[1] | 1 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[247] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1354] | 22 | ! |
---|
[1362] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: advec_s_bc.f90 1362 2014-04-16 15:19:12Z raasch $ |
---|
| 27 | ! |
---|
[1362] | 28 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 29 | ! nr and qr added |
---|
| 30 | ! |
---|
[1354] | 31 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 32 | ! REAL constants provided with KIND-attribute |
---|
| 33 | ! |
---|
[1347] | 34 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 35 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 36 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 37 | ! |
---|
[1321] | 38 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 39 | ! ONLY-attribute added to USE-statements, |
---|
| 40 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 41 | ! kinds are defined in new module kinds, |
---|
| 42 | ! revision history before 2012 removed, |
---|
| 43 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 44 | ! all variable declaration statements |
---|
[1] | 45 | ! |
---|
[1319] | 46 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 47 | ! module interfaces removed |
---|
| 48 | ! |
---|
[1093] | 49 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 50 | ! unused variables removed |
---|
| 51 | ! |
---|
[1037] | 52 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 53 | ! code put under GPL (PALM 3.9) |
---|
| 54 | ! |
---|
[1011] | 55 | ! 1010 2012-09-20 07:59:54Z raasch |
---|
| 56 | ! cpp switch __nopointer added for pointer free version |
---|
| 57 | ! |
---|
[1] | 58 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 59 | ! Initial revision |
---|
| 60 | ! |
---|
| 61 | ! |
---|
| 62 | ! Description: |
---|
| 63 | ! ------------ |
---|
| 64 | ! Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 65 | ! Computation in individual steps for each of the three dimensions. |
---|
| 66 | ! Limiting assumptions: |
---|
| 67 | ! So far the scheme has been assuming equidistant grid spacing. As this is not |
---|
| 68 | ! the case in the stretched portion of the z-direction, there dzw(k) is used as |
---|
| 69 | ! a substitute for a constant grid length. This certainly causes incorrect |
---|
| 70 | ! results; however, it is hoped that they are not too apparent for weakly |
---|
| 71 | ! stretched grids. |
---|
| 72 | ! NOTE: This is a provisional, non-optimised version! |
---|
[63] | 73 | !------------------------------------------------------------------------------! |
---|
[1] | 74 | |
---|
[1320] | 75 | USE advection, & |
---|
| 76 | ONLY: aex, bex, dex, eex |
---|
| 77 | |
---|
| 78 | USE arrays_3d, & |
---|
| 79 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
| 80 | |
---|
| 81 | USE control_parameters, & |
---|
| 82 | ONLY: dt_3d, bc_pt_t_val, bc_q_t_val, ibc_pt_b, ibc_pt_t, ibc_q_t, & |
---|
| 83 | message_string, pt_slope_offset, sloping_surface, u_gtrans, & |
---|
| 84 | v_gtrans |
---|
| 85 | |
---|
| 86 | USE cpulog, & |
---|
| 87 | ONLY: cpu_log, log_point_s |
---|
| 88 | |
---|
| 89 | USE grid_variables, & |
---|
| 90 | ONLY: ddx, ddy |
---|
| 91 | |
---|
| 92 | USE indices, & |
---|
| 93 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
| 94 | |
---|
| 95 | USE kinds |
---|
| 96 | |
---|
[1] | 97 | USE pegrid |
---|
| 98 | |
---|
[1320] | 99 | USE statistics, & |
---|
| 100 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
| 101 | |
---|
| 102 | |
---|
[1] | 103 | IMPLICIT NONE |
---|
| 104 | |
---|
[1320] | 105 | CHARACTER (LEN=*) :: sk_char !: |
---|
[1] | 106 | |
---|
[1320] | 107 | INTEGER(iwp) :: i !: |
---|
| 108 | INTEGER(iwp) :: ix !: |
---|
| 109 | INTEGER(iwp) :: j !: |
---|
| 110 | INTEGER(iwp) :: k !: |
---|
| 111 | INTEGER(iwp) :: ngp !: |
---|
| 112 | INTEGER(iwp) :: sr !: |
---|
| 113 | INTEGER(iwp) :: type_xz_2 !: |
---|
[1] | 114 | |
---|
[1320] | 115 | REAL(wp) :: cim !: |
---|
| 116 | REAL(wp) :: cimf !: |
---|
| 117 | REAL(wp) :: cip !: |
---|
| 118 | REAL(wp) :: cipf !: |
---|
| 119 | REAL(wp) :: d_new !: |
---|
| 120 | REAL(wp) :: denomi !: denominator |
---|
| 121 | REAL(wp) :: fminus !: |
---|
| 122 | REAL(wp) :: fplus !: |
---|
| 123 | REAL(wp) :: f2 !: |
---|
| 124 | REAL(wp) :: f4 !: |
---|
| 125 | REAL(wp) :: f8 !: |
---|
| 126 | REAL(wp) :: f12 !: |
---|
| 127 | REAL(wp) :: f24 !: |
---|
| 128 | REAL(wp) :: f48 !: |
---|
| 129 | REAL(wp) :: f1920 !: |
---|
| 130 | REAL(wp) :: im !: |
---|
| 131 | REAL(wp) :: ip !: |
---|
| 132 | REAL(wp) :: m2 !: |
---|
| 133 | REAL(wp) :: m3 !: |
---|
| 134 | REAL(wp) :: numera !: numerator |
---|
| 135 | REAL(wp) :: snenn !: |
---|
| 136 | REAL(wp) :: sterm !: |
---|
| 137 | REAL(wp) :: tendcy !: |
---|
| 138 | REAL(wp) :: t1 !: |
---|
| 139 | REAL(wp) :: t2 !: |
---|
| 140 | |
---|
| 141 | REAL(wp) :: fmax(2) !: |
---|
| 142 | REAL(wp) :: fmax_l(2) !: |
---|
| 143 | |
---|
[1010] | 144 | #if defined( __nopointer ) |
---|
[1320] | 145 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: sk !: |
---|
[1010] | 146 | #else |
---|
[1320] | 147 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk |
---|
[1010] | 148 | #endif |
---|
[1] | 149 | |
---|
[1320] | 150 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !: |
---|
| 151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !: |
---|
| 152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !: |
---|
| 153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !: |
---|
| 154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !: |
---|
| 155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !: |
---|
| 156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !: |
---|
| 157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !: |
---|
| 158 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !: |
---|
| 159 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !: |
---|
| 160 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !: |
---|
| 161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !: |
---|
| 162 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !: |
---|
| 163 | |
---|
| 164 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !: |
---|
[1] | 165 | |
---|
[63] | 166 | #if defined( __nec ) |
---|
[1320] | 167 | REAL(sp) :: m1n, m1z !Wichtig: Division !: |
---|
| 168 | REAL(sp), DIMENSION(:,:), ALLOCATABLE :: m1, sw !: |
---|
[1] | 169 | #else |
---|
[1320] | 170 | REAL(wp) :: m1n, m1z |
---|
| 171 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1, sw |
---|
[1] | 172 | #endif |
---|
| 173 | |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
[63] | 177 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
[1353] | 178 | sk_p = 0.0_wp |
---|
[1] | 179 | |
---|
| 180 | ! |
---|
| 181 | !-- Assign reciprocal values in order to avoid divisions later |
---|
[1353] | 182 | f2 = 0.5_wp |
