[1] | 1 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[1375] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 1375 2014-04-25 13:07:08Z suehring $ |
---|
| 27 | ! |
---|
[1375] | 28 | ! 1374 2014-04-25 12:55:07Z raasch |
---|
| 29 | ! missing variables added to ONLY list |
---|
| 30 | ! |
---|
[1362] | 31 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 32 | ! nr and qr added |
---|
| 33 | ! |
---|
[1354] | 34 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 35 | ! REAL constants provided with KIND-attribute |
---|
| 36 | ! |
---|
[1347] | 37 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 38 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 39 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 40 | ! |
---|
[1321] | 41 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 42 | ! ONLY-attribute added to USE-statements, |
---|
| 43 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 44 | ! kinds are defined in new module kinds, |
---|
| 45 | ! revision history before 2012 removed, |
---|
| 46 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 47 | ! all variable declaration statements |
---|
[1] | 48 | ! |
---|
[1319] | 49 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 50 | ! module interfaces removed |
---|
| 51 | ! |
---|
[1093] | 52 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 53 | ! unused variables removed |
---|
| 54 | ! |
---|
[1037] | 55 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 56 | ! code put under GPL (PALM 3.9) |
---|
| 57 | ! |
---|
[1011] | 58 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 59 | ! cpp switch __nopointer added for pointer free version |
---|
| 60 | ! |
---|
[1] | 61 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 62 | ! Initial revision |
---|
| 63 | ! |
---|
| 64 | ! |
---|
| 65 | ! Description: |
---|
| 66 | ! ------------ |
---|
| 67 | ! Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 68 | ! Computation in individual steps for each of the three dimensions. |
---|
| 69 | ! Limiting assumptions: |
---|
| 70 | ! So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 71 | ! the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 72 | ! a substitute for a constant grid length. This certainly causes incorrect |
---|
| 73 | ! results; however, it is hoped that they are not too apparent for weakly |
---|
| 74 | ! stretched grids. |
---|
| 75 | ! NOTE: This is a provisional, non-optimised version! |
---|
[63] | 76 | !------------------------------------------------------------------------------! |
---|
[1] | 77 | |
---|
[1320] | 78 | USE advection, & |
---|
| 79 | ONLY: aex, bex, dex, eex |
---|
| 80 | |
---|
| 81 | USE arrays_3d, & |
---|
| 82 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
| 83 | |
---|
| 84 | USE control_parameters, & |
---|
| 85 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 86 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 87 | v_gtrans |
---|
| 88 | |
---|
| 89 | USE cpulog, & |
---|
| 90 | ONLY: cpu_log, log_point_s |
---|
| 91 | |
---|
| 92 | USE grid_variables, & |
---|
| 93 | ONLY: ddx, ddy |
---|
| 94 | |
---|
| 95 | USE indices, & |
---|
[1374] | 96 | ONLY: nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
[1320] | 97 | |
---|
| 98 | USE kinds |
---|
| 99 | |
---|
[1] | 100 | USE pegrid |
---|
| 101 | |
---|
[1320] | 102 | USE statistics, & |
---|
| 103 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
| 104 | |
---|
| 105 | |
---|
[1] | 106 | IMPLICIT NONE |
---|
| 107 | |
---|
[1320] | 108 | CHARACTER (LEN=*) :: sk_char !: |
---|
[1] | 109 | |
---|
[1320] | 110 | INTEGER(iwp) :: i !: |
---|
| 111 | INTEGER(iwp) :: ix !: |
---|
| 112 | INTEGER(iwp) :: j !: |
---|
| 113 | INTEGER(iwp) :: k !: |
---|
| 114 | INTEGER(iwp) :: ngp !: |
---|
| 115 | INTEGER(iwp) :: sr !: |
---|
| 116 | INTEGER(iwp) :: type_xz_2 !: |
---|
[1] | 117 | |
---|
[1320] | 118 | REAL(wp) :: cim !: |
---|
| 119 | REAL(wp) :: cimf !: |
---|
| 120 | REAL(wp) :: cip !: |
---|
| 121 | REAL(wp) :: cipf !: |
---|
| 122 | REAL(wp) :: d_new !: |
---|
| 123 | REAL(wp) :: denomi !: denominator |
---|
| 124 | REAL(wp) :: fminus !: |
---|
| 125 | REAL(wp) :: fplus !: |
---|
| 126 | REAL(wp) :: f2 !: |
---|
| 127 | REAL(wp) :: f4 !: |
---|
| 128 | REAL(wp) :: f8 !: |
---|
| 129 | REAL(wp) :: f12 !: |
---|
| 130 | REAL(wp) :: f24 !: |
---|
| 131 | REAL(wp) :: f48 !: |
---|
| 132 | REAL(wp) :: f1920 !: |
---|
| 133 | REAL(wp) :: im !: |
---|
| 134 | REAL(wp) :: ip !: |
---|
| 135 | REAL(wp) :: m2 !: |
---|
| 136 | REAL(wp) :: m3 !: |
---|
| 137 | REAL(wp) :: numera !: numerator |
---|
| 138 | REAL(wp) :: snenn !: |
---|
| 139 | REAL(wp) :: sterm !: |
---|
| 140 | REAL(wp) :: tendcy !: |
---|
| 141 | REAL(wp) :: t1 !: |
---|
| 142 | REAL(wp) :: t2 !: |
---|
| 143 | |
---|
| 144 | REAL(wp) :: fmax(2) !: |
---|
| 145 | REAL(wp) :: fmax_l(2) !: |
---|
| 146 | |
---|
[1010] | 147 | #if defined( __nopointer ) |
---|
[1320] | 148 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !: |
---|
[1010] | 149 | #else |
---|
[1320] | 150 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 151 | #endif |
---|
[1] | 152 | |
---|
[1320] | 153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !: |
---|
| 154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !: |
---|
| 155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !: |
---|
| 156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !: |
---|
| 157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !: |
---|
| 158 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !: |
---|
| 159 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !: |
---|
| 160 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !: |
---|
| 161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !: |
---|
| 162 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !: |
---|
| 163 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !: |
---|
| 164 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !: |
---|
| 165 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !: |
---|
| 166 | |
---|
| 167 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !: |
---|
[1] | 168 | |
---|
[63] | 169 | #if defined( __nec ) |
---|
[1320] | 170 | REAL(sp) :: m1n, m1z !Wichtig: Division !: |
---|
| 171 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !: |
---|
[1] | 172 | #else |
---|
[1320] | 173 | REAL(wp) :: m1n, m1z |
---|
| 174 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 175 | #endif |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | ! |
---|
| 179 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
[63] | 180 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
[1353] | 181 | sk_p = 0.0_wp |
---|
[1] | 182 | |
---|
| 183 | ! |
---|
