1 | SUBROUTINE advec_particles |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! TEST: PRINT statements on unit 9 (commented out) |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: advec_particles.f90 392 2009-09-24 10:39:14Z weinreis $ |
---|
11 | ! |
---|
12 | ! 336 2009-06-10 11:19:35Z raasch |
---|
13 | ! Particle attributes are set with new routine set_particle_attributes. |
---|
14 | ! Vertical particle advection depends on the particle group. |
---|
15 | ! Output of NetCDF messages with aid of message handling routine. |
---|
16 | ! Output of messages replaced by message handling routine |
---|
17 | ! Bugfix: error in check, if particles moved further than one subdomain length. |
---|
18 | ! This check must not be applied for newly released particles |
---|
19 | ! Bugfix: several tail counters are initialized, particle_tail_coordinates is |
---|
20 | ! only written to file if its third index is > 0 |
---|
21 | ! |
---|
22 | ! 212 2008-11-11 09:09:24Z raasch |
---|
23 | ! Bugfix in calculating k index in case of oceans runs (sort_particles) |
---|
24 | ! |
---|
25 | ! 150 2008-02-29 08:19:58Z raasch |
---|
26 | ! Bottom boundary condition and vertical index calculations adjusted for |
---|
27 | ! ocean runs. |
---|
28 | ! |
---|
29 | ! 119 2007-10-17 10:27:13Z raasch |
---|
30 | ! Sorting of particles is controlled by dt_sort_particles and moved from |
---|
31 | ! the SGS timestep loop after the end of this loop. |
---|
32 | ! Bugfix: pleft/pright changed to pnorth/psouth in sendrecv of particle tail |
---|
33 | ! numbers along y |
---|
34 | ! Small bugfixes in the SGS part |
---|
35 | ! |
---|
36 | ! 106 2007-08-16 14:30:26Z raasch |
---|
37 | ! remaining variables iran changed to iran_part |
---|
38 | ! |
---|
39 | ! 95 2007-06-02 16:48:38Z raasch |
---|
40 | ! hydro_press renamed hyp |
---|
41 | ! |
---|
42 | ! 75 2007-03-22 09:54:05Z raasch |
---|
43 | ! Particle reflection at vertical walls implemented in new subroutine |
---|
44 | ! particle_boundary_conds, |
---|
45 | ! vertical walls are regarded in the SGS model, |
---|
46 | ! + user_advec_particles, particles-package is now part of the defaut code, |
---|
47 | ! array arguments in sendrecv calls have to refer to first element (1) due to |
---|
48 | ! mpich (mpiI) interface requirements, |
---|
49 | ! 2nd+3rd argument removed from exchange horiz |
---|
50 | ! |
---|
51 | ! 16 2007-02-15 13:16:47Z raasch |
---|
52 | ! Bugfix: wrong if-clause from revision 1.32 |
---|
53 | ! |
---|
54 | ! r4 | raasch | 2007-02-13 12:33:16 +0100 (Tue, 13 Feb 2007) |
---|
55 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
56 | ! |
---|
57 | ! Revision 1.32 2007/02/11 12:48:20 raasch |
---|
58 | ! Allways the lower level k is used for interpolation |
---|
59 | ! Bugfix: new particles are released only if end_time_prel > simulated_time |
---|
60 | ! Bugfix: transfer of particles when x < -0.5*dx (0.0 before), etc., |
---|
61 | ! index i,j used instead of cartesian (x,y) coordinate to check for |
---|
62 | ! transfer because this failed under very rare conditions |
---|
63 | ! Bugfix: calculation of number of particles with same radius as the current |
---|
64 | ! particle (cloud droplet code) |
---|
65 | ! |
---|
66 | ! Revision 1.31 2006/08/17 09:21:01 raasch |
---|
67 | ! Two more compilation errors removed from the last revision |
---|
68 | ! |
---|
69 | ! Revision 1.30 2006/08/17 09:11:17 raasch |
---|
70 | ! Two compilation errors removed from the last revision |
---|
71 | ! |
---|
72 | ! Revision 1.29 2006/08/04 14:05:01 raasch |
---|
73 | ! Subgrid scale velocities are (optionally) included for calculating the |
---|
74 | ! particle advection, new counters trlp_count_sum, etc. for accumulating |
---|
75 | ! the number of particles exchanged between the subdomains during all |
---|
76 | ! sub-timesteps (if sgs velocities are included), +3d-arrays de_dx/y/z, |
---|
77 | ! izuf renamed iran, output of particle time series |
---|
78 | ! |
---|
79 | ! Revision 1.1 1999/11/25 16:16:06 raasch |
---|
80 | ! Initial revision |
---|
81 | ! |
---|
82 | ! |
---|
83 | ! Description: |
---|
84 | ! ------------ |
---|
85 | ! Particle advection |
---|
86 | !------------------------------------------------------------------------------! |
---|
87 | |
---|
88 | USE arrays_3d |
---|
89 | USE cloud_parameters |
---|
90 | USE constants |
---|
91 | USE control_parameters |
---|
92 | USE cpulog |
---|
93 | USE grid_variables |
---|
94 | USE indices |
---|
95 | USE interfaces |
---|
96 | USE netcdf_control |
---|
97 | USE particle_attributes |
---|
98 | USE pegrid |
---|
99 | USE random_function_mod |
---|
100 | USE statistics |
---|
101 | |
---|
102 | IMPLICIT NONE |
---|
103 | |
---|
104 | INTEGER :: agp, deleted_particles, deleted_tails, i, ie, ii, inc, is, j, & |
---|
105 | jj, js, k, kk, kw, m, n, nc, nn, num_gp, psi, tlength, & |
---|
106 | trlp_count, trlp_count_sum, trlp_count_recv, & |
---|
107 | trlp_count_recv_sum, trlpt_count, trlpt_count_recv, & |
---|
108 | trnp_count, trnp_count_sum, trnp_count_recv, & |
---|
109 | trnp_count_recv_sum, trnpt_count, trnpt_count_recv, & |
---|
110 | trrp_count, trrp_count_sum, trrp_count_recv, & |
---|
111 | trrp_count_recv_sum, trrpt_count, trrpt_count_recv, & |
---|
112 | trsp_count, trsp_count_sum, trsp_count_recv, & |
---|
113 | trsp_count_recv_sum, trspt_count, trspt_count_recv, nd |
---|
114 | |
---|
115 | INTEGER :: gp_outside_of_building(1:8) |
---|
116 | |
---|
117 | LOGICAL :: dt_3d_reached, dt_3d_reached_l, prt_position |
---|
118 | |
---|
119 | REAL :: aa, arg, bb, cc, dd, delta_r, dens_ratio, de_dt, de_dt_min, & |
---|
120 | de_dx_int, de_dx_int_l, de_dx_int_u, de_dy_int, de_dy_int_l, & |
---|
121 | de_dy_int_u, de_dz_int, de_dz_int_l, de_dz_int_u, diss_int, & |
---|
122 | diss_int_l, diss_int_u, distance, dt_gap, dt_particle, & |
---|
123 | dt_particle_m, d_radius, d_sum, e_a, e_int, e_int_l, e_int_u, & |
---|
124 | e_mean_int, e_s, exp_arg, exp_term, fs_int, gg, & |
---|
125 | lagr_timescale, mean_r, new_r, p_int, pt_int, pt_int_l, & |
---|
126 | pt_int_u, q_int, q_int_l, q_int_u, ql_int, ql_int_l, ql_int_u, & |
---|
127 | random_gauss, sl_r3, sl_r4, s_r3, s_r4, t_int, u_int, u_int_l, & |
---|
128 | u_int_u, vv_int, v_int, v_int_l, v_int_u, w_int, w_int_l, & |
---|
129 | w_int_u, x, y |
---|
130 | |
---|
131 | REAL, DIMENSION(1:30) :: de_dxi, de_dyi, de_dzi, dissi, d_gp_pl, ei |
---|
132 | |
---|
133 | REAL :: location(1:30,1:3) |
---|
134 | |
---|
135 | REAL, DIMENSION(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) :: de_dx, de_dy, de_dz |
---|
136 | |
---|
137 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: trlpt, trnpt, trrpt, trspt |
---|
138 | |
---|
139 | TYPE(particle_type) :: tmp_particle |
---|
140 | |
---|
141 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trlp, trnp, trrp, trsp |
---|
142 | |
---|
143 | |
---|
144 | CALL cpu_log( log_point(25), 'advec_particles', 'start' ) |
---|
145 | |
---|
146 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
147 | ! WRITE (9,*) '--- advec_particles: #1' |
---|
148 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
149 | ! CALL local_flush( 9 ) |
---|
150 | ! ENDIF |
---|
151 | ! |
---|
152 | !-- Write particle data on file for later analysis. |
---|
153 | !-- This has to be done here (before particles are advected) in order |
---|
154 | !-- to allow correct output in case of dt_write_particle_data = dt_prel = |
---|
155 | !-- particle_maximum_age. Otherwise (if output is done at the end of this |
---|
156 | !-- subroutine), the relevant particles would have been already deleted. |
---|
157 | !-- The MOD function allows for changes in the output interval with restart |
---|
158 | !-- runs. |
---|
159 | !-- Attention: change version number for unit 85 (in routine check_open) |
---|
160 | !-- whenever the output format for this unit is changed! |
---|
161 | time_write_particle_data = time_write_particle_data + dt_3d |
---|
162 | IF ( time_write_particle_data >= dt_write_particle_data ) THEN |
---|
163 | |
---|
164 | CALL cpu_log( log_point_s(40), 'advec_part_io', 'start' ) |
---|
165 | CALL check_open( 85 ) |
---|
166 | WRITE ( 85 ) simulated_time, maximum_number_of_particles, & |
---|
167 | number_of_particles |
---|
168 | WRITE ( 85 ) particles |
---|
169 | WRITE ( 85 ) maximum_number_of_tailpoints, maximum_number_of_tails, & |
---|
170 | number_of_tails |
---|
171 | IF ( maximum_number_of_tails > 0 ) THEN |
---|
172 | WRITE ( 85 ) particle_tail_coordinates |
---|
173 | ENDIF |
---|
174 | CALL close_file( 85 ) |
---|
175 | |
---|
176 | IF ( netcdf_output ) CALL output_particles_netcdf |
---|
177 | |
---|
178 | time_write_particle_data = MOD( time_write_particle_data, & |
---|
179 | MAX( dt_write_particle_data, dt_3d ) ) |
---|
180 | CALL cpu_log( log_point_s(40), 'advec_part_io', 'stop' ) |
---|
181 | ENDIF |
---|
182 | |
---|
183 | ! |
---|
184 | !-- Calculate exponential term used in case of particle inertia for each |
---|
185 | !-- of the particle groups |
---|
186 | CALL cpu_log( log_point_s(41), 'advec_part_exp', 'start' ) |
---|
187 | DO m = 1, number_of_particle_groups |
---|
188 | IF ( particle_groups(m)%density_ratio /= 0.0 ) THEN |
---|
189 | particle_groups(m)%exp_arg = & |
---|
190 | 4.5 * particle_groups(m)%density_ratio * & |
---|
191 | molecular_viscosity / ( particle_groups(m)%radius )**2 |
---|
192 | particle_groups(m)%exp_term = EXP( -particle_groups(m)%exp_arg * & |
---|
193 | dt_3d ) |
---|
194 | ENDIF |
---|
195 | ENDDO |
---|
196 | CALL cpu_log( log_point_s(41), 'advec_part_exp', 'stop' ) |
---|
197 | |
---|
198 | ! WRITE ( 9, * ) '*** advec_particles: ##0.3' |
---|
199 | ! CALL local_flush( 9 ) |
---|
200 | ! nd = 0 |
---|
201 | ! DO n = 1, number_of_particles |
---|
202 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
203 | ! ENDDO |
---|
204 | ! IF ( nd /= deleted_particles ) THEN |
---|
205 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
206 | ! CALL local_flush( 9 ) |
---|
207 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
208 | ! ENDIF |
---|
209 | |
---|
210 | ! |
---|
211 | !-- Particle (droplet) growth by condensation/evaporation and collision |
---|
212 | IF ( cloud_droplets ) THEN |
---|
213 | |
---|
214 | ! |
---|
215 | !-- Reset summation arrays |
---|
216 | ql_c = 0.0; ql_v = 0.0; ql_vp = 0.0 |
---|
217 | |
---|
218 | ! |
---|
219 | !-- Particle growth by condensation/evaporation |
---|
220 | CALL cpu_log( log_point_s(42), 'advec_part_cond', 'start' ) |
---|
221 | DO n = 1, number_of_particles |
---|
222 | ! |
---|
223 | !-- Interpolate temperature and humidity. |
---|
224 | !-- First determine left, south, and bottom index of the arrays. |
---|
225 | i = particles(n)%x * ddx |
---|
226 | j = particles(n)%y * ddy |
---|
227 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
228 | + offset_ocean_nzt ! only exact if equidistant |
---|
229 | |
---|
230 | x = particles(n)%x - i * dx |
---|
231 | y = particles(n)%y - j * dy |
---|
232 | aa = x**2 + y**2 |
---|
233 | bb = ( dx - x )**2 + y**2 |
---|
234 | cc = x**2 + ( dy - y )**2 |
---|
235 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
236 | gg = aa + bb + cc + dd |
---|
237 | |
---|
238 | pt_int_l = ( ( gg - aa ) * pt(k,j,i) + ( gg - bb ) * pt(k,j,i+1) & |
---|
239 | + ( gg - cc ) * pt(k,j+1,i) + ( gg - dd ) * pt(k,j+1,i+1) & |
---|
240 | ) / ( 3.0 * gg ) |
---|
241 | |
---|
242 | pt_int_u = ( ( gg-aa ) * pt(k+1,j,i) + ( gg-bb ) * pt(k+1,j,i+1) & |
---|
243 | + ( gg-cc ) * pt(k+1,j+1,i) + ( gg-dd ) * pt(k+1,j+1,i+1) & |
---|
244 | ) / ( 3.0 * gg ) |
---|
245 | |
---|
246 | pt_int = pt_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
247 | ( pt_int_u - pt_int_l ) |
---|
248 | |
---|
249 | q_int_l = ( ( gg - aa ) * q(k,j,i) + ( gg - bb ) * q(k,j,i+1) & |
---|
250 | + ( gg - cc ) * q(k,j+1,i) + ( gg - dd ) * q(k,j+1,i+1) & |
---|
251 | ) / ( 3.0 * gg ) |
---|
252 | |
---|
253 | q_int_u = ( ( gg-aa ) * q(k+1,j,i) + ( gg-bb ) * q(k+1,j,i+1) & |
---|
254 | + ( gg-cc ) * q(k+1,j+1,i) + ( gg-dd ) * q(k+1,j+1,i+1) & |
---|
255 | ) / ( 3.0 * gg ) |
---|
256 | |
---|
257 | q_int = q_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
258 | ( q_int_u - q_int_l ) |
---|
259 | |
---|
260 | ql_int_l = ( ( gg - aa ) * ql(k,j,i) + ( gg - bb ) * ql(k,j,i+1) & |
---|
261 | + ( gg - cc ) * ql(k,j+1,i) + ( gg - dd ) * ql(k,j+1,i+1) & |
---|
262 | ) / ( 3.0 * gg ) |
---|
263 | |
---|
264 | ql_int_u = ( ( gg-aa ) * ql(k+1,j,i) + ( gg-bb ) * ql(k+1,j,i+1) & |