---|
| 183 | f4 = 0.25_wp |
---|
| 184 | f8 = 0.125_wp |
---|
| 185 | f12 = 0.8333333333333333E-01_wp |
---|
| 186 | f24 = 0.4166666666666666E-01_wp |
---|
| 187 | f48 = 0.2083333333333333E-01_wp |
---|
| 188 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 189 | |
---|
| 190 | ! |
---|
| 191 | !-- Advection in x-direction: |
---|
| 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Save the quantity to be advected in a local array |
---|
| 195 | !-- add an enlarged boundary in x-direction |
---|
| 196 | DO i = nxl-1, nxr+1 |
---|
| 197 | DO j = nys, nyn |
---|
[63] | 198 | DO k = nzb, nzt+1 |
---|
[1] | 199 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
| 203 | #if defined( __parallel ) |
---|
[63] | 204 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1] | 205 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
| 206 | ! |
---|
| 207 | !-- Send left boundary, receive right boundary |
---|
[1320] | 208 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 209 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
[1] | 210 | comm2d, status, ierr ) |
---|
| 211 | ! |
---|
| 212 | !-- Send right boundary, receive left boundary |
---|
[1320] | 213 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 214 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
[1] | 215 | comm2d, status, ierr ) |
---|
| 216 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 217 | #else |
---|
| 218 | |
---|
| 219 | ! |
---|
| 220 | !-- Cyclic boundary conditions |
---|
| 221 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 222 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 223 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 224 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
| 225 | #endif |
---|
| 226 | |
---|
| 227 | ! |
---|
| 228 | !-- In case of a sloping surface, the additional gridpoints in x-direction |
---|
| 229 | !-- of the temperature field at the left and right boundary of the total |
---|
| 230 | !-- domain must be adjusted by the temperature difference between this distance |
---|
| 231 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 232 | IF ( nxl == 0 ) THEN |
---|
| 233 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 234 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 235 | ENDIF |
---|
| 236 | IF ( nxr == nx ) THEN |
---|
| 237 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 238 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 239 | ENDIF |
---|
| 240 | ENDIF |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | !-- Initialise control density |
---|
[1353] | 244 | d = 0.0_wp |
---|
[1] | 245 | |
---|
| 246 | ! |
---|
| 247 | !-- Determine maxima of the first and second derivative in x-direction |
---|
[1353] | 248 | fmax_l = 0.0_wp |
---|
[1] | 249 | DO i = nxl, nxr |
---|
| 250 | DO j = nys, nyn |
---|
[63] | 251 | DO k = nzb+1, nzt |
---|
[1353] | 252 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
[1320] | 253 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 254 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 255 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 256 | ENDDO |
---|
| 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | #if defined( __parallel ) |
---|
[622] | 260 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 261 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 262 | #else |
---|
| 263 | fmax = fmax_l |
---|
| 264 | #endif |
---|
| 265 | |
---|
[1353] | 266 | fmax = 0.04_wp * fmax |
---|
[1] | 267 | |
---|
| 268 | ! |
---|
| 269 | !-- Allocate temporary arrays |
---|
[1320] | 270 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 271 | a2(nzb+1:nzt,nxl-1:nxr+1), a12(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 272 | a22(nzb+1:nzt,nxl-1:nxr+1), immb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 273 | imme(nzb+1:nzt,nxl-1:nxr+1), impb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 274 | impe(nzb+1:nzt,nxl-1:nxr+1), ipmb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 275 | ipme(nzb+1:nzt,nxl-1:nxr+1), ippb(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 276 | ippe(nzb+1:nzt,nxl-1:nxr+1), m1(nzb+1:nzt,nxl-2:nxr+2), & |
---|
| 277 | sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
[1] | 278 | ) |
---|
[1353] | 279 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 280 | |
---|
| 281 | ! |
---|
| 282 | !-- Initialise point of time measuring of the exponential portion (this would |
---|
| 283 | !-- not work if done locally within the loop) |
---|
| 284 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 285 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 286 | |
---|
| 287 | ! |
---|
| 288 | !-- Outer loop of all j |
---|
| 289 | DO j = nys, nyn |
---|
| 290 | |
---|
| 291 | ! |
---|
| 292 | !-- Compute polynomial coefficients |
---|
| 293 | DO i = nxl-1, nxr+1 |
---|
[63] | 294 | DO k = nzb+1, nzt |
---|
[1353] | 295 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 296 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) & |
---|
| 297 | + sk_p(k,j,i-1) ) |
---|
| 298 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 299 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 300 | + 9.0_wp * sk_p(k,j,i-2) ) * f1920 |
---|
| 301 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 302 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
[1] | 303 | ) * f48 |
---|
[1353] | 304 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 305 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 306 | - 3.0_wp * sk_p(k,j,i-2) ) * f48 |
---|
[1] | 307 | ENDDO |
---|
| 308 | ENDDO |
---|
| 309 | |
---|
| 310 | ! |
---|
| 311 | !-- Fluxes using the Bott scheme |
---|
| 312 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 313 | DO i = nxl, nxr |
---|
[63] | 314 | DO k = nzb+1, nzt |
---|
[1346] | 315 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 316 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1353] | 317 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 318 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 319 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 320 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 321 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 322 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 323 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 324 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 325 | ip = MAX( ip, 0.0_wp ) |
---|
| 326 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 327 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 328 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 329 | |
---|