| 184 | !-- Assign reciprocal values in order to avoid divisions later |
---|
[1353] | 185 | f2 = 0.5_wp |
---|
| 186 | f4 = 0.25_wp |
---|
| 187 | f8 = 0.125_wp |
---|
| 188 | f12 = 0.8333333333333333E-01_wp |
---|
| 189 | f24 = 0.4166666666666666E-01_wp |
---|
| 190 | f48 = 0.2083333333333333E-01_wp |
---|
| 191 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Advection in x-direction: |
---|
| 195 | |
---|
| 196 | ! |
---|
| 197 | !-- Save the quantity to be advected in a local array |
---|
| 198 | !-- add an enlarged boundary in x-direction |
---|
| 199 | DO i = nxl-1, nxr+1 |
---|
| 200 | DO j = nys, nyn |
---|
[63] | 201 | DO k = nzb, nzt+1 |
---|
[1] | 202 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 203 | ENDDO |
---|
| 204 | ENDDO |
---|
| 205 | ENDDO |
---|
| 206 | #if defined( __parallel ) |
---|
[63] | 207 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1] | 208 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
| 209 | ! |
---|
| 210 | !-- Send left boundary, receive right boundary |
---|
[1320] | 211 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 212 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
[1] | 213 | comm2d, status, ierr ) |
---|
| 214 | ! |
---|
| 215 | !-- Send right boundary, receive left boundary |
---|
[1320] | 216 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 217 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
[1] | 218 | comm2d, status, ierr ) |
---|
| 219 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 220 | #else |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- Cyclic boundary conditions |
---|
| 224 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 225 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 226 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 227 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
| 228 | #endif |
---|
| 229 | |
---|
| 230 | ! |
---|
| 231 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 232 | !-- of the temperature field at the left and right boundary of the total |
---|
| 233 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 234 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 235 | IF ( nxl == 0 ) THEN |
---|
| 236 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 237 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 238 | ENDIF |
---|
| 239 | IF ( nxr == nx ) THEN |
---|
| 240 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 241 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 242 | ENDIF |
---|
| 243 | ENDIF |
---|
| 244 | |
---|
| 245 | ! |
---|
| 246 | !-- Initialise control density |
---|
[1353] | 247 | d = 0.0_wp |
---|
[1] | 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Determine maxima of the first and second derivative in x-direction |
---|
[1353] | 251 | fmax_l = 0.0_wp |
---|
[1] | 252 | DO i = nxl, nxr |
---|
| 253 | DO j = nys, nyn |
---|
[63] | 254 | DO k = nzb+1, nzt |
---|
[1353] | 255 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
[1320] | 256 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 257 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 258 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 259 | ENDDO |
---|
| 260 | ENDDO |
---|
| 261 | ENDDO |
---|
| 262 | #if defined( __parallel ) |
---|
[622] | 263 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 264 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 265 | #else |
---|
| 266 | fmax = fmax_l |
---|
| 267 | #endif |
---|
| 268 | |
---|
[1353] | 269 | fmax = 0.04_wp * fmax |
---|
[1] | 270 | |
---|
| 271 | ! |
---|
| 272 | !-- Allocate temporary arrays |
---|
[1320] | 273 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 274 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 275 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 276 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 277 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 278 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 279 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 280 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
[1] | 281 | ) |
---|
[1353] | 282 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 283 | |
---|
| 284 | ! |
---|
| 285 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 286 | !-- not work if done locally within the loop) |
---|
| 287 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 288 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 289 | |
---|
| 290 | ! |
---|
| 291 | !-- Outer loop of all j |
---|
| 292 | DO j = nys, nyn |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- Compute polynomial coefficients |
---|
| 296 | DO i = nxl-1, nxr+1 |
---|
[63] | 297 | DO k = nzb+1, nzt |
---|
[1353] | 298 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 299 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 300 | + sk_p(k,j,i-1) ) |
---|
| 301 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 302 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 303 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 304 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 305 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
[1] | 306 | ) * f48 |
---|
[1353] | 307 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 308 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 309 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
[1] | 310 | ENDDO |
---|
| 311 | ENDDO |
---|
| 312 | |
---|
| 313 | ! |
---|
| 314 | !-- Fluxes using the Bott scheme |
---|
| 315 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 316 | DO i = nxl, nxr |
---|
[63] | 317 | DO k = nzb+1, nzt |
---|
[1346] | 318 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 319 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1353] | 320 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 321 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 322 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 323 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 324 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 325 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 326 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 327 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 328 | ip = MAX( ip, 0.0_wp ) |
---|
| 329 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 330 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 331 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 332 | |
---|