---|
265 | + ( gg-cc ) * ql(k+1,j+1,i) + ( gg-dd ) * ql(k+1,j+1,i+1) & |
---|
266 | ) / ( 3.0 * gg ) |
---|
267 | |
---|
268 | ql_int = ql_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
269 | ( ql_int_u - ql_int_l ) |
---|
270 | |
---|
271 | ! |
---|
272 | !-- Calculate real temperature and saturation vapor pressure |
---|
273 | p_int = hyp(k) + ( particles(n)%z - zu(k) ) / dz * ( hyp(k+1)-hyp(k) ) |
---|
274 | t_int = pt_int * ( p_int / 100000.0 )**0.286 |
---|
275 | |
---|
276 | e_s = 611.0 * EXP( l_d_rv * ( 3.6609E-3 - 1.0 / t_int ) ) |
---|
277 | |
---|
278 | ! |
---|
279 | !-- Current vapor pressure |
---|
280 | e_a = q_int * p_int / ( 0.378 * q_int + 0.622 ) |
---|
281 | |
---|
282 | ! |
---|
283 | !-- Change in radius by condensation/evaporation |
---|
284 | !-- ATTENTION: this is only an approximation for large radii |
---|
285 | arg = particles(n)%radius**2 + 2.0 * dt_3d * & |
---|
286 | ( e_a / e_s - 1.0 ) / & |
---|
287 | ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
288 | thermal_conductivity_l + & |
---|
289 | rho_l * r_v * t_int / diff_coeff_l / e_s ) |
---|
290 | IF ( arg < 1.0E-14 ) THEN |
---|
291 | new_r = 1.0E-7 |
---|
292 | ELSE |
---|
293 | new_r = SQRT( arg ) |
---|
294 | ENDIF |
---|
295 | |
---|
296 | delta_r = new_r - particles(n)%radius |
---|
297 | |
---|
298 | ! NOTE: this is the correct formula (indipendent of radius). |
---|
299 | ! nevertheless, it give wrong results for large timesteps |
---|
300 | ! d_radius = 1.0 / particles(n)%radius |
---|
301 | ! delta_r = d_radius * ( e_a / e_s - 1.0 - 3.3E-7 / t_int * d_radius + & |
---|
302 | ! b_cond * d_radius**3 ) / & |
---|
303 | ! ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
304 | ! thermal_conductivity_l + & |
---|
305 | ! rho_l * r_v * t_int / diff_coeff_l / e_s ) * dt_3d |
---|
306 | |
---|
307 | ! new_r = particles(n)%radius + delta_r |
---|
308 | ! IF ( new_r < 1.0E-7 ) new_r = 1.0E-7 |
---|
309 | |
---|
310 | ! |
---|
311 | !-- Sum up the change in volume of liquid water for the respective grid |
---|
312 | !-- volume (this is needed later on for calculating the release of |
---|
313 | !-- latent heat) |
---|
314 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
315 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
316 | k = particles(n)%z / dz + 1 + offset_ocean_nzt_m1 |
---|
317 | ! only exact if equidistant |
---|
318 | |
---|
319 | ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * & |
---|
320 | rho_l * 1.33333333 * pi * & |
---|
321 | ( new_r**3 - particles(n)%radius**3 ) / & |
---|
322 | ( rho_surface * dx * dy * dz ) |
---|
323 | IF ( ql_c(k,j,i) > 100.0 ) THEN |
---|
324 | WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, & |
---|
325 | ' ql_c=',ql_c(k,j,i), ' &part(',n,')%wf=', & |
---|
326 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
327 | CALL message( 'advec_particles', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
328 | ENDIF |
---|
329 | |
---|
330 | ! |
---|
331 | !-- Change the droplet radius |
---|
332 | IF ( ( new_r - particles(n)%radius ) < 0.0 .AND. new_r < 0.0 ) & |
---|
333 | THEN |
---|
334 | WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, & |
---|
335 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
336 | ' &d_radius=',d_radius,' delta_r=',delta_r,& |
---|
337 | ' particle_radius=',particles(n)%radius |
---|
338 | CALL message( 'advec_particles', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
339 | ENDIF |
---|
340 | particles(n)%radius = new_r |
---|
341 | |
---|
342 | ! |
---|
343 | !-- Sum up the total volume of liquid water (needed below for |
---|
344 | !-- re-calculating the weighting factors) |
---|
345 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * & |
---|
346 | particles(n)%radius**3 |
---|
347 | ENDDO |
---|
348 | CALL cpu_log( log_point_s(42), 'advec_part_cond', 'stop' ) |
---|
349 | |
---|
350 | ! |
---|
351 | !-- Particle growth by collision |
---|
352 | CALL cpu_log( log_point_s(43), 'advec_part_coll', 'start' ) |
---|
353 | |
---|
354 | DO i = nxl, nxr |
---|
355 | DO j = nys, nyn |
---|
356 | DO k = nzb+1, nzt |
---|
357 | ! |
---|
358 | !-- Collision requires at least two particles in the box |
---|
359 | IF ( prt_count(k,j,i) > 1 ) THEN |
---|
360 | ! |
---|
361 | !-- First, sort particles within the gridbox by their size, |
---|
362 | !-- using Shell's method (see Numerical Recipes) |
---|
363 | !-- NOTE: In case of using particle tails, the re-sorting of |
---|
364 | !-- ---- tails would have to be included here! |
---|
365 | psi = prt_start_index(k,j,i) - 1 |
---|
366 | inc = 1 |
---|
367 | DO WHILE ( inc <= prt_count(k,j,i) ) |
---|
368 | inc = 3 * inc + 1 |
---|
369 | ENDDO |
---|
370 | |
---|
371 | DO WHILE ( inc > 1 ) |
---|
372 | inc = inc / 3 |
---|
373 | DO is = inc+1, prt_count(k,j,i) |
---|
374 | tmp_particle = particles(psi+is) |
---|
375 | js = is |
---|
376 | DO WHILE ( particles(psi+js-inc)%radius > & |
---|
377 | tmp_particle%radius ) |
---|
378 | particles(psi+js) = particles(psi+js-inc) |
---|
379 | js = js - inc |
---|
380 | IF ( js <= inc ) EXIT |
---|
381 | ENDDO |
---|
382 | particles(psi+js) = tmp_particle |
---|
383 | ENDDO |
---|
384 | ENDDO |
---|
385 | |
---|
386 | ! |
---|
387 | !-- Calculate the mean radius of all those particles which |
---|
388 | !-- are of smaller or equal size than the current particle |
---|
389 | !-- and use this radius for calculating the collision efficiency |
---|
390 | psi = prt_start_index(k,j,i) |
---|
391 | s_r3 = 0.0 |
---|
392 | s_r4 = 0.0 |
---|
393 | DO n = psi, psi+prt_count(k,j,i)-1 |
---|
394 | ! |
---|
395 | !-- There may be some particles of size equal to the |
---|
396 | !-- current particle but with larger index |
---|
397 | sl_r3 = 0.0 |
---|
398 | sl_r4 = 0.0 |
---|
399 | DO is = n, psi+prt_count(k,j,i)-2 |
---|
400 | IF ( particles(is+1)%radius == & |
---|
401 | particles(is)%radius ) THEN |
---|
402 | sl_r3 = sl_r3 + particles(is+1)%radius**3 |
---|
403 | sl_r4 = sl_r4 + particles(is+1)%radius**4 |
---|
404 | ELSE |
---|
405 | EXIT |
---|
406 | ENDIF |
---|
407 | ENDDO |
---|
408 | |
---|
409 | IF ( ( s_r3 + sl_r3 ) > 0.0 ) THEN |
---|
410 | |
---|
411 | mean_r = ( s_r4 + sl_r4 ) / ( s_r3 + sl_r3 ) |
---|
412 | |
---|
413 | CALL collision_efficiency( mean_r, & |
---|
414 | particles(n)%radius, & |
---|
415 | effective_coll_efficiency ) |
---|
416 | |
---|
417 | ELSE |
---|
418 | effective_coll_efficiency = 0.0 |
---|
419 | ENDIF |
---|
420 | |
---|
421 | ! |
---|
422 | !-- Contribution of the current particle to the next one |
---|
423 | s_r3 = s_r3 + particles(n)%radius**3 |
---|
424 | s_r4 = s_r4 + particles(n)%radius**4 |
---|
425 | |
---|
426 | IF ( effective_coll_efficiency > 1.0 .OR. & |
---|
427 | effective_coll_efficiency < 0.0 ) & |
---|
428 | THEN |
---|
429 | WRITE( message_string, * ) 'collision_efficiency ' , & |
---|
430 | 'out of range:' ,effective_coll_efficiency |
---|
431 | CALL message( 'advec_particles', 'PA0145', 2, 2, -1, & |
---|
432 | 6, 1 ) |
---|
433 | END IF |
---|
434 | |
---|
435 | ! |
---|
436 | !-- Interpolation of ... |
---|
437 | ii = particles(n)%x * ddx |
---|
438 | jj = particles(n)%y * ddy |
---|
439 | kk = ( particles(n)%z + 0.5 * dz ) / dz |
---|
440 | |
---|
441 | x = particles(n)%x - ii * dx |
---|
442 | y = particles(n)%y - jj * dy |
---|
443 | aa = x**2 + y**2 |
---|
444 | bb = ( dx - x )**2 + y**2 |
---|
445 | cc = x**2 + ( dy - y )**2 |
---|
446 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
447 | gg = aa + bb + cc + dd |
---|
448 | |
---|
449 | ql_int_l = ( ( gg-aa ) * ql(kk,jj,ii) + ( gg-bb ) * & |
---|
450 | ql(kk,jj,ii+1) & |
---|
451 | + ( gg-cc ) * ql(kk,jj+1,ii) + ( gg-dd ) * & |
---|
452 | ql(kk,jj+1,ii+1) & |
---|
453 | ) / ( 3.0 * gg ) |
---|
454 | |
---|
455 | ql_int_u = ( ( gg-aa ) * ql(kk+1,jj,ii) + ( gg-bb ) * & |
---|
456 | ql(kk+1,jj,ii+1) & |
---|
457 | + ( gg-cc ) * ql(kk+1,jj+1,ii) + ( gg-dd ) * & |
---|
458 | ql(kk+1,jj+1,ii+1) & |
---|
459 | ) / ( 3.0 * gg ) |
---|
460 | |
---|
461 | ql_int = ql_int_l + ( particles(n)%z - zu(kk) ) / dz * & |
---|
462 | ( ql_int_u - ql_int_l ) |
---|
463 | |
---|
464 | ! |
---|
465 | !-- Interpolate u velocity-component |
---|
466 | ii = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
467 | jj = particles(n)%y * ddy |
---|
468 | kk = ( particles(n)%z + 0.5 * dz ) / dz ! only if eq.dist |
---|
469 | |
---|
470 | IF ( ( particles(n)%z - zu(kk) ) > ( 0.5*dz ) ) kk = kk+1 |
---|
471 | |
---|
472 | x = particles(n)%x + ( 0.5 - ii ) * dx |
---|
473 | y = particles(n)%y - jj * dy |
---|
474 | aa = x**2 + y**2 |
---|
475 | bb = ( dx - x )**2 + y**2 |
---|
476 | cc = x**2 + ( dy - y )**2 |
---|
477 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
478 | gg = aa + bb + cc + dd |
---|
479 | |
---|
480 | u_int_l = ( ( gg-aa ) * u(kk,jj,ii) + ( gg-bb ) * & |
---|
481 | u(kk,jj,ii+1) & |
---|
482 | + ( gg-cc ) * u(kk,jj+1,ii) + ( gg-dd ) * & |
---|
483 | u(kk,jj+1,ii+1) & |
---|
484 | ) / ( 3.0 * gg ) - u_gtrans |
---|
485 | IF ( kk+1 == nzt+1 ) THEN |
---|
486 | u_int = u_int_l |
---|
487 | ELSE |
---|
488 | u_int_u = ( ( gg-aa ) * u(kk+1,jj,ii) + ( gg-bb ) * & |
---|
489 | u(kk+1,jj,ii+1) & |
---|
490 | + ( gg-cc ) * u(kk+1,jj+1,ii) + ( gg-dd ) * & |
---|
491 | u(kk+1,jj+1,ii+1) & |
---|
492 | ) / ( 3.0 * gg ) - u_gtrans |
---|
493 | u_int = u_int_l + ( particles(n)%z - zu(kk) ) / dz * & |
---|
494 | ( u_int_u - u_int_l ) |
---|
495 | ENDIF |
---|
496 | |
---|
497 | ! |
---|
498 | !-- Same procedure for interpolation of the v velocity-compo- |
---|
499 | !-- nent (adopt index k from u velocity-component) |
---|
500 | ii = particles(n)%x * ddx |
---|
501 | jj = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
502 | |
---|
503 | x = particles(n)%x - ii * dx |
---|
504 | y = particles(n)%y + ( 0.5 - jj ) * dy |
---|
505 | aa = x**2 + y**2 |
---|
506 | bb = ( dx - x )**2 + y**2 |
---|
507 | cc = x**2 + ( dy - y )**2 |
---|
508 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
509 | gg = aa + bb + cc + dd |
---|
510 | |
---|
511 | v_int_l = ( ( gg-aa ) * v(kk,jj,ii) + ( gg-bb ) * & |
---|
512 | v(kk,jj,ii+1) & |
---|
513 | + ( gg-cc ) * v(kk,jj+1,ii) + ( gg-dd ) * & |
---|
514 | v(kk,jj+1,ii+1) & |
---|
515 | ) / ( 3.0 * gg ) - v_gtrans |
---|
516 | IF ( kk+1 == nzt+1 ) THEN |
---|
517 | v_int = v_int_l |
---|
518 | ELSE |
---|
519 | v_int_u = ( ( gg-aa ) * v(kk+1,jj,ii) + ( gg-bb ) * & |
---|
520 | v(kk+1,jj,ii+1) & |
---|
521 | + ( gg-cc ) * v(kk+1,jj+1,ii) + ( gg-dd ) * & |
---|
522 | v(kk+1,jj+1,ii+1) & |
---|
523 | ) / ( 3.0 * gg ) - v_gtrans |
---|
524 | v_int = v_int_l + ( particles(n)%z - zu(kk) ) / dz * & |
---|
525 | ( v_int_u - v_int_l ) |
---|
526 | ENDIF |
---|
527 | |
---|
528 | ! |
---|
529 | !-- Same procedure for interpolation of the w velocity-compo- |
---|
530 | !-- nent (adopt index i from v velocity-component) |
---|
531 | jj = particles(n)%y * ddy |
---|
532 | kk = particles(n)%z / dz |
---|
533 | |
---|
534 | x = particles(n)%x - ii * dx |
---|
535 | y = particles(n)%y - jj * dy |
---|
536 | aa = x**2 + y**2 |
---|
537 | bb = ( dx - x )**2 + y**2 |
---|
538 | cc = x**2 + ( dy - y )**2 |
---|
539 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
540 | gg = aa + bb + cc + dd |
---|
541 | |
---|
542 | w_int_l = ( ( gg-aa ) * w(kk,jj,ii) + ( gg-bb ) * & |
---|
543 | w(kk,jj,ii+1) & |
---|
544 | + ( gg-cc ) * w(kk,jj+1,ii) + ( gg-dd ) * & |
---|
545 | w(kk,jj+1,ii+1) & |
---|
546 | ) / ( 3.0 * gg ) |
---|
547 | IF ( kk+1 == nzt+1 ) THEN |
---|
548 | w_int = w_int_l |
---|
549 | ELSE |
---|
550 | w_int_u = ( ( gg-aa ) * w(kk+1,jj,ii) + ( gg-bb ) * & |
---|
551 | w(kk+1,jj,ii+1) & |
---|
552 | + ( gg-cc ) * w(kk+1,jj+1,ii) + ( gg-dd ) * & |
---|
553 | w(kk+1,jj+1,ii+1) & |
---|
554 | ) / ( 3.0 * gg ) |
---|
555 | w_int = w_int_l + ( particles(n)%z - zw(kk) ) / dz * & |
---|
556 | ( w_int_u - w_int_l ) |
---|
557 | ENDIF |
---|
558 | |
---|
559 | ! |
---|
560 | !-- Change in radius due to collision |
---|
561 | delta_r = effective_coll_efficiency * & |
---|
562 | ql_int * rho_surface / ( 1.0 - ql_int ) * & |
---|
563 | 0.25 / rho_l * & |
---|
564 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
565 | ( v_int - particles(n)%speed_y )**2 + & |
---|
566 | ( w_int - particles(n)%speed_z )**2 & |
---|
567 | ) * dt_3d |
---|
568 | |
---|
569 | particles(n)%radius = particles(n)%radius + delta_r |
---|
570 | |
---|
571 | ql_vp(k,j,i) = ql_vp(k,j,i) + particles(n)%radius**3 |