[1346] | 330 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 331 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1353] | 332 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 333 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 334 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 335 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 336 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 337 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 338 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 339 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 340 | ip = MAX( ip, 0.0_wp ) |
---|
| 341 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 342 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 343 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 344 | ENDDO |
---|
| 345 | ENDDO |
---|
| 346 | |
---|
| 347 | ! |
---|
| 348 | !-- Compute monitor function m1 |
---|
| 349 | DO i = nxl-2, nxr+2 |
---|
[63] | 350 | DO k = nzb+1, nzt |
---|
[1353] | 351 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
[1] | 352 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
[1353] | 353 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
[1] | 354 | m1(k,i) = m1z / m1n |
---|
[1353] | 355 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
[1] | 356 | ELSEIF ( m1n < m1z ) THEN |
---|
[1353] | 357 | m1(k,i) = -1.0_wp |
---|
[1] | 358 | ELSE |
---|
[1353] | 359 | m1(k,i) = 0.0_wp |
---|
[1] | 360 | ENDIF |
---|
| 361 | ENDDO |
---|
| 362 | ENDDO |
---|
| 363 | |
---|
| 364 | ! |
---|
| 365 | !-- Compute switch sw |
---|
[1353] | 366 | sw = 0.0_wp |
---|
[1] | 367 | DO i = nxl-1, nxr+1 |
---|
[63] | 368 | DO k = nzb+1, nzt |
---|
[1353] | 369 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / & |
---|
[1346] | 370 | MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
[1353] | 371 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 372 | |
---|
[1353] | 373 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / & |
---|
[1346] | 374 | MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
[1353] | 375 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 376 | |
---|
[1353] | 377 | t1 = 0.35_wp |
---|
| 378 | t2 = 0.35_wp |
---|
| 379 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 380 | |
---|
| 381 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 382 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp & |
---|
| 383 | .OR. m1(k,i+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 384 | ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 385 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
| 386 | ) sw(k,i) = 1.0_wp |
---|
[1] | 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | |
---|
| 390 | ! |
---|
| 391 | !-- Fluxes using the exponential scheme |
---|
| 392 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 393 | DO i = nxl, nxr |
---|
[63] | 394 | DO k = nzb+1, nzt |
---|
[1] | 395 | |
---|
| 396 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 397 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
[1] | 398 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
[1353] | 399 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 400 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
[1346] | 401 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 402 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 403 | |
---|
| 404 | ix = INT( sterm * 1000 ) + 1 |
---|
| 405 | |
---|
[1346] | 406 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 407 | |
---|
| 408 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 409 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 410 | eex(ix) - & |
---|
| 411 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 412 | ) & |
---|
| 413 | ) |
---|
[1353] | 414 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 415 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 416 | |
---|
| 417 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
[1353] | 418 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 419 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
[1346] | 420 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 421 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 422 | |
---|
| 423 | ix = INT( sterm * 1000 ) + 1 |
---|
| 424 | |
---|
[1346] | 425 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 426 | |
---|
| 427 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 428 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 429 | eex(ix) - & |
---|
| 430 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 431 | ) & |
---|
| 432 | ) |
---|
[1353] | 433 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 434 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
[1] | 435 | ENDIF |
---|
| 436 | |
---|
| 437 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 438 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
[1] | 439 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1353] | 440 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 441 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
[1346] | 442 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 443 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 444 | |
---|
| 445 | ix = INT( sterm * 1000 ) + 1 |
---|
| 446 | |
---|
[1346] | 447 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 448 | |
---|
| 449 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 450 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 451 | eex(ix) - & |
---|
| 452 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 453 | ) & |
---|
| 454 | ) |
---|
[1346] | 455 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 456 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
[1] | 457 | ENDIF |
---|
| 458 | |
---|
| 459 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 460 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
[1] | 461 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
[1353] | 462 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 463 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
[1346] | 464 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 465 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 466 | |
---|
| 467 | ix = INT( sterm * 1000 ) + 1 |
---|
| 468 | |
---|
[1346] | 469 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 470 | |
---|
| 471 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 472 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 473 | eex(ix) - & |
---|
| 474 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 475 | ) & |
---|
| 476 | ) |
---|
[1346] | 477 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 478 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
[1] | 479 | ENDIF |
---|
| 480 | |
---|
| 481 | ENDDO |
---|
| 482 | ENDDO |
---|
| 483 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 484 | |
---|
| 485 | ! |
---|
| 486 | !-- Prognostic equation |
---|
| 487 | DO i = nxl, nxr |
---|
[63] | 488 | DO k = nzb+1, nzt |
---|