[1346] | 333 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 334 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1353] | 335 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 336 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 337 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 338 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 339 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 340 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 341 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 342 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 343 | ip = MAX( ip, 0.0_wp ) |
---|
| 344 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 345 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 346 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 347 | ENDDO |
---|
| 348 | ENDDO |
---|
| 349 | |
---|
| 350 | ! |
---|
| 351 | !-- Compute monitor function m1 |
---|
| 352 | DO i = nxl-2, nxr+2 |
---|
[63] | 353 | DO k = nzb+1, nzt |
---|
[1353] | 354 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
[1] | 355 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
[1353] | 356 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
[1] | 357 | m1(k,i) = m1z / m1n |
---|
[1353] | 358 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
[1] | 359 | ELSEIF ( m1n < m1z ) THEN |
---|
[1353] | 360 | m1(k,i) = -1.0_wp |
---|
[1] | 361 | ELSE |
---|
[1353] | 362 | m1(k,i) = 0.0_wp |
---|
[1] | 363 | ENDIF |
---|
| 364 | ENDDO |
---|
| 365 | ENDDO |
---|
| 366 | |
---|
| 367 | ! |
---|
| 368 | !-- Compute switch sw |
---|
[1353] | 369 | sw = 0.0_wp |
---|
[1] | 370 | DO i = nxl-1, nxr+1 |
---|
[63] | 371 | DO k = nzb+1, nzt |
---|
[1353] | 372 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
[1346] | 373 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
[1353] | 374 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 375 | |
---|
[1353] | 376 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
[1346] | 377 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
[1353] | 378 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 379 | |
---|
[1353] | 380 | t1 = 0.35_wp |
---|
| 381 | t2 = 0.35_wp |
---|
| 382 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 383 | |
---|
| 384 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 385 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 386 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 387 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 388 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 389 | ) sw(k,i) = 1.0_wp |
---|
[1] | 390 | ENDDO |
---|
| 391 | ENDDO |
---|
| 392 | |
---|
| 393 | ! |
---|
| 394 | !-- Fluxes using the exponential scheme |
---|
| 395 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 396 | DO i = nxl, nxr |
---|
[63] | 397 | DO k = nzb+1, nzt |
---|
[1] | 398 | |
---|
| 399 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 400 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
[1] | 401 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
[1353] | 402 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 403 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
[1346] | 404 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 405 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 406 | |
---|
| 407 | ix = INT( sterm * 1000 ) + 1 |
---|
| 408 | |
---|
[1346] | 409 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 410 | |
---|
| 411 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 412 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 413 | eex(ix) - & |
---|
| 414 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 415 | ) & |
---|
| 416 | ) |
---|
[1353] | 417 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 418 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 419 | |
---|
| 420 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
[1353] | 421 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 422 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
[1346] | 423 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 424 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 425 | |
---|
| 426 | ix = INT( sterm * 1000 ) + 1 |
---|
| 427 | |
---|
[1346] | 428 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 429 | |
---|
| 430 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 431 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 432 | eex(ix) - & |
---|
| 433 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 434 | ) & |
---|
| 435 | ) |
---|
[1353] | 436 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 437 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
[1] | 438 | ENDIF |
---|
| 439 | |
---|
| 440 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 441 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
[1] | 442 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1353] | 443 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 444 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
[1346] | 445 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 446 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 447 | |
---|
| 448 | ix = INT( sterm * 1000 ) + 1 |
---|
| 449 | |
---|
[1346] | 450 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 451 | |
---|
| 452 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 453 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 454 | eex(ix) - & |
---|
| 455 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 456 | ) & |
---|
| 457 | ) |
---|
[1346] | 458 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 459 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
[1] | 460 | ENDIF |
---|
| 461 | |
---|
| 462 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 463 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
[1] | 464 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
[1353] | 465 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 466 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
[1346] | 467 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 468 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 469 | |
---|
| 470 | ix = INT( sterm * 1000 ) + 1 |
---|
| 471 | |
---|
[1346] | 472 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 473 | |
---|
| 474 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 475 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 476 | eex(ix) - & |
---|
| 477 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 478 | ) & |
---|
| 479 | ) |
---|
[1346] | 480 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 481 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
[1] | 482 | ENDIF |
---|
| 483 | |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 487 | |
---|
| 488 | ! |
---|
| 489 | !-- Prognostic equation |
---|
| 490 | DO i = nxl, nxr |
---|
[63] | 491 | DO k = nzb+1, nzt |
---|
[1346] | 492 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 493 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 494 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 495 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