---|
572 | |
---|
573 | ENDDO |
---|
574 | |
---|
575 | ENDIF |
---|
576 | |
---|
577 | ! |
---|
578 | !-- Re-calculate the weighting factor (total liquid water content |
---|
579 | !-- must be conserved during collision) |
---|
580 | IF ( ql_vp(k,j,i) /= 0.0 ) THEN |
---|
581 | |
---|
582 | ql_vp(k,j,i) = ql_v(k,j,i) / ql_vp(k,j,i) |
---|
583 | ! |
---|
584 | !-- Re-assign this weighting factor to the particles of the |
---|
585 | !-- current gridbox |
---|
586 | psi = prt_start_index(k,j,i) |
---|
587 | DO n = psi, psi + prt_count(k,j,i)-1 |
---|
588 | particles(n)%weight_factor = ql_vp(k,j,i) |
---|
589 | ENDDO |
---|
590 | |
---|
591 | ENDIF |
---|
592 | |
---|
593 | ENDDO |
---|
594 | ENDDO |
---|
595 | ENDDO |
---|
596 | |
---|
597 | CALL cpu_log( log_point_s(43), 'advec_part_coll', 'stop' ) |
---|
598 | |
---|
599 | ENDIF |
---|
600 | |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Particle advection. |
---|
604 | !-- In case of including the SGS velocities, the LES timestep has probably |
---|
605 | !-- to be split into several smaller timesteps because of the Lagrangian |
---|
606 | !-- timescale condition. Because the number of timesteps to be carried out is |
---|
607 | !-- not known at the beginning, these steps are carried out in an infinite loop |
---|
608 | !-- with exit condition. |
---|
609 | ! |
---|
610 | !-- If SGS velocities are used, gradients of the TKE have to be calculated and |
---|
611 | !-- boundary conditions have to be set first. Also, horizontally averaged |
---|
612 | !-- profiles of the SGS TKE and the resolved-scale velocity variances are |
---|
613 | !-- needed. |
---|
614 | IF ( use_sgs_for_particles ) THEN |
---|
615 | |
---|
616 | ! |
---|
617 | !-- TKE gradient along x and y |
---|
618 | DO i = nxl, nxr |
---|
619 | DO j = nys, nyn |
---|
620 | DO k = nzb, nzt+1 |
---|
621 | |
---|
622 | IF ( k <= nzb_s_inner(j,i-1) .AND. & |
---|
623 | k > nzb_s_inner(j,i) .AND. & |
---|
624 | k > nzb_s_inner(j,i+1) ) THEN |
---|
625 | de_dx(k,j,i) = 2.0 * sgs_wfu_part * & |
---|
626 | ( e(k,j,i+1) - e(k,j,i) ) * ddx |
---|
627 | ELSEIF ( k > nzb_s_inner(j,i-1) .AND. & |
---|
628 | k > nzb_s_inner(j,i) .AND. & |
---|
629 | k <= nzb_s_inner(j,i+1) ) THEN |
---|
630 | de_dx(k,j,i) = 2.0 * sgs_wfu_part * & |
---|
631 | ( e(k,j,i) - e(k,j,i-1) ) * ddx |
---|
632 | ELSEIF ( k < nzb_s_inner(j,i) .AND. k < nzb_s_inner(j,i+1) ) & |
---|
633 | THEN |
---|
634 | de_dx(k,j,i) = 0.0 |
---|
635 | ELSEIF ( k < nzb_s_inner(j,i-1) .AND. k < nzb_s_inner(j,i) ) & |
---|
636 | THEN |
---|
637 | de_dx(k,j,i) = 0.0 |
---|
638 | ELSE |
---|
639 | de_dx(k,j,i) = sgs_wfu_part * & |
---|
640 | ( e(k,j,i+1) - e(k,j,i-1) ) * ddx |
---|
641 | ENDIF |
---|
642 | |
---|
643 | IF ( k <= nzb_s_inner(j-1,i) .AND. & |
---|
644 | k > nzb_s_inner(j,i) .AND. & |
---|
645 | k > nzb_s_inner(j+1,i) ) THEN |
---|
646 | de_dy(k,j,i) = 2.0 * sgs_wfv_part * & |
---|
647 | ( e(k,j+1,i) - e(k,j,i) ) * ddy |
---|
648 | ELSEIF ( k > nzb_s_inner(j-1,i) .AND. & |
---|
649 | k > nzb_s_inner(j,i) .AND. & |
---|
650 | k <= nzb_s_inner(j+1,i) ) THEN |
---|
651 | de_dy(k,j,i) = 2.0 * sgs_wfv_part * & |
---|
652 | ( e(k,j,i) - e(k,j-1,i) ) * ddy |
---|
653 | ELSEIF ( k < nzb_s_inner(j,i) .AND. k < nzb_s_inner(j+1,i) ) & |
---|
654 | THEN |
---|
655 | de_dy(k,j,i) = 0.0 |
---|
656 | ELSEIF ( k < nzb_s_inner(j-1,i) .AND. k < nzb_s_inner(j,i) ) & |
---|
657 | THEN |
---|
658 | de_dy(k,j,i) = 0.0 |
---|
659 | ELSE |
---|
660 | de_dy(k,j,i) = sgs_wfv_part * & |
---|
661 | ( e(k,j+1,i) - e(k,j-1,i) ) * ddy |
---|
662 | ENDIF |
---|
663 | |
---|
664 | ENDDO |
---|
665 | ENDDO |
---|
666 | ENDDO |
---|
667 | |
---|
668 | ! |
---|
669 | !-- TKE gradient along z, including bottom and top boundary conditions |
---|
670 | DO i = nxl, nxr |
---|
671 | DO j = nys, nyn |
---|
672 | |
---|
673 | DO k = nzb_s_inner(j,i)+2, nzt-1 |
---|
674 | de_dz(k,j,i) = 2.0 * sgs_wfw_part * & |
---|
675 | ( e(k+1,j,i) - e(k-1,j,i) ) / ( zu(k+1)-zu(k-1) ) |
---|
676 | ENDDO |
---|
677 | |
---|
678 | k = nzb_s_inner(j,i) |
---|
679 | de_dz(nzb:k,j,i) = 0.0 |
---|
680 | de_dz(k+1,j,i) = 2.0 * sgs_wfw_part * ( e(k+2,j,i) - e(k+1,j,i) ) & |
---|
681 | / ( zu(k+2) - zu(k+1) ) |
---|
682 | de_dz(nzt,j,i) = 0.0 |
---|
683 | de_dz(nzt+1,j,i) = 0.0 |
---|
684 | ENDDO |
---|
685 | ENDDO |
---|
686 | |
---|
687 | ! |
---|
688 | !-- Lateral boundary conditions |
---|
689 | CALL exchange_horiz( de_dx ) |
---|
690 | CALL exchange_horiz( de_dy ) |
---|
691 | CALL exchange_horiz( de_dz ) |
---|
692 | CALL exchange_horiz( diss ) |
---|
693 | |
---|
694 | ! |
---|
695 | !-- Calculate the horizontally averaged profiles of SGS TKE and resolved |
---|
696 | !-- velocity variances (they may have been already calculated in routine |
---|
697 | !-- flow_statistics). |
---|
698 | IF ( .NOT. flow_statistics_called ) THEN |
---|
699 | ! |
---|
700 | !-- First calculate horizontally averaged profiles of the horizontal |
---|
701 | !-- velocities. |
---|
702 | sums_l(:,1,0) = 0.0 |
---|
703 | sums_l(:,2,0) = 0.0 |
---|
704 | |
---|
705 | DO i = nxl, nxr |
---|
706 | DO j = nys, nyn |
---|
707 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
708 | sums_l(k,1,0) = sums_l(k,1,0) + u(k,j,i) |
---|
709 | sums_l(k,2,0) = sums_l(k,2,0) + v(k,j,i) |
---|
710 | ENDDO |
---|
711 | ENDDO |
---|
712 | ENDDO |
---|
713 | |
---|
714 | #if defined( __parallel ) |
---|
715 | ! |
---|
716 | !-- Compute total sum from local sums |
---|
717 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, & |
---|
718 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
719 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, & |
---|
720 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
721 | #else |
---|
722 | sums(:,1) = sums_l(:,1,0) |
---|
723 | sums(:,2) = sums_l(:,2,0) |
---|
724 | #endif |
---|
725 | |
---|
726 | ! |
---|
727 | !-- Final values are obtained by division by the total number of grid |
---|
728 | !-- points used for the summation. |
---|
729 | hom(:,1,1,0) = sums(:,1) / ngp_2dh_outer(:,0) ! u |
---|
730 | hom(:,1,2,0) = sums(:,2) / ngp_2dh_outer(:,0) ! v |
---|
731 | |
---|
732 | ! |
---|
733 | !-- Now calculate the profiles of SGS TKE and the resolved-scale |
---|
734 | !-- velocity variances |
---|
735 | sums_l(:,8,0) = 0.0 |
---|
736 | sums_l(:,30,0) = 0.0 |
---|
737 | sums_l(:,31,0) = 0.0 |
---|
738 | sums_l(:,32,0) = 0.0 |
---|
739 | DO i = nxl, nxr |
---|
740 | DO j = nys, nyn |
---|
741 | DO k = nzb_s_outer(j,i), nzt+1 |
---|
742 | sums_l(k,8,0) = sums_l(k,8,0) + e(k,j,i) |
---|
743 | sums_l(k,30,0) = sums_l(k,30,0) + & |
---|
744 | ( u(k,j,i) - hom(k,1,1,0) )**2 |
---|
745 | sums_l(k,31,0) = sums_l(k,31,0) + & |
---|
746 | ( v(k,j,i) - hom(k,1,2,0) )**2 |
---|
747 | sums_l(k,32,0) = sums_l(k,32,0) + w(k,j,i)**2 |
---|
748 | ENDDO |
---|
749 | ENDDO |
---|
750 | ENDDO |
---|
751 | |
---|
752 | #if defined( __parallel ) |
---|
753 | ! |
---|
754 | !-- Compute total sum from local sums |
---|
755 | CALL MPI_ALLREDUCE( sums_l(nzb,8,0), sums(nzb,8), nzt+2-nzb, & |
---|
756 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
757 | CALL MPI_ALLREDUCE( sums_l(nzb,30,0), sums(nzb,30), nzt+2-nzb, & |
---|
758 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
759 | CALL MPI_ALLREDUCE( sums_l(nzb,31,0), sums(nzb,31), nzt+2-nzb, & |
---|
760 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
761 | CALL MPI_ALLREDUCE( sums_l(nzb,32,0), sums(nzb,32), nzt+2-nzb, & |
---|
762 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
763 | |
---|
764 | #else |
---|
765 | sums(:,8) = sums_l(:,8,0) |
---|
766 | sums(:,30) = sums_l(:,30,0) |
---|
767 | sums(:,31) = sums_l(:,31,0) |
---|
768 | sums(:,32) = sums_l(:,32,0) |
---|
769 | #endif |
---|
770 | |
---|
771 | ! |
---|
772 | !-- Final values are obtained by division by the total number of grid |
---|
773 | !-- points used for the summation. |
---|
774 | hom(:,1,8,0) = sums(:,8) / ngp_2dh_outer(:,0) ! e |
---|
775 | hom(:,1,30,0) = sums(:,30) / ngp_2dh_outer(:,0) ! u*2 |
---|
776 | hom(:,1,31,0) = sums(:,31) / ngp_2dh_outer(:,0) ! v*2 |
---|
777 | hom(:,1,32,0) = sums(:,32) / ngp_2dh_outer(:,0) ! w*2 |
---|
778 | |
---|
779 | ENDIF |
---|
780 | |
---|
781 | ENDIF |
---|
782 | |
---|
783 | ! |
---|
784 | !-- Initialize variables used for accumulating the number of particles |
---|
785 | !-- exchanged between the subdomains during all sub-timesteps (if sgs |
---|
786 | !-- velocities are included). These data are output further below on the |
---|
787 | !-- particle statistics file. |
---|
788 | trlp_count_sum = 0 |
---|
789 | trlp_count_recv_sum = 0 |
---|
790 | trrp_count_sum = 0 |
---|
791 | trrp_count_recv_sum = 0 |
---|
792 | trsp_count_sum = 0 |
---|
793 | trsp_count_recv_sum = 0 |
---|
794 | trnp_count_sum = 0 |
---|
795 | trnp_count_recv_sum = 0 |
---|
796 | |
---|
797 | ! |
---|
798 | !-- Initialize the variable storing the total time that a particle has advanced |
---|
799 | !-- within the timestep procedure |
---|
800 | particles(1:number_of_particles)%dt_sum = 0.0 |
---|
801 | |
---|
802 | ! |
---|
803 | !-- Timestep loop. |
---|
804 | !-- This loop has to be repeated until the advection time of every particle |
---|
805 | !-- (in the total domain!) has reached the LES timestep (dt_3d) |
---|
806 | DO |
---|
807 | |
---|
808 | CALL cpu_log( log_point_s(44), 'advec_part_advec', 'start' ) |
---|
809 | |
---|
810 | ! |
---|
811 | !-- Initialize the switch used for the loop exit condition checked at the |
---|
812 | !-- end of this loop. |
---|
813 | !-- If at least one particle has failed to reach the LES timestep, this |
---|
814 | !-- switch will be set false. |
---|
815 | dt_3d_reached_l = .TRUE. |
---|
816 | |
---|
817 | ! |
---|
818 | !-- Initialize variables for the (sub-) timestep, i.e. for marking those |
---|
819 | !-- particles to be deleted after the timestep |
---|
820 | particle_mask = .TRUE. |
---|
821 | deleted_particles = 0 |
---|
822 | trlp_count_recv = 0 |
---|
823 | trnp_count_recv = 0 |
---|
824 | trrp_count_recv = 0 |
---|
825 | trsp_count_recv = 0 |
---|
826 | trlpt_count_recv = 0 |
---|
827 | trnpt_count_recv = 0 |
---|
828 | trrpt_count_recv = 0 |
---|
829 | trspt_count_recv = 0 |
---|
830 | IF ( use_particle_tails ) THEN |
---|
831 | tail_mask = .TRUE. |
---|
832 | ENDIF |
---|
833 | deleted_tails = 0 |
---|
834 | |
---|
835 | |
---|
836 | DO n = 1, number_of_particles |
---|
837 | ! |
---|
838 | !-- Move particles only if the LES timestep has not (approximately) been |
---|
839 | !-- reached |
---|
840 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
841 | |
---|
842 | ! |
---|
843 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
844 | !-- index of u-array |
---|
845 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
846 | j = particles(n)%y * ddy |
---|
847 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
848 | + offset_ocean_nzt ! only exact if equidistant |
---|
849 | |
---|
850 | ! |
---|
851 | !-- Interpolation of the velocity components in the xy-plane |
---|
852 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
853 | y = particles(n)%y - j * dy |
---|
854 | aa = x**2 + y**2 |
---|
855 | bb = ( dx - x )**2 + y**2 |
---|
856 | cc = x**2 + ( dy - y )**2 |
---|
857 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
858 | gg = aa + bb + cc + dd |
---|
859 | |
---|
860 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
861 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1) & |
---|
862 | ) / ( 3.0 * gg ) - u_gtrans |
---|
863 | IF ( k+1 == nzt+1 ) THEN |
---|
864 | u_int = u_int_l |
---|
865 | ELSE |
---|
866 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
867 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
868 | ) / ( 3.0 * gg ) - u_gtrans |
---|
869 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
870 | ( u_int_u - u_int_l ) |
---|
871 | ENDIF |
---|
872 | |
---|
873 | ! |
---|
874 | !-- Same procedure for interpolation of the v velocity-component (adopt |
---|
875 | !-- index k from u velocity-component) |
---|
876 | i = particles(n)%x * ddx |
---|
877 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
878 | |
---|
879 | x = particles(n)%x - i * dx |
---|
880 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
881 | aa = x**2 + y**2 |
---|
882 | bb = ( dx - x )**2 + y**2 |
---|
883 | cc = x**2 + ( dy - y )**2 |
---|
884 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
885 | gg = aa + bb + cc + dd |
---|
886 | |
---|
887 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