[1346] | 489 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 490 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 491 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 492 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
[1320] | 493 | tendcy = fplus - fminus |
---|
[1] | 494 | ! |
---|
| 495 | !-- Removed in order to optimize speed |
---|
[1346] | 496 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 497 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 498 | ! |
---|
| 499 | !-- Density correction because of possible remaining divergences |
---|
| 500 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
[1346] | 501 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 502 | ( 1.0_wp + d_new ) |
---|
[1] | 503 | d(k,j,i) = d_new |
---|
| 504 | ENDDO |
---|
| 505 | ENDDO |
---|
| 506 | |
---|
| 507 | ENDDO ! End of the advection in x-direction |
---|
| 508 | |
---|
| 509 | ! |
---|
| 510 | !-- Deallocate temporary arrays |
---|
[1320] | 511 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 512 | ippb, ippe, m1, sw ) |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | ! |
---|
| 516 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
| 517 | #if defined( __parallel ) |
---|
[63] | 518 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[1320] | 519 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
[1] | 520 | type_xz_2, ierr ) |
---|
| 521 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
| 522 | ! |
---|
| 523 | !-- Send front boundary, receive rear boundary |
---|
| 524 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
[1320] | 525 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 526 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
[1] | 527 | comm2d, status, ierr ) |
---|
| 528 | ! |
---|
| 529 | !-- Send rear boundary, receive front boundary |
---|
[1320] | 530 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 531 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
[1] | 532 | comm2d, status, ierr ) |
---|
| 533 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 534 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
| 535 | #else |
---|
| 536 | DO i = nxl, nxr |
---|
[63] | 537 | DO k = nzb+1, nzt |
---|
[1] | 538 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 539 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 540 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 541 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 542 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 543 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 544 | ENDDO |
---|
| 545 | ENDDO |
---|
| 546 | #endif |
---|
| 547 | |
---|
| 548 | ! |
---|
| 549 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
[1353] | 550 | fmax_l = 0.0_wp |
---|
[1] | 551 | DO i = nxl, nxr |
---|
| 552 | DO j = nys, nyn |
---|
[63] | 553 | DO k = nzb+1, nzt |
---|
[1353] | 554 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
[1320] | 555 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 556 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 557 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 558 | ENDDO |
---|
| 559 | ENDDO |
---|
| 560 | ENDDO |
---|
| 561 | #if defined( __parallel ) |
---|
[622] | 562 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 563 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 564 | #else |
---|
| 565 | fmax = fmax_l |
---|
| 566 | #endif |
---|
| 567 | |
---|
[1353] | 568 | fmax = 0.04_wp * fmax |
---|
[1] | 569 | |
---|
| 570 | ! |
---|
| 571 | !-- Allocate temporary arrays |
---|
[1320] | 572 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 573 | a2(nzb+1:nzt,nys-1:nyn+1), a12(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 574 | a22(nzb+1:nzt,nys-1:nyn+1), immb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 575 | imme(nzb+1:nzt,nys-1:nyn+1), impb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 576 | impe(nzb+1:nzt,nys-1:nyn+1), ipmb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 577 | ipme(nzb+1:nzt,nys-1:nyn+1), ippb(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 578 | ippe(nzb+1:nzt,nys-1:nyn+1), m1(nzb+1:nzt,nys-2:nyn+2), & |
---|
| 579 | sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
[1] | 580 | ) |
---|
[1353] | 581 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 582 | |
---|
| 583 | ! |
---|
| 584 | !-- Outer loop of all i |
---|
| 585 | DO i = nxl, nxr |
---|
| 586 | |
---|
| 587 | ! |
---|
| 588 | !-- Compute polynomial coefficients |
---|
| 589 | DO j = nys-1, nyn+1 |
---|
[63] | 590 | DO k = nzb+1, nzt |
---|
[1353] | 591 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 592 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 593 | + sk_p(k,j-1,i) ) |
---|
| 594 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 595 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 596 | + 9.0_wp * sk_p(k,j-2,i) ) * f1920 |
---|
| 597 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 598 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
[1] | 599 | ) * f48 |
---|
[1353] | 600 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 601 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 602 | - 3.0_wp * sk_p(k,j-2,i) ) * f48 |
---|
[1] | 603 | ENDDO |
---|
| 604 | ENDDO |
---|
| 605 | |
---|
| 606 | ! |
---|
| 607 | !-- Fluxes using the Bott scheme |
---|
| 608 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 609 | DO j = nys, nyn |
---|
[63] | 610 | DO k = nzb+1, nzt |
---|
[1346] | 611 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 612 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1353] | 613 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 614 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 615 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 616 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 617 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 618 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 619 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 620 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 621 | ip = MAX( ip, 0.0_wp ) |
---|
| 622 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 623 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 624 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 625 | |
---|
[1346] | 626 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 627 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1353] | 628 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 629 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 630 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 631 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 632 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 633 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 634 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 635 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 636 | ip = MAX( ip, 0.0_wp ) |
---|