[1320] | 496 | tendcy = fplus - fminus |
---|
[1] | 497 | ! |
---|
| 498 | !-- Removed in order to optimize speed |
---|
[1346] | 499 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 500 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 501 | ! |
---|
| 502 | !-- Density correction because of possible remaining divergences |
---|
| 503 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
[1346] | 504 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 505 | ( 1.0_wp + d_new ) |
---|
[1] | 506 | d(k,j,i) = d_new |
---|
| 507 | ENDDO |
---|
| 508 | ENDDO |
---|
| 509 | |
---|
| 510 | ENDDO ! End of the advection in x-direction |
---|
| 511 | |
---|
| 512 | ! |
---|
| 513 | !-- Deallocate temporary arrays |
---|
[1320] | 514 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 515 | ippb, ippe, m1, sw ) |
---|
| 516 | |
---|
| 517 | |
---|
| 518 | ! |
---|
| 519 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
| 520 | #if defined( __parallel ) |
---|
[63] | 521 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1320] | 522 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
[1] | 523 | type_xz_2, ierr ) |
---|
| 524 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
| 525 | ! |
---|
| 526 | !-- Send front boundary, receive rear boundary |
---|
| 527 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
[1320] | 528 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 529 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
[1] | 530 | comm2d, status, ierr ) |
---|
| 531 | ! |
---|
| 532 | !-- Send rear boundary, receive front boundary |
---|
[1320] | 533 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 534 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
[1] | 535 | comm2d, status, ierr ) |
---|
| 536 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 537 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 538 | #else |
---|
| 539 | DO i = nxl, nxr |
---|
[63] | 540 | DO k = nzb+1, nzt |
---|
[1] | 541 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 542 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 543 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 544 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 545 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 546 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 547 | ENDDO |
---|
| 548 | ENDDO |
---|
| 549 | #endif |
---|
| 550 | |
---|
| 551 | ! |
---|
| 552 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
[1353] | 553 | fmax_l = 0.0_wp |
---|
[1] | 554 | DO i = nxl, nxr |
---|
| 555 | DO j = nys, nyn |
---|
[63] | 556 | DO k = nzb+1, nzt |
---|
[1353] | 557 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
[1320] | 558 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 559 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 560 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 561 | ENDDO |
---|
| 562 | ENDDO |
---|
| 563 | ENDDO |
---|
| 564 | #if defined( __parallel ) |
---|
[622] | 565 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 566 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 567 | #else |
---|
| 568 | fmax = fmax_l |
---|
| 569 | #endif |
---|
| 570 | |
---|
[1353] | 571 | fmax = 0.04_wp * fmax |
---|
[1] | 572 | |
---|
| 573 | ! |
---|
| 574 | !-- Allocate temporary arrays |
---|
[1320] | 575 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 576 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 577 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 578 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 579 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 580 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 581 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 582 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
[1] | 583 | ) |
---|
[1353] | 584 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 585 | |
---|
| 586 | ! |
---|
| 587 | !-- Outer loop of all i |
---|
| 588 | DO i = nxl, nxr |
---|
| 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Compute polynomial coefficients |
---|
| 592 | DO j = nys-1, nyn+1 |
---|
[63] | 593 | DO k = nzb+1, nzt |
---|
[1353] | 594 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 595 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 596 | + sk_p(k,j-1,i) ) |
---|
| 597 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 598 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 599 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 600 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 601 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
[1] | 602 | ) * f48 |
---|
[1353] | 603 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 604 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 605 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
[1] | 606 | ENDDO |
---|
| 607 | ENDDO |
---|
| 608 | |
---|
| 609 | ! |
---|
| 610 | !-- Fluxes using the Bott scheme |
---|
| 611 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 612 | DO j = nys, nyn |
---|
[63] | 613 | DO k = nzb+1, nzt |
---|
[1346] | 614 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 615 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1353] | 616 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 617 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 618 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 619 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 620 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 621 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 622 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 623 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 624 | ip = MAX( ip, 0.0_wp ) |
---|
| 625 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 626 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 627 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 628 | |
---|
[1346] | 629 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 630 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1353] | 631 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 632 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 633 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 634 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 635 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 636 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 637 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 638 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 639 | ip = MAX( ip, 0.0_wp ) |
---|
| 640 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 641 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 642 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 643 | ENDDO |
