
[1517] | 1306 | END SUBROUTINE advec_s_bc |
---|
| 1307 | |
---|
| 1308 | END MODULE advec_s_bc_mod |
---|