888 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
889 | ) / ( 3.0 * gg ) - v_gtrans |
---|
890 | IF ( k+1 == nzt+1 ) THEN |
---|
891 | v_int = v_int_l |
---|
892 | ELSE |
---|
893 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
894 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
895 | ) / ( 3.0 * gg ) - v_gtrans |
---|
896 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
897 | ( v_int_u - v_int_l ) |
---|
898 | ENDIF |
---|
899 | |
---|
900 | ! |
---|
901 | !-- Same procedure for interpolation of the w velocity-component (adopt |
---|
902 | !-- index i from v velocity-component) |
---|
903 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
904 | j = particles(n)%y * ddy |
---|
905 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
906 | |
---|
907 | x = particles(n)%x - i * dx |
---|
908 | y = particles(n)%y - j * dy |
---|
909 | aa = x**2 + y**2 |
---|
910 | bb = ( dx - x )**2 + y**2 |
---|
911 | cc = x**2 + ( dy - y )**2 |
---|
912 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
913 | gg = aa + bb + cc + dd |
---|
914 | |
---|
915 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
916 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
917 | ) / ( 3.0 * gg ) |
---|
918 | IF ( k+1 == nzt+1 ) THEN |
---|
919 | w_int = w_int_l |
---|
920 | ELSE |
---|
921 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
922 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
923 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
924 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
925 | ) / ( 3.0 * gg ) |
---|
926 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
927 | ( w_int_u - w_int_l ) |
---|
928 | ENDIF |
---|
929 | ELSE |
---|
930 | w_int = 0.0 |
---|
931 | ENDIF |
---|
932 | |
---|
933 | ! |
---|
934 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
935 | !-- velocities |
---|
936 | IF ( use_sgs_for_particles ) THEN |
---|
937 | ! |
---|
938 | !-- Interpolate TKE |
---|
939 | i = particles(n)%x * ddx |
---|
940 | j = particles(n)%y * ddy |
---|
941 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
942 | + offset_ocean_nzt ! only exact if eq.dist |
---|
943 | |
---|
944 | IF ( topography == 'flat' ) THEN |
---|
945 | |
---|
946 | x = particles(n)%x - i * dx |
---|
947 | y = particles(n)%y - j * dy |
---|
948 | aa = x**2 + y**2 |
---|
949 | bb = ( dx - x )**2 + y**2 |
---|
950 | cc = x**2 + ( dy - y )**2 |
---|
951 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
952 | gg = aa + bb + cc + dd |
---|
953 | |
---|
954 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
955 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
956 | ) / ( 3.0 * gg ) |
---|
957 | |
---|
958 | IF ( k+1 == nzt+1 ) THEN |
---|
959 | e_int = e_int_l |
---|
960 | ELSE |
---|
961 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
962 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
963 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
964 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
965 | ) / ( 3.0 * gg ) |
---|
966 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
967 | ( e_int_u - e_int_l ) |
---|
968 | ENDIF |
---|
969 | |
---|
970 | ! |
---|
971 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
972 | !-- all position variables from above (TKE)) |
---|
973 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
974 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
975 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
976 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
977 | ) / ( 3.0 * gg ) |
---|
978 | |
---|
979 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
980 | de_dx_int = de_dx_int_l |
---|
981 | ELSE |
---|
982 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
983 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
984 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
985 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
986 | ) / ( 3.0 * gg ) |
---|
987 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
988 | ( de_dx_int_u - de_dx_int_l ) |
---|
989 | ENDIF |
---|
990 | |
---|
991 | ! |
---|
992 | !-- Interpolate the TKE gradient along y |
---|
993 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
994 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
995 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
996 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
997 | ) / ( 3.0 * gg ) |
---|
998 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
999 | de_dy_int = de_dy_int_l |
---|
1000 | ELSE |
---|
1001 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
1002 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
1003 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
1004 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
1005 | ) / ( 3.0 * gg ) |
---|
1006 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1007 | ( de_dy_int_u - de_dy_int_l ) |
---|
1008 | ENDIF |
---|
1009 | |
---|
1010 | ! |
---|
1011 | !-- Interpolate the TKE gradient along z |
---|
1012 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
1013 | de_dz_int = 0.0 |
---|
1014 | ELSE |
---|
1015 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
1016 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
1017 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
1018 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
1019 | ) / ( 3.0 * gg ) |
---|
1020 | |
---|
1021 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1022 | de_dz_int = de_dz_int_l |
---|
1023 | ELSE |
---|
1024 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
1025 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
1026 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
1027 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
1028 | ) / ( 3.0 * gg ) |
---|
1029 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1030 | ( de_dz_int_u - de_dz_int_l ) |
---|
1031 | ENDIF |
---|
1032 | ENDIF |
---|
1033 | |
---|
1034 | ! |
---|
1035 | !-- Interpolate the dissipation of TKE |
---|
1036 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
1037 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
1038 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
1039 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
1040 | ) / ( 3.0 * gg ) |
---|
1041 | |
---|
1042 | IF ( k+1 == nzt+1 ) THEN |
---|
1043 | diss_int = diss_int_l |
---|
1044 | ELSE |
---|
1045 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
1046 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
1047 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
1048 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
1049 | ) / ( 3.0 * gg ) |
---|
1050 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1051 | ( diss_int_u - diss_int_l ) |
---|
1052 | ENDIF |
---|
1053 | |
---|
1054 | ELSE |
---|
1055 | |
---|
1056 | ! |
---|
1057 | !-- In case that there are buildings it has to be determined |
---|
1058 | !-- how many of the gridpoints defining the particle box are |
---|
1059 | !-- situated within a building |
---|
1060 | !-- gp_outside_of_building(1): i,j,k |
---|
1061 | !-- gp_outside_of_building(2): i,j+1,k |
---|
1062 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
1063 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
1064 | !-- gp_outside_of_building(5): i+1,j,k |
---|
1065 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
1066 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
1067 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
1068 | |
---|
1069 | gp_outside_of_building = 0 |
---|
1070 | location = 0.0 |
---|
1071 | num_gp = 0 |
---|
1072 | |
---|
1073 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
1074 | num_gp = num_gp + 1 |
---|
1075 | gp_outside_of_building(1) = 1 |
---|
1076 | location(num_gp,1) = i * dx |
---|
1077 | location(num_gp,2) = j * dy |
---|
1078 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1079 | ei(num_gp) = e(k,j,i) |
---|
1080 | dissi(num_gp) = diss(k,j,i) |
---|
1081 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
1082 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
1083 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1084 | ENDIF |
---|
1085 | |
---|
1086 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
1087 | THEN |
---|
1088 | num_gp = num_gp + 1 |
---|
1089 | gp_outside_of_building(2) = 1 |
---|
1090 | location(num_gp,1) = i * dx |
---|
1091 | location(num_gp,2) = (j+1) * dy |
---|
1092 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1093 | ei(num_gp) = e(k,j+1,i) |
---|
1094 | dissi(num_gp) = diss(k,j+1,i) |
---|
1095 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
1096 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
1097 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1098 | ENDIF |
---|
1099 | |
---|
1100 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
1101 | num_gp = num_gp + 1 |
---|
1102 | gp_outside_of_building(3) = 1 |
---|
1103 | location(num_gp,1) = i * dx |
---|
1104 | location(num_gp,2) = j * dy |
---|
1105 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1106 | ei(num_gp) = e(k+1,j,i) |
---|
1107 | dissi(num_gp) = diss(k+1,j,i) |
---|
1108 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1109 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1110 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1111 | ENDIF |
---|
1112 | |
---|
1113 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
1114 | THEN |
---|
1115 | num_gp = num_gp + 1 |
---|
1116 | gp_outside_of_building(4) = 1 |
---|
1117 | location(num_gp,1) = i * dx |
---|
1118 | location(num_gp,2) = (j+1) * dy |
---|
1119 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1120 | ei(num_gp) = e(k+1,j+1,i) |
---|
1121 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1122 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1123 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1124 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1125 | ENDIF |
---|
1126 | |
---|
1127 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
1128 | THEN |
---|
1129 | num_gp = num_gp + 1 |
---|
1130 | gp_outside_of_building(5) = 1 |
---|
1131 | location(num_gp,1) = (i+1) * dx |
---|
1132 | location(num_gp,2) = j * dy |
---|
1133 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1134 | ei(num_gp) = e(k,j,i+1) |
---|
1135 | dissi(num_gp) = diss(k,j,i+1) |
---|
1136 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
1137 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
1138 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1139 | ENDIF |
---|
1140 | |
---|
1141 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
1142 | THEN |
---|
1143 | num_gp = num_gp + 1 |
---|
1144 | gp_outside_of_building(6) = 1 |
---|
1145 | location(num_gp,1) = (i+1) * dx |
---|
1146 | location(num_gp,2) = (j+1) * dy |
---|
1147 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1148 | ei(num_gp) = e(k,j+1,i+1) |
---|
1149 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1150 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
1151 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
1152 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1153 | ENDIF |
---|
1154 | |
---|
1155 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
1156 | THEN |
---|
1157 | num_gp = num_gp + 1 |
---|
1158 | gp_outside_of_building(7) = 1 |
---|
1159 | location(num_gp,1) = (i+1) * dx |
---|
1160 | location(num_gp,2) = j * dy |
---|
1161 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1162 | ei(num_gp) = e(k+1,j,i+1) |
---|
1163 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1164 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1165 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1166 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1167 | ENDIF |
---|
1168 | |
---|
1169 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
1170 | THEN |
---|
1171 | num_gp = num_gp + 1 |
---|
1172 | gp_outside_of_building(8) = 1 |
---|
1173 | location(num_gp,1) = (i+1) * dx |
---|
1174 | location(num_gp,2) = (j+1) * dy |
---|
1175 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
1176 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1177 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1178 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1179 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1180 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1181 | ENDIF |
---|
1182 | |
---|
1183 | ! |
---|
1184 | !-- If all gridpoints are situated outside of a building, then the |