---|
| 644 | ENDDO |
---|
| 645 | |
---|
| 646 | ! |
---|
| 647 | !-- Compute monitor function m1 |
---|
| 648 | DO j = nys-2, nyn+2 |
---|
[63] | 649 | DO k = nzb+1, nzt |
---|
[1353] | 650 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
[1] | 651 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
[1353] | 652 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
[1] | 653 | m1(k,j) = m1z / m1n |
---|
[1353] | 654 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
[1] | 655 | ELSEIF ( m1n < m1z ) THEN |
---|
[1353] | 656 | m1(k,j) = -1.0_wp |
---|
[1] | 657 | ELSE |
---|
[1353] | 658 | m1(k,j) = 0.0_wp |
---|
[1] | 659 | ENDIF |
---|
| 660 | ENDDO |
---|
| 661 | ENDDO |
---|
| 662 | |
---|
| 663 | ! |
---|
| 664 | !-- Compute switch sw |
---|
[1353] | 665 | sw = 0.0_wp |
---|
[1] | 666 | DO j = nys-1, nyn+1 |
---|
[63] | 667 | DO k = nzb+1, nzt |
---|
[1353] | 668 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1346] | 669 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
[1353] | 670 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 671 | |
---|
[1353] | 672 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1346] | 673 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
[1353] | 674 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 675 | |
---|
[1353] | 676 | t1 = 0.35_wp |
---|
| 677 | t2 = 0.35_wp |
---|
| 678 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 679 | |
---|
| 680 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 681 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 682 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 683 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 684 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 685 | ) sw(k,j) = 1.0_wp |
---|
[1] | 686 | ENDDO |
---|
| 687 | ENDDO |
---|
| 688 | |
---|
| 689 | ! |
---|
| 690 | !-- Fluxes using exponential scheme |
---|
| 691 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 692 | DO j = nys, nyn |
---|
[63] | 693 | DO k = nzb+1, nzt |
---|
[1] | 694 | |
---|
| 695 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 696 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
[1] | 697 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
[1353] | 698 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 699 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
[1346] | 700 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 701 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 702 | |
---|
| 703 | ix = INT( sterm * 1000 ) + 1 |
---|
| 704 | |
---|
[1346] | 705 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 706 | |
---|
| 707 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 708 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 709 | eex(ix) - & |
---|
| 710 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 711 | ) & |
---|
| 712 | ) |
---|
[1346] | 713 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 714 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 715 | |
---|
| 716 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
[1353] | 717 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 718 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
[1346] | 719 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 720 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 721 | |
---|
| 722 | ix = INT( sterm * 1000 ) + 1 |
---|
| 723 | |
---|
[1346] | 724 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 725 | |
---|
| 726 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 727 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 728 | eex(ix) - & |
---|
| 729 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 730 | ) & |
---|
| 731 | ) |
---|
[1346] | 732 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 733 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
[1] | 734 | ENDIF |
---|
| 735 | |
---|
| 736 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 737 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
[1] | 738 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1353] | 739 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 740 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
[1346] | 741 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 742 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 743 | |
---|
| 744 | ix = INT( sterm * 1000 ) + 1 |
---|
| 745 | |
---|
[1346] | 746 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 747 | |
---|
| 748 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 749 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 750 | eex(ix) - & |
---|
| 751 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 752 | ) & |
---|
| 753 | ) |
---|
[1346] | 754 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 755 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
[1] | 756 | ENDIF |
---|
| 757 | |
---|
| 758 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 759 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
[1] | 760 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
[1353] | 761 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 762 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
[1346] | 763 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 764 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 765 | |
---|
| 766 | ix = INT( sterm * 1000 ) + 1 |
---|
| 767 | |
---|
[1346] | 768 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 769 | |
---|
| 770 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 771 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 772 | eex(ix) - & |
---|
| 773 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 774 | ) & |
---|
| 775 | ) |
---|
[1346] | 776 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 777 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
[1] | 778 | ENDIF |
---|
| 779 | |
---|
| 780 | ENDDO |
---|
| 781 | ENDDO |
---|
| 782 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 783 | |
---|
| 784 | ! |
---|
| 785 | !-- Prognostic equation |
---|
| 786 | DO j = nys, nyn |
---|
[63] | 787 | DO k = nzb+1, nzt |
---|
[1353] | 788 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 789 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 790 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 791 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1320] | 792 | tendcy = fplus - fminus |
---|
[1] | 793 | ! |
---|
| 794 | !-- Removed in order to optimise speed |
---|
[1346] | 795 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 796 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 797 | ! |
---|
| 798 | !-- Density correction because of possible remaining divergences |
---|