| 637 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 638 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 639 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | |
---|
| 643 | ! |
---|
| 644 | !-- Compute monitor function m1 |
---|
| 645 | DO j = nys-2, nyn+2 |
---|
[63] | 646 | DO k = nzb+1, nzt |
---|
[1353] | 647 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
[1] | 648 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
[1353] | 649 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
[1] | 650 | m1(k,j) = m1z / m1n |
---|
[1353] | 651 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
[1] | 652 | ELSEIF ( m1n < m1z ) THEN |
---|
[1353] | 653 | m1(k,j) = -1.0_wp |
---|
[1] | 654 | ELSE |
---|
[1353] | 655 | m1(k,j) = 0.0_wp |
---|
[1] | 656 | ENDIF |
---|
| 657 | ENDDO |
---|
| 658 | ENDDO |
---|
| 659 | |
---|
| 660 | ! |
---|
| 661 | !-- Compute switch sw |
---|
[1353] | 662 | sw = 0.0_wp |
---|
[1] | 663 | DO j = nys-1, nyn+1 |
---|
[63] | 664 | DO k = nzb+1, nzt |
---|
[1353] | 665 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1346] | 666 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
[1353] | 667 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 668 | |
---|
[1353] | 669 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1346] | 670 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
[1353] | 671 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 672 | |
---|
[1353] | 673 | t1 = 0.35_wp |
---|
| 674 | t2 = 0.35_wp |
---|
| 675 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 676 | |
---|
| 677 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 678 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 679 | .OR. m1(k,j+1) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 680 | ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 681 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
| 682 | ) sw(k,j) = 1.0_wp |
---|
[1] | 683 | ENDDO |
---|
| 684 | ENDDO |
---|
| 685 | |
---|
| 686 | ! |
---|
| 687 | !-- Fluxes using exponential scheme |
---|
| 688 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 689 | DO j = nys, nyn |
---|
[63] | 690 | DO k = nzb+1, nzt |
---|
[1] | 691 | |
---|
| 692 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 693 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
[1] | 694 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
[1353] | 695 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 696 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
[1346] | 697 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 698 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 699 | |
---|
| 700 | ix = INT( sterm * 1000 ) + 1 |
---|
| 701 | |
---|
[1346] | 702 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 703 | |
---|
| 704 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 705 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 706 | eex(ix) - & |
---|
| 707 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 708 | ) & |
---|
| 709 | ) |
---|
[1346] | 710 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 711 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 712 | |
---|
| 713 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
[1353] | 714 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 715 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
[1346] | 716 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 717 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 718 | |
---|
| 719 | ix = INT( sterm * 1000 ) + 1 |
---|
| 720 | |
---|
[1346] | 721 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 722 | |
---|
| 723 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 724 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 725 | eex(ix) - & |
---|
| 726 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 727 | ) & |
---|
| 728 | ) |
---|
[1346] | 729 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 730 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
[1] | 731 | ENDIF |
---|
| 732 | |
---|
| 733 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 734 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
[1] | 735 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1353] | 736 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 737 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
[1346] | 738 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 739 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 740 | |
---|
| 741 | ix = INT( sterm * 1000 ) + 1 |
---|
| 742 | |
---|
[1346] | 743 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 744 | |
---|
| 745 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 746 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 747 | eex(ix) - & |
---|
| 748 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 749 | ) & |
---|
| 750 | ) |
---|
[1346] | 751 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 752 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
[1] | 753 | ENDIF |
---|
| 754 | |
---|
| 755 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 756 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
[1] | 757 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
[1353] | 758 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 759 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
[1346] | 760 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 761 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 762 | |
---|
| 763 | ix = INT( sterm * 1000 ) + 1 |
---|
| 764 | |
---|
[1346] | 765 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 766 | |
---|
| 767 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 768 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 769 | eex(ix) - & |
---|
| 770 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 771 | ) & |
---|
| 772 | ) |
---|
[1346] | 773 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 774 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
[1] | 775 | ENDIF |
---|
| 776 | |
---|
| 777 | ENDDO |
---|
| 778 | ENDDO |
---|
| 779 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 780 | |
---|
| 781 | ! |
---|
| 782 | !-- Prognostic equation |
---|
| 783 | DO j = nys, nyn |
---|
[63] | 784 | DO k = nzb+1, nzt |
---|
[1353] | 785 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 786 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 787 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 788 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1320] | 789 | tendcy = fplus - fminus |
---|
[1] | 790 | ! |
---|
| 791 | !-- Removed in order to optimise speed |
---|
[1346] | 792 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 793 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 794 | ! |
---|
| 795 | !-- Density correction because of possible remaining divergences |
---|
| 796 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