---|
1185 | !-- ordinary interpolation scheme can be used. |
---|
1186 | IF ( num_gp == 8 ) THEN |
---|
1187 | |
---|
1188 | x = particles(n)%x - i * dx |
---|
1189 | y = particles(n)%y - j * dy |
---|
1190 | aa = x**2 + y**2 |
---|
1191 | bb = ( dx - x )**2 + y**2 |
---|
1192 | cc = x**2 + ( dy - y )**2 |
---|
1193 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
1194 | gg = aa + bb + cc + dd |
---|
1195 | |
---|
1196 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
1197 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
1198 | ) / ( 3.0 * gg ) |
---|
1199 | |
---|
1200 | IF ( k+1 == nzt+1 ) THEN |
---|
1201 | e_int = e_int_l |
---|
1202 | ELSE |
---|
1203 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
1204 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
1205 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
1206 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
1207 | ) / ( 3.0 * gg ) |
---|
1208 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
1209 | ( e_int_u - e_int_l ) |
---|
1210 | ENDIF |
---|
1211 | |
---|
1212 | ! |
---|
1213 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
1214 | !-- and all position variables from above (TKE)) |
---|
1215 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
1216 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
1217 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
1218 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
1219 | ) / ( 3.0 * gg ) |
---|
1220 | |
---|
1221 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1222 | de_dx_int = de_dx_int_l |
---|
1223 | ELSE |
---|
1224 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
1225 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
1226 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
1227 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
1228 | ) / ( 3.0 * gg ) |
---|
1229 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
1230 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
1231 | ENDIF |
---|
1232 | |
---|
1233 | ! |
---|
1234 | !-- Interpolate the TKE gradient along y |
---|
1235 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
1236 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
1237 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
1238 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
1239 | ) / ( 3.0 * gg ) |
---|
1240 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1241 | de_dy_int = de_dy_int_l |
---|
1242 | ELSE |
---|
1243 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
1244 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
1245 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
1246 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
1247 | ) / ( 3.0 * gg ) |
---|
1248 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
1249 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
1250 | ENDIF |
---|
1251 | |
---|
1252 | ! |
---|
1253 | !-- Interpolate the TKE gradient along z |
---|
1254 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
1255 | de_dz_int = 0.0 |
---|
1256 | ELSE |
---|
1257 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
1258 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
1259 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
1260 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
1261 | ) / ( 3.0 * gg ) |
---|
1262 | |
---|
1263 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
1264 | de_dz_int = de_dz_int_l |
---|
1265 | ELSE |
---|
1266 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
1267 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
1268 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
1269 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
1270 | ) / ( 3.0 * gg ) |
---|
1271 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
1272 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
1273 | ENDIF |
---|
1274 | ENDIF |
---|
1275 | |
---|
1276 | ! |
---|
1277 | !-- Interpolate the dissipation of TKE |
---|
1278 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
1279 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
1280 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
1281 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
1282 | ) / ( 3.0 * gg ) |
---|
1283 | |
---|
1284 | IF ( k+1 == nzt+1 ) THEN |
---|
1285 | diss_int = diss_int_l |
---|
1286 | ELSE |
---|
1287 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
1288 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
1289 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
1290 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
1291 | ) / ( 3.0 * gg ) |
---|
1292 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
1293 | ( diss_int_u - diss_int_l ) |
---|
1294 | ENDIF |
---|
1295 | |
---|
1296 | ELSE |
---|
1297 | |
---|
1298 | ! |
---|
1299 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
1300 | !-- Neumann boundary condition has to be applied |
---|
1301 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
1302 | gp_outside_of_building(5) == 0 ) THEN |
---|
1303 | num_gp = num_gp + 1 |
---|
1304 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1305 | location(num_gp,2) = j * dy |
---|
1306 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1307 | ei(num_gp) = e(k,j,i) |
---|
1308 | dissi(num_gp) = diss(k,j,i) |
---|
1309 | de_dxi(num_gp) = 0.0 |
---|
1310 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
1311 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1312 | ENDIF |
---|
1313 | |
---|
1314 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
1315 | gp_outside_of_building(1) == 0 ) THEN |
---|
1316 | num_gp = num_gp + 1 |
---|
1317 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1318 | location(num_gp,2) = j * dy |
---|
1319 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1320 | ei(num_gp) = e(k,j,i+1) |
---|
1321 | dissi(num_gp) = diss(k,j,i+1) |
---|
1322 | de_dxi(num_gp) = 0.0 |
---|
1323 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
1324 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1325 | ENDIF |
---|
1326 | |
---|
1327 | ! |
---|
1328 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
1329 | !-- then Neumann boundary condition has to be applied |
---|
1330 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
1331 | gp_outside_of_building(6) == 0 ) THEN |
---|
1332 | num_gp = num_gp + 1 |
---|
1333 | location(num_gp,1) = (i+1) * dx |
---|
1334 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1335 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1336 | ei(num_gp) = e(k,j,i+1) |
---|
1337 | dissi(num_gp) = diss(k,j,i+1) |
---|
1338 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
1339 | de_dyi(num_gp) = 0.0 |
---|
1340 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1341 | ENDIF |
---|
1342 | |
---|
1343 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
1344 | gp_outside_of_building(5) == 0 ) THEN |
---|
1345 | num_gp = num_gp + 1 |
---|
1346 | location(num_gp,1) = (i+1) * dx |
---|
1347 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1348 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1349 | ei(num_gp) = e(k,j+1,i+1) |
---|
1350 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1351 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
1352 | de_dyi(num_gp) = 0.0 |
---|
1353 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1354 | ENDIF |
---|
1355 | |
---|
1356 | ! |
---|
1357 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
1358 | !-- Neumann boundary condition has to be applied |
---|
1359 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
1360 | gp_outside_of_building(6) == 0 ) THEN |
---|
1361 | num_gp = num_gp + 1 |
---|
1362 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1363 | location(num_gp,2) = (j+1) * dy |
---|
1364 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1365 | ei(num_gp) = e(k,j+1,i) |
---|
1366 | dissi(num_gp) = diss(k,j+1,i) |
---|
1367 | de_dxi(num_gp) = 0.0 |
---|
1368 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
1369 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1370 | ENDIF |
---|
1371 | |
---|
1372 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
1373 | gp_outside_of_building(2) == 0 ) THEN |
---|
1374 | num_gp = num_gp + 1 |
---|
1375 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1376 | location(num_gp,2) = (j+1) * dy |
---|
1377 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1378 | ei(num_gp) = e(k,j+1,i+1) |
---|
1379 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1380 | de_dxi(num_gp) = 0.0 |
---|
1381 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
1382 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1383 | ENDIF |
---|
1384 | |
---|
1385 | ! |
---|
1386 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
1387 | !-- Neumann boundary condition has to be applied |
---|
1388 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
1389 | gp_outside_of_building(2) == 0 ) THEN |
---|
1390 | num_gp = num_gp + 1 |
---|
1391 | location(num_gp,1) = i * dx |
---|
1392 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1393 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1394 | ei(num_gp) = e(k,j,i) |
---|
1395 | dissi(num_gp) = diss(k,j,i) |
---|
1396 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
1397 | de_dyi(num_gp) = 0.0 |
---|
1398 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1399 | ENDIF |
---|
1400 | |
---|
1401 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
1402 | gp_outside_of_building(1) == 0 ) THEN |
---|
1403 | num_gp = num_gp + 1 |
---|
1404 | location(num_gp,1) = i * dx |
---|
1405 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1406 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
1407 | ei(num_gp) = e(k,j+1,i) |
---|
1408 | dissi(num_gp) = diss(k,j+1,i) |
---|
1409 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
1410 | de_dyi(num_gp) = 0.0 |
---|
1411 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1412 | ENDIF |
---|
1413 | |
---|
1414 | ! |
---|
1415 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
1416 | !-- Neumann boundary condition has to be applied |
---|
1417 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1418 | gp_outside_of_building(7) == 0 ) THEN |
---|
1419 | num_gp = num_gp + 1 |
---|
1420 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1421 | location(num_gp,2) = j * dy |
---|
1422 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1423 | ei(num_gp) = e(k+1,j,i) |
---|
1424 | dissi(num_gp) = diss(k+1,j,i) |
---|
1425 | de_dxi(num_gp) = 0.0 |
---|
1426 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1427 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1428 | ENDIF |
---|
1429 | |
---|
1430 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
1431 | gp_outside_of_building(3) == 0 ) THEN |
---|
1432 | num_gp = num_gp + 1 |
---|
1433 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1434 | location(num_gp,2) = j * dy |
---|
1435 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1436 | ei(num_gp) = e(k+1,j,i+1) |
---|
1437 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1438 | de_dxi(num_gp) = 0.0 |
---|
1439 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1440 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1441 | ENDIF |
---|
1442 | |
---|
1443 | ! |
---|
1444 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
1445 | !-- Neumann boundary condition has to be applied |
---|
1446 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
1447 | gp_outside_of_building(8) == 0 ) THEN |
---|
1448 | num_gp = num_gp + 1 |
---|
1449 | location(num_gp,1) = (i+1) * dx |
---|
1450 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1451 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1452 | ei(num_gp) = e(k+1,j,i+1) |
---|
1453 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1454 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1455 | de_dyi(num_gp) = 0.0 |
---|
1456 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1457 | ENDIF |
---|
1458 | |
---|
1459 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1460 | gp_outside_of_building(7) == 0 ) THEN |
---|
1461 | num_gp = num_gp + 1 |
---|
1462 | location(num_gp,1) = (i+1) * dx |
---|
1463 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1464 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1465 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1466 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1467 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1468 | de_dyi(num_gp) = 0.0 |