| 799 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
[1353] | 800 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 801 | ( 1.0_wp + d_new ) |
---|
[1] | 802 | d(k,j,i) = d_new |
---|
| 803 | ENDDO |
---|
| 804 | ENDDO |
---|
| 805 | |
---|
| 806 | ENDDO ! End of the advection in y-direction |
---|
| 807 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 808 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
| 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Deallocate temporary arrays |
---|
[1320] | 812 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 813 | ippb, ippe, m1, sw ) |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 818 | !-- UP flow_statistics) |
---|
[1353] | 819 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 820 | |
---|
| 821 | ! |
---|
| 822 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 823 | IF ( sk_char == 'pt' ) THEN |
---|
| 824 | |
---|
| 825 | ! |
---|
| 826 | !-- Temperature boundary condition at the bottom boundary |
---|
| 827 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 828 | ! |
---|
| 829 | !-- Dirichlet (fixed surface temperature) |
---|
| 830 | DO i = nxl, nxr |
---|
| 831 | DO j = nys, nyn |
---|
| 832 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 833 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 834 | ENDDO |
---|
| 835 | ENDDO |
---|
| 836 | |
---|
| 837 | ELSE |
---|
| 838 | ! |
---|
| 839 | !-- Neumann (i.e. here zero gradient) |
---|
| 840 | DO i = nxl, nxr |
---|
| 841 | DO j = nys, nyn |
---|
[216] | 842 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 843 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 844 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 845 | ENDDO |
---|
| 846 | ENDDO |
---|
| 847 | |
---|
| 848 | ENDIF |
---|
| 849 | |
---|
| 850 | ! |
---|
| 851 | !-- Temperature boundary condition at the top boundary |
---|
[63] | 852 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
[1] | 853 | ! |
---|
[63] | 854 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 855 | DO i = nxl, nxr |
---|
| 856 | DO j = nys, nyn |
---|
[63] | 857 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 858 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 859 | ENDDO |
---|
| 860 | ENDDO |
---|
| 861 | |
---|
[63] | 862 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1] | 863 | ! |
---|
[63] | 864 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 865 | DO i = nxl, nxr |
---|
| 866 | DO j = nys, nyn |
---|
| 867 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[63] | 868 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 869 | ENDDO |
---|
| 870 | ENDDO |
---|
| 871 | |
---|
| 872 | ENDIF |
---|
| 873 | |
---|
[97] | 874 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
[1] | 875 | |
---|
| 876 | ! |
---|
[97] | 877 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 878 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
| 879 | DO i = nxl, nxr |
---|
| 880 | DO j = nys, nyn |
---|
[216] | 881 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 882 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 883 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 884 | ENDDO |
---|
[97] | 885 | ENDDO |
---|
[1] | 886 | |
---|
| 887 | ! |
---|
[97] | 888 | !-- Salinity boundary condition at the top boundary. |
---|
| 889 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 890 | DO i = nxl, nxr |
---|
| 891 | DO j = nys, nyn |
---|
| 892 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 893 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 894 | ENDDO |
---|
[97] | 895 | ENDDO |
---|
[1] | 896 | |
---|
[97] | 897 | ELSEIF ( sk_char == 'q' ) THEN |
---|
[1] | 898 | |
---|
| 899 | ! |
---|
[97] | 900 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 901 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 902 | DO i = nxl, nxr |
---|
| 903 | DO j = nys, nyn |
---|
[216] | 904 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 905 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 906 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 907 | ENDDO |
---|
| 908 | ENDDO |
---|
| 909 | |
---|
| 910 | ! |
---|
[63] | 911 | !-- Specific humidity boundary condition at the top boundary |
---|
[1] | 912 | IF ( ibc_q_t == 0 ) THEN |
---|
| 913 | ! |
---|
| 914 | !-- Dirichlet |
---|
| 915 | DO i = nxl, nxr |
---|
| 916 | DO j = nys, nyn |
---|
[63] | 917 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 918 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 919 | ENDDO |
---|
| 920 | ENDDO |
---|
| 921 | |
---|
| 922 | ELSE |
---|
| 923 | ! |
---|
[63] | 924 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 925 | DO i = nxl, nxr |
---|
| 926 | DO j = nys, nyn |
---|
| 927 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[63] | 928 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 929 | ENDDO |
---|
| 930 | ENDDO |
---|
| 931 | |
---|
| 932 | ENDIF |
---|
| 933 | |
---|
[1361] | 934 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 935 | |
---|
| 936 | ! |
---|
| 937 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 938 | !-- Dirichlet (fixed surface rain water content). |
---|
| 939 | DO i = nxl, nxr |
---|
| 940 | DO j = nys, nyn |
---|
| 941 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 942 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 943 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 944 | ENDDO |
---|
| 945 | ENDDO |
---|
| 946 | |
---|
| 947 | ! |
---|
| 948 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
| 949 | DO i = nxl, nxr |
---|
| 950 | DO j = nys, nyn |
---|
| 951 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 952 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 953 | ENDDO |
---|
| 954 | ENDDO |
---|
| 955 | |
---|
| 956 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 957 | |
---|
| 958 | ! |
---|
| 959 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 960 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
| 961 | DO i = nxl, nxr |
---|
| 962 | DO j = nys, nyn |
---|
| 963 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 964 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 965 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 966 | ENDDO |
---|
| 967 | ENDDO |
---|
| 968 | |
---|
| 969 | ! |
---|
| 970 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 971 | DO i = nxl, nxr |
---|
| 972 | DO j = nys, nyn |
---|
| 973 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 974 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 975 | ENDDO |
---|
| 976 | ENDDO |
---|
| 977 | |
---|
[1] | 978 | ELSEIF ( sk_char == 'e' ) THEN |
---|
| 979 | |
---|
| 980 | ! |
---|
| 981 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
[97] | 982 | DO i = nxl, nxr |