[1353] | 797 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 798 | ( 1.0_wp + d_new ) |
---|
[1] | 799 | d(k,j,i) = d_new |
---|
| 800 | ENDDO |
---|
| 801 | ENDDO |
---|
| 802 | |
---|
| 803 | ENDDO ! End of the advection in y-direction |
---|
| 804 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 805 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
| 806 | |
---|
| 807 | ! |
---|
| 808 | !-- Deallocate temporary arrays |
---|
[1320] | 809 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 810 | ippb, ippe, m1, sw ) |
---|
| 811 | |
---|
| 812 | |
---|
| 813 | ! |
---|
| 814 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 815 | !-- UP flow_statistics) |
---|
[1353] | 816 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 817 | |
---|
| 818 | ! |
---|
| 819 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 820 | IF ( sk_char == 'pt' ) THEN |
---|
| 821 | |
---|
| 822 | ! |
---|
| 823 | !-- Temperature boundary condition at the bottom boundary |
---|
| 824 | IF ( ibc_pt_b == 0 ) THEN |
---|
| 825 | ! |
---|
| 826 | !-- Dirichlet (fixed surface temperature) |
---|
| 827 | DO i = nxl, nxr |
---|
| 828 | DO j = nys, nyn |
---|
| 829 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 830 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 831 | ENDDO |
---|
| 832 | ENDDO |
---|
| 833 | |
---|
| 834 | ELSE |
---|
| 835 | ! |
---|
| 836 | !-- Neumann (i.e. here zero gradient) |
---|
| 837 | DO i = nxl, nxr |
---|
| 838 | DO j = nys, nyn |
---|
[216] | 839 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 840 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 841 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 842 | ENDDO |
---|
| 843 | ENDDO |
---|
| 844 | |
---|
| 845 | ENDIF |
---|
| 846 | |
---|
| 847 | ! |
---|
| 848 | !-- Temperature boundary condition at the top boundary |
---|
[63] | 849 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
[1] | 850 | ! |
---|
[63] | 851 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 852 | DO i = nxl, nxr |
---|
| 853 | DO j = nys, nyn |
---|
[63] | 854 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 855 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 856 | ENDDO |
---|
| 857 | ENDDO |
---|
| 858 | |
---|
[63] | 859 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1] | 860 | ! |
---|
[63] | 861 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 862 | DO i = nxl, nxr |
---|
| 863 | DO j = nys, nyn |
---|
| 864 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[63] | 865 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
[1] | 866 | ENDDO |
---|
| 867 | ENDDO |
---|
| 868 | |
---|
| 869 | ENDIF |
---|
| 870 | |
---|
[97] | 871 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
[1] | 872 | |
---|
| 873 | ! |
---|
[97] | 874 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 875 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
| 876 | DO i = nxl, nxr |
---|
| 877 | DO j = nys, nyn |
---|
[216] | 878 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 879 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 880 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 881 | ENDDO |
---|
[97] | 882 | ENDDO |
---|
[1] | 883 | |
---|
| 884 | ! |
---|
[97] | 885 | !-- Salinity boundary condition at the top boundary. |
---|
| 886 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 887 | DO i = nxl, nxr |
---|
| 888 | DO j = nys, nyn |
---|
| 889 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 890 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 891 | ENDDO |
---|
[97] | 892 | ENDDO |
---|
[1] | 893 | |
---|
[97] | 894 | ELSEIF ( sk_char == 'q' ) THEN |
---|
[1] | 895 | |
---|
| 896 | ! |
---|
[97] | 897 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 898 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 899 | DO i = nxl, nxr |
---|
| 900 | DO j = nys, nyn |
---|
[216] | 901 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 902 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 903 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 904 | ENDDO |
---|
| 905 | ENDDO |
---|
| 906 | |
---|
| 907 | ! |
---|
[63] | 908 | !-- Specific humidity boundary condition at the top boundary |
---|
[1] | 909 | IF ( ibc_q_t == 0 ) THEN |
---|
| 910 | ! |
---|
| 911 | !-- Dirichlet |
---|
| 912 | DO i = nxl, nxr |
---|
| 913 | DO j = nys, nyn |
---|
[63] | 914 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 915 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | |
---|
| 919 | ELSE |
---|
| 920 | ! |
---|
[63] | 921 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
[1] | 922 | DO i = nxl, nxr |
---|
| 923 | DO j = nys, nyn |
---|
| 924 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[63] | 925 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
[1] | 926 | ENDDO |
---|
| 927 | ENDDO |
---|
| 928 | |
---|
| 929 | ENDIF |
---|
| 930 | |
---|
[1361] | 931 | ELSEIF ( sk_char == 'qr' ) THEN |
---|
| 932 | |
---|
| 933 | ! |
---|
| 934 | !-- Rain water content boundary condition at the bottom boundary: |
---|
| 935 | !-- Dirichlet (fixed surface rain water content). |
---|
| 936 | DO i = nxl, nxr |
---|
| 937 | DO j = nys, nyn |
---|
| 938 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 939 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 940 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 941 | ENDDO |
---|
| 942 | ENDDO |
---|
| 943 | |
---|
| 944 | ! |
---|
| 945 | !-- Rain water content boundary condition at the top boundary: Dirichlet |
---|
| 946 | DO i = nxl, nxr |
---|
| 947 | DO j = nys, nyn |
---|
| 948 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 949 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 950 | ENDDO |
---|
| 951 | ENDDO |
---|
| 952 | |
---|
| 953 | ELSEIF ( sk_char == 'nr' ) THEN |
---|
| 954 | |
---|
| 955 | ! |
---|
| 956 | !-- Rain drop concentration boundary condition at the bottom boundary: |
---|
| 957 | !-- Dirichlet (fixed surface rain drop concentration). |
---|
| 958 | DO i = nxl, nxr |
---|
| 959 | DO j = nys, nyn |
---|
| 960 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 961 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 962 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 963 | ENDDO |
---|
| 964 | ENDDO |
---|
| 965 | |
---|
| 966 | ! |
---|
| 967 | !-- Rain drop concentration boundary condition at the top boundary: Dirichlet |
---|
| 968 | DO i = nxl, nxr |
---|
| 969 | DO j = nys, nyn |
---|
| 970 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 971 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 972 | ENDDO |
---|
| 973 | ENDDO |
---|
| 974 | |
---|
[1] | 975 | ELSEIF ( sk_char == 'e' ) THEN |
---|
| 976 | |
---|
| 977 | ! |
---|
| 978 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
[97] | 979 | DO i = nxl, nxr |
---|
| 980 | DO j = nys, nyn |