---|
1469 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1470 | ENDIF |
---|
1471 | |
---|
1472 | ! |
---|
1473 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
1474 | !-- Neumann boundary condition has to be applied |
---|
1475 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1476 | gp_outside_of_building(8) == 0 ) THEN |
---|
1477 | num_gp = num_gp + 1 |
---|
1478 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1479 | location(num_gp,2) = (j+1) * dy |
---|
1480 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1481 | ei(num_gp) = e(k+1,j+1,i) |
---|
1482 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1483 | de_dxi(num_gp) = 0.0 |
---|
1484 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1485 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1486 | ENDIF |
---|
1487 | |
---|
1488 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1489 | gp_outside_of_building(4) == 0 ) THEN |
---|
1490 | num_gp = num_gp + 1 |
---|
1491 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
1492 | location(num_gp,2) = (j+1) * dy |
---|
1493 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1494 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1495 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1496 | de_dxi(num_gp) = 0.0 |
---|
1497 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1498 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1499 | ENDIF |
---|
1500 | |
---|
1501 | ! |
---|
1502 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
1503 | !-- Neumann boundary condition has to be applied |
---|
1504 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1505 | gp_outside_of_building(4) == 0 ) THEN |
---|
1506 | num_gp = num_gp + 1 |
---|
1507 | location(num_gp,1) = i * dx |
---|
1508 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1509 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1510 | ei(num_gp) = e(k+1,j,i) |
---|
1511 | dissi(num_gp) = diss(k+1,j,i) |
---|
1512 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1513 | de_dyi(num_gp) = 0.0 |
---|
1514 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1515 | ENDIF |
---|
1516 | |
---|
1517 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1518 | gp_outside_of_building(3) == 0 ) THEN |
---|
1519 | num_gp = num_gp + 1 |
---|
1520 | location(num_gp,1) = i * dx |
---|
1521 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
1522 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
1523 | ei(num_gp) = e(k+1,j+1,i) |
---|
1524 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1525 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1526 | de_dyi(num_gp) = 0.0 |
---|
1527 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | ! |
---|
1531 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
1532 | !-- Neumann boundary condition has to be applied |
---|
1533 | !-- (only one case as only building beneath is possible) |
---|
1534 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
1535 | gp_outside_of_building(3) == 1 ) THEN |
---|
1536 | num_gp = num_gp + 1 |
---|
1537 | location(num_gp,1) = i * dx |
---|
1538 | location(num_gp,2) = j * dy |
---|
1539 | location(num_gp,3) = k * dz |
---|
1540 | ei(num_gp) = e(k+1,j,i) |
---|
1541 | dissi(num_gp) = diss(k+1,j,i) |
---|
1542 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1543 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1544 | de_dzi(num_gp) = 0.0 |
---|
1545 | ENDIF |
---|
1546 | |
---|
1547 | ! |
---|
1548 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
1549 | !-- Neumann boundary condition has to be applied |
---|
1550 | !-- (only one case as only building beneath is possible) |
---|
1551 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
1552 | gp_outside_of_building(7) == 1 ) THEN |
---|
1553 | num_gp = num_gp + 1 |
---|
1554 | location(num_gp,1) = (i+1) * dx |
---|
1555 | location(num_gp,2) = j * dy |
---|
1556 | location(num_gp,3) = k * dz |
---|
1557 | ei(num_gp) = e(k+1,j,i+1) |
---|
1558 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1559 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1560 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1561 | de_dzi(num_gp) = 0.0 |
---|
1562 | ENDIF |
---|
1563 | |
---|
1564 | ! |
---|
1565 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
1566 | !-- Neumann boundary condition has to be applied |
---|
1567 | !-- (only one case as only building beneath is possible) |
---|
1568 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
1569 | gp_outside_of_building(4) == 1 ) THEN |
---|
1570 | num_gp = num_gp + 1 |
---|
1571 | location(num_gp,1) = i * dx |
---|
1572 | location(num_gp,2) = (j+1) * dy |
---|
1573 | location(num_gp,3) = k * dz |
---|
1574 | ei(num_gp) = e(k+1,j+1,i) |
---|
1575 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1576 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1577 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1578 | de_dzi(num_gp) = 0.0 |
---|
1579 | ENDIF |
---|
1580 | |
---|
1581 | ! |
---|
1582 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
1583 | !-- Neumann boundary condition has to be applied |
---|
1584 | !-- (only one case as only building beneath is possible) |
---|
1585 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
1586 | gp_outside_of_building(8) == 1 ) THEN |
---|
1587 | num_gp = num_gp + 1 |
---|
1588 | location(num_gp,1) = (i+1) * dx |
---|
1589 | location(num_gp,2) = (j+1) * dy |
---|
1590 | location(num_gp,3) = k * dz |
---|
1591 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1592 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1593 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1594 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1595 | de_dzi(num_gp) = 0.0 |
---|
1596 | ENDIF |
---|
1597 | |
---|
1598 | ! |
---|
1599 | !-- Carry out the interpolation |
---|
1600 | IF ( num_gp == 1 ) THEN |
---|
1601 | ! |
---|
1602 | !-- If only one of the gridpoints is situated outside of the |
---|
1603 | !-- building, it follows that the values at the particle |
---|
1604 | !-- location are the same as the gridpoint values |
---|
1605 | e_int = ei(num_gp) |
---|
1606 | diss_int = dissi(num_gp) |
---|
1607 | de_dx_int = de_dxi(num_gp) |
---|
1608 | de_dy_int = de_dyi(num_gp) |
---|
1609 | de_dz_int = de_dzi(num_gp) |
---|
1610 | ELSE IF ( num_gp > 1 ) THEN |
---|
1611 | |
---|
1612 | d_sum = 0.0 |
---|
1613 | ! |
---|
1614 | !-- Evaluation of the distances between the gridpoints |
---|
1615 | !-- contributing to the interpolated values, and the particle |
---|
1616 | !-- location |
---|
1617 | DO agp = 1, num_gp |
---|
1618 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
1619 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
1620 | + ( particles(n)%z-location(agp,3) )**2 |
---|
1621 | d_sum = d_sum + d_gp_pl(agp) |
---|
1622 | ENDDO |
---|
1623 | |
---|
1624 | ! |
---|
1625 | !-- Finally the interpolation can be carried out |
---|
1626 | e_int = 0.0 |
---|
1627 | diss_int = 0.0 |
---|
1628 | de_dx_int = 0.0 |
---|
1629 | de_dy_int = 0.0 |
---|
1630 | de_dz_int = 0.0 |
---|
1631 | DO agp = 1, num_gp |
---|
1632 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1633 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
1634 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1635 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
1636 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1637 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
1638 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1639 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
1640 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1641 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
1642 | ENDDO |
---|
1643 | |
---|
1644 | ENDIF |
---|
1645 | |
---|
1646 | ENDIF |
---|
1647 | |
---|
1648 | ENDIF |
---|
1649 | |
---|
1650 | ! |
---|
1651 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
1652 | !-- resolved-scale velocity variances and use the interpolated values |
---|
1653 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
1654 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
1655 | !-- of turbulent kinetic energy. |
---|
1656 | IF ( k == 0 ) THEN |
---|
1657 | e_mean_int = hom(0,1,8,0) |
---|
1658 | ELSE |
---|
1659 | e_mean_int = hom(k,1,8,0) + & |
---|
1660 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
1661 | ( zu(k+1) - zu(k) ) * & |
---|
1662 | ( particles(n)%z - zu(k) ) |
---|
1663 | ENDIF |
---|
1664 | |
---|
1665 | kw = particles(n)%z / dz |
---|
1666 | |
---|
1667 | IF ( k == 0 ) THEN |
---|
1668 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
1669 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
1670 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
1671 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
1672 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
1673 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
1674 | ELSE |
---|
1675 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
1676 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1677 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
1678 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1679 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
1680 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
1681 | ENDIF |
---|
1682 | |
---|
1683 | vv_int = ( 1.0 / 3.0 ) * ( aa + bb + cc ) |
---|
1684 | |
---|
1685 | fs_int = ( 2.0 / 3.0 ) * e_mean_int / & |
---|
1686 | ( vv_int + ( 2.0 / 3.0 ) * e_mean_int ) |
---|
1687 | |
---|
1688 | ! |
---|
1689 | !-- Calculate the Lagrangian timescale according to the suggestion of |
---|
1690 | !-- Weil et al. (2004). |
---|
1691 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
1692 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
1693 | |
---|
1694 | ! |
---|
1695 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
1696 | !-- complete the current LES timestep. |
---|
1697 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
1698 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
1699 | |
---|
1700 | ! |
---|
1701 | !-- The particle timestep should not be too small in order to prevent |
---|
1702 | !-- the number of particle timesteps of getting too large |
---|
1703 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
1704 | THEN |
---|
1705 | dt_particle = dt_min_part |
---|
1706 | ENDIF |
---|
1707 | |
---|
1708 | ! |
---|
1709 | !-- Calculate the SGS velocity components |
---|
1710 | IF ( particles(n)%age == 0.0 ) THEN |
---|
1711 | ! |
---|
1712 | !-- For new particles the SGS components are derived from the SGS |
---|
1713 | !-- TKE. Limit the Gaussian random number to the interval |
---|
1714 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
1715 | !-- from becoming unrealistically large. |
---|
1716 | particles(n)%speed_x_sgs = SQRT( 2.0 * sgs_wfu_part * e_int ) *& |
---|
1717 | ( random_gauss( iran_part, 5.0 ) & |
---|
1718 | - 1.0 ) |
---|
1719 | particles(n)%speed_y_sgs = SQRT( 2.0 * sgs_wfv_part * e_int ) *& |
---|
1720 | ( random_gauss( iran_part, 5.0 ) & |
---|
1721 | - 1.0 ) |
---|
1722 | particles(n)%speed_z_sgs = SQRT( 2.0 * sgs_wfw_part * e_int ) *& |
---|
1723 | ( random_gauss( iran_part, 5.0 ) & |
---|
1724 | - 1.0 ) |
---|
1725 | |
---|
1726 | ELSE |
---|
1727 | |
---|
1728 | ! |
---|
1729 | !-- Restriction of the size of the new timestep: compared to the |
---|
1730 | !-- previous timestep the increase must not exceed 200% |
---|
1731 | |
---|
1732 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
1733 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
1734 | dt_particle = 2.0 * dt_particle_m |
---|
1735 | ENDIF |
---|
1736 | |
---|
1737 | ! |
---|
1738 | !-- For old particles the SGS components are correlated with the |
---|
1739 | !-- values from the previous timestep. Random numbers have also to |
---|
1740 | !-- be limited (see above). |
---|
1741 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
1742 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
1743 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
1744 | !-- value for the change of TKE |
---|
1745 | |
---|
1746 | de_dt_min = - e_int / dt_particle |
---|
1747 | |
---|
1748 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
1749 | |
---|
1750 | IF ( de_dt < de_dt_min ) THEN |
---|
1751 | de_dt = de_dt_min |
---|
1752 | ENDIF |
---|
1753 | |
---|
1754 | particles(n)%speed_x_sgs = particles(n)%speed_x_sgs - & |