---|
| 983 | DO j = nys, nyn |
---|
[216] | 984 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 985 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 986 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 987 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 988 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 989 | ENDDO |
---|
| 990 | ENDDO |
---|
[1] | 991 | |
---|
| 992 | ELSE |
---|
| 993 | |
---|
[1320] | 994 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
[1] | 995 | 'tion for variable "', sk_char, '"' |
---|
[247] | 996 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 997 | |
---|
[1] | 998 | ENDIF |
---|
| 999 | |
---|
| 1000 | ! |
---|
| 1001 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
[1353] | 1002 | fmax_l = 0.0_wp |
---|
[1] | 1003 | DO i = nxl, nxr |
---|
| 1004 | DO j = nys, nyn |
---|
[63] | 1005 | DO k = nzb, nzt+1 |
---|
[1353] | 1006 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
[1320] | 1007 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1008 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1009 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 1010 | ENDDO |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | #if defined( __parallel ) |
---|
[622] | 1014 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1015 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 1016 | #else |
---|
| 1017 | fmax = fmax_l |
---|
| 1018 | #endif |
---|
| 1019 | |
---|
[1353] | 1020 | fmax = 0.04_wp * fmax |
---|
[1] | 1021 | |
---|
| 1022 | ! |
---|
| 1023 | !-- Allocate temporary arrays |
---|
[1320] | 1024 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1025 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1026 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1027 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1028 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1029 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1030 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1031 | sw(nzb:nzt+1,nys:nyn) & |
---|
[1] | 1032 | ) |
---|
[1353] | 1033 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Outer loop of all i |
---|
| 1037 | DO i = nxl, nxr |
---|
| 1038 | |
---|
| 1039 | ! |
---|
| 1040 | !-- Compute polynomial coefficients |
---|
| 1041 | DO j = nys, nyn |
---|
[63] | 1042 | DO k = nzb, nzt+1 |
---|
[1353] | 1043 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1044 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1045 | + sk_p(k-1,j,i) ) |
---|
| 1046 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1047 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1048 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1049 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1050 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
[1] | 1051 | ) * f48 |
---|
[1353] | 1052 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1053 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1054 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
[1] | 1055 | ENDDO |
---|
| 1056 | ENDDO |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- Fluxes using the Bott scheme |
---|
| 1060 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1061 | DO j = nys, nyn |
---|
[63] | 1062 | DO k = nzb+1, nzt |
---|
[1346] | 1063 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1064 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1353] | 1065 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1066 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1067 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1068 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1069 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1070 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1071 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1072 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 1073 | ip = MAX( ip, 0.0_wp ) |
---|
| 1074 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 1075 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1076 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1077 | |
---|
[1346] | 1078 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1079 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1353] | 1080 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1081 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1082 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1083 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1084 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1085 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1086 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1087 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 1088 | ip = MAX( ip, 0.0_wp ) |
---|
| 1089 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 1090 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1091 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1092 | ENDDO |
---|
| 1093 | ENDDO |
---|
| 1094 | |
---|
| 1095 | ! |
---|
| 1096 | !-- Compute monitor function m1 |
---|
| 1097 | DO j = nys, nyn |
---|
[63] | 1098 | DO k = nzb-1, nzt+2 |
---|
[1353] | 1099 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
[1] | 1100 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
[1353] | 1101 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
[1] | 1102 | m1(k,j) = m1z / m1n |
---|
[1353] | 1103 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
[1] | 1104 | ELSEIF ( m1n < m1z ) THEN |
---|
[1353] | 1105 | m1(k,j) = -1.0_wp |
---|
[1] | 1106 | ELSE |
---|
[1353] | 1107 | m1(k,j) = 0.0_wp |
---|
[1] | 1108 | ENDIF |
---|
| 1109 | ENDDO |
---|
| 1110 | ENDDO |
---|
| 1111 | |
---|
| 1112 | ! |
---|
| 1113 | !-- Compute switch sw |
---|
[1353] | 1114 | sw = 0.0_wp |
---|
[1] | 1115 | DO j = nys, nyn |
---|
[63] | 1116 | DO k = nzb, nzt+1 |
---|
[1353] | 1117 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1346] | 1118 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
[1353] | 1119 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1120 | |
---|
[1353] | 1121 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1346] | 1122 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
[1353] | 1123 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1124 | |
---|
[1353] | 1125 | t1 = 0.35_wp |
---|
| 1126 | t2 = 0.35_wp |
---|
| 1127 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1128 | |
---|
| 1129 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1130 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1131 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1132 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1133 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1134 | ) sw(k,j) = 1.0_wp |