---|
[216] | 981 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[97] | 982 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 983 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 984 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 985 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 986 | ENDDO |
---|
| 987 | ENDDO |
---|
[1] | 988 | |
---|
| 989 | ELSE |
---|
| 990 | |
---|
[1320] | 991 | WRITE( message_string, * ) 'no vertical boundary condi', & |
---|
[1] | 992 | 'tion for variable "', sk_char, '"' |
---|
[247] | 993 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
| 994 | |
---|
[1] | 995 | ENDIF |
---|
| 996 | |
---|
| 997 | ! |
---|
| 998 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
[1353] | 999 | fmax_l = 0.0_wp |
---|
[1] | 1000 | DO i = nxl, nxr |
---|
| 1001 | DO j = nys, nyn |
---|
[63] | 1002 | DO k = nzb, nzt+1 |
---|
[1353] | 1003 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
[1320] | 1004 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 1005 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 1006 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
[1] | 1007 | ENDDO |
---|
| 1008 | ENDDO |
---|
| 1009 | ENDDO |
---|
| 1010 | #if defined( __parallel ) |
---|
[622] | 1011 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1012 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 1013 | #else |
---|
| 1014 | fmax = fmax_l |
---|
| 1015 | #endif |
---|
| 1016 | |
---|
[1353] | 1017 | fmax = 0.04_wp * fmax |
---|
[1] | 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- Allocate temporary arrays |
---|
[1320] | 1021 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), & |
---|
| 1022 | a2(nzb:nzt+1,nys:nyn), a12(nzb:nzt+1,nys:nyn), & |
---|
| 1023 | a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1024 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), & |
---|
| 1025 | impe(nzb+1:nzt,nys:nyn), ipmb(nzb+1:nzt,nys:nyn), & |
---|
| 1026 | ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1027 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), & |
---|
| 1028 | sw(nzb:nzt+1,nys:nyn) & |
---|
[1] | 1029 | ) |
---|
[1353] | 1030 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1031 | |
---|
| 1032 | ! |
---|
| 1033 | !-- Outer loop of all i |
---|
| 1034 | DO i = nxl, nxr |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- Compute polynomial coefficients |
---|
| 1038 | DO j = nys, nyn |
---|
[63] | 1039 | DO k = nzb, nzt+1 |
---|
[1353] | 1040 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1041 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) & |
---|
| 1042 | + sk_p(k-1,j,i) ) |
---|
| 1043 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1044 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1045 | + 9.0_wp * sk_p(k-2,j,i) ) * f1920 |
---|
| 1046 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1047 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
[1] | 1048 | ) * f48 |
---|
[1353] | 1049 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1050 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1051 | - 3.0_wp * sk_p(k-2,j,i) ) * f48 |
---|
[1] | 1052 | ENDDO |
---|
| 1053 | ENDDO |
---|
| 1054 | |
---|
| 1055 | ! |
---|
| 1056 | !-- Fluxes using the Bott scheme |
---|
| 1057 | !-- *VOCL LOOP,UNROLL(2) |
---|
| 1058 | DO j = nys, nyn |
---|
[63] | 1059 | DO k = nzb+1, nzt |
---|
[1346] | 1060 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1061 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1353] | 1062 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1063 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1064 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1065 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1066 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1067 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1068 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1069 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 1070 | ip = MAX( ip, 0.0_wp ) |
---|
| 1071 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 1072 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1073 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1074 | |
---|
[1346] | 1075 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1076 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1353] | 1077 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1078 | cimf = 1.0_wp - 2.0_wp * cim |
---|
| 1079 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1080 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
| 1081 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
| 1082 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1083 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
| 1084 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
[1346] | 1085 | ip = MAX( ip, 0.0_wp ) |
---|
| 1086 | im = MAX( im, 0.0_wp ) |
---|
[1353] | 1087 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1088 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1089 | ENDDO |
---|
| 1090 | ENDDO |
---|
| 1091 | |
---|
| 1092 | ! |
---|
| 1093 | !-- Compute monitor function m1 |
---|
| 1094 | DO j = nys, nyn |
---|
[63] | 1095 | DO k = nzb-1, nzt+2 |
---|
[1353] | 1096 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
[1] | 1097 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
[1353] | 1098 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
[1] | 1099 | m1(k,j) = m1z / m1n |
---|
[1353] | 1100 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
[1] | 1101 | ELSEIF ( m1n < m1z ) THEN |
---|
[1353] | 1102 | m1(k,j) = -1.0_wp |
---|
[1] | 1103 | ELSE |
---|
[1353] | 1104 | m1(k,j) = 0.0_wp |
---|
[1] | 1105 | ENDIF |
---|
| 1106 | ENDDO |
---|
| 1107 | ENDDO |
---|
| 1108 | |
---|
| 1109 | ! |
---|
| 1110 | !-- Compute switch sw |
---|
[1353] | 1111 | sw = 0.0_wp |
---|
[1] | 1112 | DO j = nys, nyn |
---|
[63] | 1113 | DO k = nzb, nzt+1 |
---|
[1353] | 1114 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1346] | 1115 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
[1353] | 1116 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1117 | |
---|
[1353] | 1118 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1346] | 1119 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
[1353] | 1120 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1121 | |
---|
[1353] | 1122 | t1 = 0.35_wp |
---|
| 1123 | t2 = 0.35_wp |
---|
| 1124 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1125 | |
---|
| 1126 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1127 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp & |
---|
| 1128 | .OR. m1(k+1,j) == 1.0_wp .OR. m2 > t2 .OR. m3 > t2 .OR. & |
---|
| 1129 | ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND. & |
---|
| 1130 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