---|
1755 | fs_int * c_0 * diss_int * particles(n)%speed_x_sgs * & |
---|
1756 | dt_particle / ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
1757 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
1758 | particles(n)%speed_x_sgs / & |
---|
1759 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
1760 | ) * dt_particle / 2.0 + & |
---|
1761 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1762 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1763 | SQRT( dt_particle ) |
---|
1764 | |
---|
1765 | particles(n)%speed_y_sgs = particles(n)%speed_y_sgs - & |
---|
1766 | fs_int * c_0 * diss_int * particles(n)%speed_y_sgs * & |
---|
1767 | dt_particle / ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
1768 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
1769 | particles(n)%speed_y_sgs / & |
---|
1770 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
1771 | ) * dt_particle / 2.0 + & |
---|
1772 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1773 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1774 | SQRT( dt_particle ) |
---|
1775 | |
---|
1776 | particles(n)%speed_z_sgs = particles(n)%speed_z_sgs - & |
---|
1777 | fs_int * c_0 * diss_int * particles(n)%speed_z_sgs * & |
---|
1778 | dt_particle / ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
1779 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
1780 | particles(n)%speed_z_sgs / & |
---|
1781 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
1782 | ) * dt_particle / 2.0 + & |
---|
1783 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1784 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1785 | SQRT( dt_particle ) |
---|
1786 | |
---|
1787 | ENDIF |
---|
1788 | |
---|
1789 | u_int = u_int + particles(n)%speed_x_sgs |
---|
1790 | v_int = v_int + particles(n)%speed_y_sgs |
---|
1791 | w_int = w_int + particles(n)%speed_z_sgs |
---|
1792 | |
---|
1793 | ! |
---|
1794 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1795 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1796 | particles(n)%e_m = e_int |
---|
1797 | |
---|
1798 | ELSE |
---|
1799 | ! |
---|
1800 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1801 | !-- be set |
---|
1802 | dt_particle = dt_3d |
---|
1803 | |
---|
1804 | ENDIF |
---|
1805 | |
---|
1806 | ! |
---|
1807 | !-- Remember the old age of the particle ( needed to prevent that a |
---|
1808 | !-- particle crosses several PEs during one timestep and for the |
---|
1809 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1810 | particles(n)%age_m = particles(n)%age |
---|
1811 | |
---|
1812 | |
---|
1813 | ! |
---|
1814 | !-- Particle advection |
---|
1815 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
1816 | ! |
---|
1817 | !-- Pure passive transport (without particle inertia) |
---|
1818 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
1819 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
1820 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
1821 | |
---|
1822 | particles(n)%speed_x = u_int |
---|
1823 | particles(n)%speed_y = v_int |
---|
1824 | particles(n)%speed_z = w_int |
---|
1825 | |
---|
1826 | ELSE |
---|
1827 | ! |
---|
1828 | !-- Transport of particles with inertia |
---|
1829 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1830 | dt_particle |
---|
1831 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1832 | dt_particle |
---|
1833 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1834 | dt_particle |
---|
1835 | |
---|
1836 | ! |
---|
1837 | !-- Update of the particle velocity |
---|
1838 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
1839 | IF ( cloud_droplets ) THEN |
---|
1840 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
1841 | ( particles(n)%radius )**2 / & |
---|
1842 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
1843 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
1844 | ( v_int - particles(n)%speed_y )**2 + & |
---|
1845 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
1846 | molecular_viscosity )**0.687 & |
---|
1847 | ) |
---|
1848 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1849 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1850 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1851 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1852 | ELSE |
---|
1853 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1854 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1855 | ENDIF |
---|
1856 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1857 | u_int * ( 1.0 - exp_term ) |
---|
1858 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1859 | v_int * ( 1.0 - exp_term ) |
---|
1860 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1861 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg ) & |
---|
1862 | * ( 1.0 - exp_term ) |
---|
1863 | ENDIF |
---|
1864 | |
---|
1865 | ! |
---|
1866 | !-- Increment the particle age and the total time that the particle |
---|
1867 | !-- has advanced within the particle timestep procedure |
---|
1868 | particles(n)%age = particles(n)%age + dt_particle |
---|
1869 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
1870 | |
---|
1871 | ! |
---|
1872 | !-- Check whether there is still a particle that has not yet completed |
---|
1873 | !-- the total LES timestep |
---|
1874 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
1875 | dt_3d_reached_l = .FALSE. |
---|
1876 | ENDIF |
---|
1877 | |
---|
1878 | ENDDO ! advection loop |
---|
1879 | |
---|
1880 | ! |
---|
1881 | !-- Particle reflection from walls |
---|
1882 | CALL particle_boundary_conds |
---|
1883 | |
---|
1884 | ! |
---|
1885 | !-- User-defined actions after the calculation of the new particle position |
---|
1886 | CALL user_advec_particles |
---|
1887 | |
---|
1888 | ! |
---|
1889 | !-- Find out, if all particles on every PE have completed the LES timestep |
---|
1890 | !-- and set the switch corespondingly |
---|
1891 | #if defined( __parallel ) |
---|
1892 | CALL MPI_ALLREDUCE( dt_3d_reached_l, dt_3d_reached, 1, MPI_LOGICAL, & |
---|
1893 | MPI_LAND, comm2d, ierr ) |
---|
1894 | #else |
---|
1895 | dt_3d_reached = dt_3d_reached_l |
---|
1896 | #endif |
---|
1897 | |
---|
1898 | CALL cpu_log( log_point_s(44), 'advec_part_advec', 'stop' ) |
---|
1899 | |
---|
1900 | ! |
---|
1901 | !-- Increment time since last release |
---|
1902 | IF ( dt_3d_reached ) time_prel = time_prel + dt_3d |
---|
1903 | |
---|
1904 | ! WRITE ( 9, * ) '*** advec_particles: ##0.4' |
---|
1905 | ! CALL local_flush( 9 ) |
---|
1906 | ! nd = 0 |
---|
1907 | ! DO n = 1, number_of_particles |
---|
1908 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
1909 | ! ENDDO |
---|
1910 | ! IF ( nd /= deleted_particles ) THEN |
---|
1911 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
1912 | ! CALL local_flush( 9 ) |
---|
1913 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
1914 | ! ENDIF |
---|
1915 | |
---|
1916 | ! |
---|
1917 | !-- If necessary, release new set of particles |
---|
1918 | IF ( time_prel >= dt_prel .AND. end_time_prel > simulated_time .AND. & |
---|
1919 | dt_3d_reached ) THEN |
---|
1920 | |
---|
1921 | ! |
---|
1922 | !-- Check, if particle storage must be extended |
---|
1923 | IF ( number_of_particles + number_of_initial_particles > & |
---|
1924 | maximum_number_of_particles ) THEN |
---|
1925 | IF ( netcdf_output ) THEN |
---|
1926 | message_string = 'maximum_number_of_particles ' // & |
---|
1927 | 'needs to be increased ' // & |
---|
1928 | '&but this is not allowed with ' // & |
---|
1929 | 'NetCDF output switched on' |
---|
1930 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
1931 | ELSE |
---|
1932 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory dt_prel' |
---|
1933 | ! CALL local_flush( 9 ) |
---|
1934 | CALL allocate_prt_memory( number_of_initial_particles ) |
---|
1935 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory dt_prel' |
---|
1936 | ! CALL local_flush( 9 ) |
---|
1937 | ENDIF |
---|
1938 | ENDIF |
---|
1939 | |
---|
1940 | ! |
---|
1941 | !-- Check, if tail storage must be extended |
---|
1942 | IF ( use_particle_tails ) THEN |
---|
1943 | IF ( number_of_tails + number_of_initial_tails > & |
---|
1944 | maximum_number_of_tails ) THEN |
---|
1945 | IF ( netcdf_output ) THEN |
---|
1946 | message_string = 'maximum_number_of_tails ' // & |
---|
1947 | 'needs to be increased ' // & |
---|
1948 | '&but this is not allowed wi' // & |
---|
1949 | 'th NetCDF output switched on' |
---|
1950 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
1951 | ELSE |
---|
1952 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory dt_prel' |
---|
1953 | ! CALL local_flush( 9 ) |
---|
1954 | CALL allocate_tail_memory( number_of_initial_tails ) |
---|
1955 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory dt_prel' |
---|
1956 | ! CALL local_flush( 9 ) |
---|
1957 | ENDIF |
---|
1958 | ENDIF |
---|
1959 | ENDIF |
---|
1960 | |
---|
1961 | ! |
---|
1962 | !-- The MOD function allows for changes in the output interval with |
---|
1963 | !-- restart runs. |
---|
1964 | time_prel = MOD( time_prel, MAX( dt_prel, dt_3d ) ) |
---|
1965 | IF ( number_of_initial_particles /= 0 ) THEN |
---|
1966 | is = number_of_particles+1 |
---|
1967 | ie = number_of_particles+number_of_initial_particles |
---|
1968 | particles(is:ie) = initial_particles(1:number_of_initial_particles) |
---|
1969 | ! |
---|
1970 | !-- Add random fluctuation to particle positions. Particles should |
---|
1971 | !-- remain in the subdomain. |
---|
1972 | IF ( random_start_position ) THEN |
---|
1973 | DO n = is, ie |
---|
1974 | IF ( psl(particles(n)%group) /= psr(particles(n)%group) ) & |
---|
1975 | THEN |
---|
1976 | particles(n)%x = particles(n)%x + & |
---|
1977 | ( random_function( iran_part ) - 0.5 ) *& |
---|
1978 | pdx(particles(n)%group) |
---|
1979 | IF ( particles(n)%x <= ( nxl - 0.5 ) * dx ) THEN |
---|
1980 | particles(n)%x = ( nxl - 0.4999999999 ) * dx |
---|
1981 | ELSEIF ( particles(n)%x >= ( nxr + 0.5 ) * dx ) THEN |
---|
1982 | particles(n)%x = ( nxr + 0.4999999999 ) * dx |
---|
1983 | ENDIF |
---|
1984 | ENDIF |
---|
1985 | IF ( pss(particles(n)%group) /= psn(particles(n)%group) ) & |
---|
1986 | THEN |
---|
1987 | particles(n)%y = particles(n)%y + & |
---|
1988 | ( random_function( iran_part ) - 0.5 ) *& |
---|
1989 | pdy(particles(n)%group) |
---|
1990 | IF ( particles(n)%y <= ( nys - 0.5 ) * dy ) THEN |
---|
1991 | particles(n)%y = ( nys - 0.4999999999 ) * dy |
---|
1992 | ELSEIF ( particles(n)%y >= ( nyn + 0.5 ) * dy ) THEN |
---|
1993 | particles(n)%y = ( nyn + 0.4999999999 ) * dy |
---|
1994 | ENDIF |
---|
1995 | ENDIF |
---|
1996 | IF ( psb(particles(n)%group) /= pst(particles(n)%group) ) & |
---|
1997 | THEN |
---|
1998 | particles(n)%z = particles(n)%z + & |
---|
1999 | ( random_function( iran_part ) - 0.5 ) *& |
---|
2000 | pdz(particles(n)%group) |
---|
2001 | ENDIF |
---|
2002 | ENDDO |
---|
2003 | ENDIF |
---|
2004 | |
---|
2005 | ! |
---|
2006 | !-- Set the beginning of the new particle tails and their age |
---|
2007 | IF ( use_particle_tails ) THEN |
---|
2008 | DO n = is, ie |
---|
2009 | ! |
---|
2010 | !-- New particles which should have a tail, already have got a |
---|
2011 | !-- provisional tail id unequal zero (see init_particles) |
---|
2012 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2013 | number_of_tails = number_of_tails + 1 |
---|
2014 | nn = number_of_tails |
---|
2015 | particles(n)%tail_id = nn ! set the final tail id |
---|
2016 | particle_tail_coordinates(1,1,nn) = particles(n)%x |
---|
2017 | particle_tail_coordinates(1,2,nn) = particles(n)%y |
---|
2018 | particle_tail_coordinates(1,3,nn) = particles(n)%z |
---|
2019 | particle_tail_coordinates(1,4,nn) = particles(n)%color |
---|
2020 | particles(n)%tailpoints = 1 |
---|
2021 | IF ( minimum_tailpoint_distance /= 0.0 ) THEN |
---|
2022 | particle_tail_coordinates(2,1,nn) = particles(n)%x |
---|
2023 | particle_tail_coordinates(2,2,nn) = particles(n)%y |
---|
2024 | particle_tail_coordinates(2,3,nn) = particles(n)%z |
---|
2025 | particle_tail_coordinates(2,4,nn) = particles(n)%color |
---|
2026 | particle_tail_coordinates(1:2,5,nn) = 0.0 |
---|
2027 | particles(n)%tailpoints = 2 |
---|
2028 | ENDIF |
---|
2029 | ENDIF |
---|
2030 | ENDDO |
---|
2031 | ENDIF |
---|
2032 | ! WRITE ( 9, * ) '*** advec_particles: after setting the beginning of new tails' |
---|
2033 | ! CALL local_flush( 9 ) |
---|
2034 | |
---|
2035 | number_of_particles = number_of_particles + & |