---|
[1] | 1135 | ENDDO |
---|
| 1136 | ENDDO |
---|
| 1137 | |
---|
| 1138 | ! |
---|
| 1139 | !-- Fluxes using exponential scheme |
---|
| 1140 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1141 | DO j = nys, nyn |
---|
[63] | 1142 | DO k = nzb+1, nzt |
---|
[1] | 1143 | |
---|
| 1144 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1145 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
[1] | 1146 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
[1353] | 1147 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1148 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
[1346] | 1149 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1150 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1151 | |
---|
| 1152 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1153 | |
---|
[1346] | 1154 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1155 | |
---|
| 1156 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1157 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1158 | eex(ix) - & |
---|
| 1159 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 1160 | ) & |
---|
| 1161 | ) |
---|
[1353] | 1162 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1163 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1164 | |
---|
| 1165 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
[1353] | 1166 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1167 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
[1346] | 1168 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1169 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1170 | |
---|
| 1171 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1172 | |
---|
[1346] | 1173 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1174 | |
---|
| 1175 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1176 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1177 | eex(ix) - & |
---|
| 1178 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 1179 | ) & |
---|
| 1180 | ) |
---|
[1346] | 1181 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1182 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
[1] | 1183 | ENDIF |
---|
| 1184 | |
---|
| 1185 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1186 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
[1] | 1187 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1353] | 1188 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1189 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
[1346] | 1190 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1191 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1192 | |
---|
| 1193 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1194 | |
---|
[1346] | 1195 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1196 | |
---|
| 1197 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1198 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1199 | eex(ix) - & |
---|
| 1200 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 1201 | ) & |
---|
| 1202 | ) |
---|
[1346] | 1203 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1204 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
[1] | 1205 | ENDIF |
---|
| 1206 | |
---|
| 1207 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1208 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
[1] | 1209 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
[1353] | 1210 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1211 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
[1346] | 1212 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1213 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1214 | |
---|
| 1215 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1216 | |
---|
[1346] | 1217 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1218 | |
---|
| 1219 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1220 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1221 | eex(ix) - & |
---|
| 1222 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 1223 | ) & |
---|
| 1224 | ) |
---|
[1346] | 1225 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1226 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
[1] | 1227 | ENDIF |
---|
| 1228 | |
---|
| 1229 | ENDDO |
---|
| 1230 | ENDDO |
---|
| 1231 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 1232 | |
---|
| 1233 | ! |
---|
| 1234 | !-- Prognostic equation |
---|
| 1235 | DO j = nys, nyn |
---|
[63] | 1236 | DO k = nzb+1, nzt |
---|
[1353] | 1237 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1238 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1239 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1240 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1320] | 1241 | tendcy = fplus - fminus |
---|
[1] | 1242 | ! |
---|
| 1243 | !-- Removed in order to optimise speed |
---|
[1346] | 1244 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1245 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1246 | ! |
---|
| 1247 | !-- Density correction because of possible remaining divergences |
---|
| 1248 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
[1353] | 1249 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1250 | ( 1.0_wp + d_new ) |
---|
[1] | 1251 | ! |
---|
| 1252 | !-- Store heat flux for subsequent statistics output. |
---|
| 1253 | !-- array m1 is here used as temporary storage |
---|
| 1254 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1255 | ENDDO |
---|
| 1256 | ENDDO |
---|
| 1257 | |
---|
| 1258 | ! |
---|
| 1259 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1260 | IF ( sk_char == 'pt' ) THEN |
---|
| 1261 | DO sr = 0, statistic_regions |
---|
| 1262 | DO j = nys, nyn |
---|
[63] | 1263 | DO k = nzb+1, nzt |
---|
[1320] | 1264 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
[1] | 1265 | m1(k,j) * rmask(j,i,sr) |
---|
| 1266 | ENDDO |
---|
| 1267 | ENDDO |
---|
| 1268 | ENDDO |
---|
| 1269 | ENDIF |
---|
| 1270 | |
---|
| 1271 | ENDDO ! End of the advection in z-direction |
---|
| 1272 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1273 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
| 1274 | |
---|
| 1275 | ! |
---|
| 1276 | !-- Deallocate temporary arrays |
---|
[1320] | 1277 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 1278 | ippb, ippe, m1, sw ) |
---|
| 1279 | |
---|
| 1280 | ! |
---|
| 1281 | !-- Store results as tendency and deallocate local array |
---|
| 1282 | DO i = nxl, nxr |
---|
| 1283 | DO j = nys, nyn |
---|
[63] | 1284 | DO k = nzb+1, nzt |
---|
[1] | 1285 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1286 | ENDDO |
---|
| 1287 | ENDDO |
---|
| 1288 | ENDDO |
---|
| 1289 | |
---|
| 1290 | DEALLOCATE( sk_p ) |
---|
| 1291 | |
---|
| 1292 | END SUBROUTINE advec_s_bc |
---|