| 1131 | ) sw(k,j) = 1.0_wp |
---|
[1] | 1132 | ENDDO |
---|
| 1133 | ENDDO |
---|
| 1134 | |
---|
| 1135 | ! |
---|
| 1136 | !-- Fluxes using exponential scheme |
---|
| 1137 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1138 | DO j = nys, nyn |
---|
[63] | 1139 | DO k = nzb+1, nzt |
---|
[1] | 1140 | |
---|
| 1141 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1142 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
[1] | 1143 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
[1353] | 1144 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1145 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
[1346] | 1146 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1147 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1148 | |
---|
| 1149 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1150 | |
---|
[1346] | 1151 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1152 | |
---|
| 1153 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1154 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1155 | eex(ix) - & |
---|
| 1156 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 1157 | ) & |
---|
| 1158 | ) |
---|
[1353] | 1159 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1160 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1161 | |
---|
| 1162 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
[1353] | 1163 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1164 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
[1346] | 1165 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1166 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1167 | |
---|
| 1168 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1169 | |
---|
[1346] | 1170 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1171 | |
---|
| 1172 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1173 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1174 | eex(ix) - & |
---|
| 1175 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 1176 | ) & |
---|
| 1177 | ) |
---|
[1346] | 1178 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1179 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
[1] | 1180 | ENDIF |
---|
| 1181 | |
---|
| 1182 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1183 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
[1] | 1184 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1353] | 1185 | IF ( ABS( snenn ) .LT. 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1186 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
[1346] | 1187 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1188 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1189 | |
---|
| 1190 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1191 | |
---|
[1346] | 1192 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1193 | |
---|
| 1194 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1195 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1196 | eex(ix) - & |
---|
| 1197 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
[1] | 1198 | ) & |
---|
| 1199 | ) |
---|
[1346] | 1200 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1201 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
[1] | 1202 | ENDIF |
---|
| 1203 | |
---|
| 1204 | !-- *VOCL STMT,IF(10) |
---|
[1353] | 1205 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
[1] | 1206 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
[1353] | 1207 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1] | 1208 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
[1346] | 1209 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1210 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1211 | |
---|
| 1212 | ix = INT( sterm * 1000 ) + 1 |
---|
| 1213 | |
---|
[1346] | 1214 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1215 | |
---|
| 1216 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1217 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
[1353] | 1218 | eex(ix) - & |
---|
| 1219 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
[1] | 1220 | ) & |
---|
| 1221 | ) |
---|
[1346] | 1222 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1223 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
[1] | 1224 | ENDIF |
---|
| 1225 | |
---|
| 1226 | ENDDO |
---|
| 1227 | ENDDO |
---|
| 1228 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
| 1229 | |
---|
| 1230 | ! |
---|
| 1231 | !-- Prognostic equation |
---|
| 1232 | DO j = nys, nyn |
---|
[63] | 1233 | DO k = nzb+1, nzt |
---|
[1353] | 1234 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1235 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1236 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1237 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1320] | 1238 | tendcy = fplus - fminus |
---|
[1] | 1239 | ! |
---|
| 1240 | !-- Removed in order to optimise speed |
---|
[1346] | 1241 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1242 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1243 | ! |
---|
| 1244 | !-- Density correction because of possible remaining divergences |
---|
| 1245 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
[1353] | 1246 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / & |
---|
| 1247 | ( 1.0_wp + d_new ) |
---|
[1] | 1248 | ! |
---|
| 1249 | !-- Store heat flux for subsequent statistics output. |
---|
| 1250 | !-- array m1 is here used as temporary storage |
---|
| 1251 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1252 | ENDDO |
---|
| 1253 | ENDDO |
---|
| 1254 | |
---|
| 1255 | ! |
---|
| 1256 | !-- Sum up heat flux in order to order to obtain horizontal averages |
---|
| 1257 | IF ( sk_char == 'pt' ) THEN |
---|
| 1258 | DO sr = 0, statistic_regions |
---|
| 1259 | DO j = nys, nyn |
---|
[63] | 1260 | DO k = nzb+1, nzt |
---|
[1320] | 1261 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + & |
---|
[1] | 1262 | m1(k,j) * rmask(j,i,sr) |
---|
| 1263 | ENDDO |
---|
| 1264 | ENDDO |
---|
| 1265 | ENDDO |
---|
| 1266 | ENDIF |
---|
| 1267 | |
---|
| 1268 | ENDDO ! End of the advection in z-direction |
---|
| 1269 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1270 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
| 1271 | |
---|
| 1272 | ! |
---|
| 1273 | !-- Deallocate temporary arrays |
---|
[1320] | 1274 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, & |
---|
[1] | 1275 | ippb, ippe, m1, sw ) |
---|
| 1276 | |
---|
| 1277 | ! |
---|
| 1278 | !-- Store results as tendency and deallocate local array |
---|
| 1279 | DO i = nxl, nxr |
---|
| 1280 | DO j = nys, nyn |
---|
[63] | 1281 | DO k = nzb+1, nzt |
---|
[1] | 1282 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1283 | ENDDO |
---|
| 1284 | ENDDO |
---|
| 1285 | ENDDO |
---|
| 1286 | |
---|
| 1287 | DEALLOCATE( sk_p ) |
---|
| 1288 | |
---|
| 1289 | END SUBROUTINE advec_s_bc |
---|