---|
2036 | number_of_initial_particles |
---|
2037 | ENDIF |
---|
2038 | |
---|
2039 | ENDIF |
---|
2040 | |
---|
2041 | ! WRITE ( 9, * ) '*** advec_particles: ##0.5' |
---|
2042 | ! CALL local_flush( 9 ) |
---|
2043 | ! nd = 0 |
---|
2044 | ! DO n = 1, number_of_particles |
---|
2045 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2046 | ! ENDDO |
---|
2047 | ! IF ( nd /= deleted_particles ) THEN |
---|
2048 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2049 | ! CALL local_flush( 9 ) |
---|
2050 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2051 | ! ENDIF |
---|
2052 | |
---|
2053 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2054 | ! WRITE (9,*) '--- advec_particles: #2' |
---|
2055 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2056 | ! CALL local_flush( 9 ) |
---|
2057 | ! ENDIF |
---|
2058 | ! DO n = 1, number_of_particles |
---|
2059 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2060 | ! THEN |
---|
2061 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2062 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2063 | ! CALL local_flush( 9 ) |
---|
2064 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2065 | ! ENDIF |
---|
2066 | ! ENDDO |
---|
2067 | |
---|
2068 | #if defined( __parallel ) |
---|
2069 | ! |
---|
2070 | !-- As soon as one particle has moved beyond the boundary of the domain, it |
---|
2071 | !-- is included in the relevant transfer arrays and marked for subsequent |
---|
2072 | !-- deletion on this PE. |
---|
2073 | !-- First run for crossings in x direction. Find out first the number of |
---|
2074 | !-- particles to be transferred and allocate temporary arrays needed to store |
---|
2075 | !-- them. |
---|
2076 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
2077 | !-- because the particle remains on the PE. |
---|
2078 | trlp_count = 0 |
---|
2079 | trlpt_count = 0 |
---|
2080 | trrp_count = 0 |
---|
2081 | trrpt_count = 0 |
---|
2082 | IF ( pdims(1) /= 1 ) THEN |
---|
2083 | ! |
---|
2084 | !-- First calculate the storage necessary for sending and receiving the |
---|
2085 | !-- data |
---|
2086 | DO n = 1, number_of_particles |
---|
2087 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
2088 | ! |
---|
2089 | !-- Above calculation does not work for indices less than zero |
---|
2090 | IF ( particles(n)%x < -0.5 * dx ) i = -1 |
---|
2091 | |
---|
2092 | IF ( i < nxl ) THEN |
---|
2093 | trlp_count = trlp_count + 1 |
---|
2094 | IF ( particles(n)%tail_id /= 0 ) trlpt_count = trlpt_count + 1 |
---|
2095 | ELSEIF ( i > nxr ) THEN |
---|
2096 | trrp_count = trrp_count + 1 |
---|
2097 | IF ( particles(n)%tail_id /= 0 ) trrpt_count = trrpt_count + 1 |
---|
2098 | ENDIF |
---|
2099 | ENDDO |
---|
2100 | IF ( trlp_count == 0 ) trlp_count = 1 |
---|
2101 | IF ( trlpt_count == 0 ) trlpt_count = 1 |
---|
2102 | IF ( trrp_count == 0 ) trrp_count = 1 |
---|
2103 | IF ( trrpt_count == 0 ) trrpt_count = 1 |
---|
2104 | |
---|
2105 | ALLOCATE( trlp(trlp_count), trrp(trrp_count) ) |
---|
2106 | |
---|
2107 | trlp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2108 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2109 | 0.0, 0, 0, 0, 0 ) |
---|
2110 | trrp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2111 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2112 | 0.0, 0, 0, 0, 0 ) |
---|
2113 | |
---|
2114 | IF ( use_particle_tails ) THEN |
---|
2115 | ALLOCATE( trlpt(maximum_number_of_tailpoints,5,trlpt_count), & |
---|
2116 | trrpt(maximum_number_of_tailpoints,5,trrpt_count) ) |
---|
2117 | tlength = maximum_number_of_tailpoints * 5 |
---|
2118 | ENDIF |
---|
2119 | |
---|
2120 | trlp_count = 0 |
---|
2121 | trlpt_count = 0 |
---|
2122 | trrp_count = 0 |
---|
2123 | trrpt_count = 0 |
---|
2124 | |
---|
2125 | ENDIF |
---|
2126 | |
---|
2127 | ! WRITE ( 9, * ) '*** advec_particles: ##1' |
---|
2128 | ! CALL local_flush( 9 ) |
---|
2129 | ! nd = 0 |
---|
2130 | ! DO n = 1, number_of_particles |
---|
2131 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2132 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2133 | ! THEN |
---|
2134 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2135 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2136 | ! CALL local_flush( 9 ) |
---|
2137 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2138 | ! ENDIF |
---|
2139 | ! ENDDO |
---|
2140 | ! IF ( nd /= deleted_particles ) THEN |
---|
2141 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2142 | ! CALL local_flush( 9 ) |
---|
2143 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2144 | ! ENDIF |
---|
2145 | |
---|
2146 | DO n = 1, number_of_particles |
---|
2147 | |
---|
2148 | nn = particles(n)%tail_id |
---|
2149 | |
---|
2150 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
2151 | ! |
---|
2152 | !-- Above calculation does not work for indices less than zero |
---|
2153 | IF ( particles(n)%x < - 0.5 * dx ) i = -1 |
---|
2154 | |
---|
2155 | IF ( i < nxl ) THEN |
---|
2156 | IF ( i < 0 ) THEN |
---|
2157 | ! |
---|
2158 | !-- Apply boundary condition along x |
---|
2159 | IF ( ibc_par_lr == 0 ) THEN |
---|
2160 | ! |
---|
2161 | !-- Cyclic condition |
---|
2162 | IF ( pdims(1) == 1 ) THEN |
---|
2163 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
2164 | particles(n)%origin_x = ( nx + 1 ) * dx + & |
---|
2165 | particles(n)%origin_x |
---|
2166 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2167 | i = particles(n)%tailpoints |
---|
2168 | particle_tail_coordinates(1:i,1,nn) = ( nx + 1 ) * dx & |
---|
2169 | + particle_tail_coordinates(1:i,1,nn) |
---|
2170 | ENDIF |
---|
2171 | ELSE |
---|
2172 | trlp_count = trlp_count + 1 |
---|
2173 | trlp(trlp_count) = particles(n) |
---|
2174 | trlp(trlp_count)%x = ( nx + 1 ) * dx + trlp(trlp_count)%x |
---|
2175 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x + & |
---|
2176 | ( nx + 1 ) * dx |
---|
2177 | particle_mask(n) = .FALSE. |
---|
2178 | deleted_particles = deleted_particles + 1 |
---|
2179 | |
---|
2180 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2181 | trlpt_count = trlpt_count + 1 |
---|
2182 | trlpt(:,:,trlpt_count) = & |
---|
2183 | particle_tail_coordinates(:,:,nn) |
---|
2184 | trlpt(:,1,trlpt_count) = ( nx + 1 ) * dx + & |
---|
2185 | trlpt(:,1,trlpt_count) |
---|
2186 | tail_mask(nn) = .FALSE. |
---|
2187 | deleted_tails = deleted_tails + 1 |
---|
2188 | ENDIF |
---|
2189 | ENDIF |
---|
2190 | |
---|
2191 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
2192 | ! |
---|
2193 | !-- Particle absorption |
---|
2194 | particle_mask(n) = .FALSE. |
---|
2195 | deleted_particles = deleted_particles + 1 |
---|
2196 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2197 | tail_mask(nn) = .FALSE. |
---|
2198 | deleted_tails = deleted_tails + 1 |
---|
2199 | ENDIF |
---|
2200 | |
---|
2201 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
2202 | ! |
---|
2203 | !-- Particle reflection |
---|
2204 | particles(n)%x = -particles(n)%x |
---|
2205 | particles(n)%speed_x = -particles(n)%speed_x |
---|
2206 | |
---|
2207 | ENDIF |
---|
2208 | ELSE |
---|
2209 | ! |
---|
2210 | !-- Store particle data in the transfer array, which will be send |
---|
2211 | !-- to the neighbouring PE |
---|
2212 | trlp_count = trlp_count + 1 |
---|
2213 | trlp(trlp_count) = particles(n) |
---|
2214 | particle_mask(n) = .FALSE. |
---|
2215 | deleted_particles = deleted_particles + 1 |
---|
2216 | |
---|
2217 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2218 | trlpt_count = trlpt_count + 1 |
---|
2219 | trlpt(:,:,trlpt_count) = particle_tail_coordinates(:,:,nn) |
---|
2220 | tail_mask(nn) = .FALSE. |
---|
2221 | deleted_tails = deleted_tails + 1 |
---|
2222 | ENDIF |
---|
2223 | ENDIF |
---|
2224 | |
---|
2225 | ELSEIF ( i > nxr ) THEN |
---|
2226 | IF ( i > nx ) THEN |
---|
2227 | ! |
---|
2228 | !-- Apply boundary condition along x |
---|
2229 | IF ( ibc_par_lr == 0 ) THEN |
---|
2230 | ! |
---|
2231 | !-- Cyclic condition |
---|
2232 | IF ( pdims(1) == 1 ) THEN |
---|
2233 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
2234 | particles(n)%origin_x = particles(n)%origin_x - & |
---|
2235 | ( nx + 1 ) * dx |
---|
2236 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2237 | i = particles(n)%tailpoints |
---|
2238 | particle_tail_coordinates(1:i,1,nn) = - ( nx+1 ) * dx & |
---|
2239 | + particle_tail_coordinates(1:i,1,nn) |
---|
2240 | ENDIF |
---|
2241 | ELSE |
---|
2242 | trrp_count = trrp_count + 1 |
---|
2243 | trrp(trrp_count) = particles(n) |
---|
2244 | trrp(trrp_count)%x = trrp(trrp_count)%x - ( nx + 1 ) * dx |
---|
2245 | trrp(trrp_count)%origin_x = trrp(trrp_count)%origin_x - & |
---|
2246 | ( nx + 1 ) * dx |
---|
2247 | particle_mask(n) = .FALSE. |
---|
2248 | deleted_particles = deleted_particles + 1 |
---|
2249 | |
---|
2250 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2251 | trrpt_count = trrpt_count + 1 |
---|
2252 | trrpt(:,:,trrpt_count) = & |
---|
2253 | particle_tail_coordinates(:,:,nn) |
---|
2254 | trrpt(:,1,trrpt_count) = trrpt(:,1,trrpt_count) - & |
---|
2255 | ( nx + 1 ) * dx |
---|
2256 | tail_mask(nn) = .FALSE. |
---|
2257 | deleted_tails = deleted_tails + 1 |
---|
2258 | ENDIF |
---|
2259 | ENDIF |
---|
2260 | |
---|
2261 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
2262 | ! |
---|
2263 | !-- Particle absorption |
---|
2264 | particle_mask(n) = .FALSE. |
---|
2265 | deleted_particles = deleted_particles + 1 |
---|
2266 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2267 | tail_mask(nn) = .FALSE. |
---|
2268 | deleted_tails = deleted_tails + 1 |
---|
2269 | ENDIF |
---|
2270 | |
---|
2271 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
2272 | ! |
---|
2273 | !-- Particle reflection |
---|
2274 | particles(n)%x = 2 * ( nx * dx ) - particles(n)%x |
---|
2275 | particles(n)%speed_x = -particles(n)%speed_x |
---|
2276 | |
---|
2277 | ENDIF |
---|
2278 | ELSE |
---|
2279 | ! |
---|
2280 | !-- Store particle data in the transfer array, which will be send |
---|
2281 | !-- to the neighbouring PE |
---|
2282 | trrp_count = trrp_count + 1 |
---|
2283 | trrp(trrp_count) = particles(n) |
---|
2284 | particle_mask(n) = .FALSE. |
---|
2285 | deleted_particles = deleted_particles + 1 |
---|
2286 | |
---|
2287 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2288 | trrpt_count = trrpt_count + 1 |
---|
2289 | trrpt(:,:,trrpt_count) = particle_tail_coordinates(:,:,nn) |
---|
2290 | tail_mask(nn) = .FALSE. |
---|
2291 | deleted_tails = deleted_tails + 1 |
---|
2292 | ENDIF |
---|
2293 | ENDIF |
---|
2294 | |
---|
2295 | ENDIF |
---|
2296 | ENDDO |
---|
2297 | |
---|
2298 | ! WRITE ( 9, * ) '*** advec_particles: ##2' |
---|
2299 | ! CALL local_flush( 9 ) |
---|
2300 | ! nd = 0 |
---|
2301 | ! DO n = 1, number_of_particles |
---|
2302 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2303 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2304 | ! THEN |
---|
2305 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2306 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2307 | ! CALL local_flush( 9 ) |
---|
2308 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2309 | ! ENDIF |
---|
2310 | ! ENDDO |
---|
2311 | ! IF ( nd /= deleted_particles ) THEN |
---|
2312 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2313 | ! CALL local_flush( 9 ) |
---|
2314 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2315 | ! ENDIF |
---|
2316 | |
---|
2317 | ! |
---|
2318 | !-- Send left boundary, receive right boundary (but first exchange how many |
---|
2319 | !-- and check, if particle storage must be extended) |
---|
2320 | IF ( pdims(1) /= 1 ) THEN |
---|
2321 | |
---|
2322 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'start' ) |
---|
2323 | CALL MPI_SENDRECV( trlp_count, 1, MPI_INTEGER, pleft, 0, & |
---|
2324 | trrp_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
2325 | comm2d, status, ierr ) |
---|
2326 | |
---|
2327 | IF ( number_of_particles + trrp_count_recv > & |
---|
2328 | maximum_number_of_particles ) & |
---|
2329 | THEN |
---|
2330 | IF ( netcdf_output ) THEN |
---|
2331 | message_string = 'maximum_number_of_particles ' // & |
---|
2332 | 'needs to be increased ' // & |
---|
2333 | '&but this is not allowed with ' // & |
---|
2334 | 'NetCDF output switched on' |
---|
2335 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2336 | ELSE |
---|
2337 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trrp' |
---|
2338 | ! CALL local_flush( 9 ) |
---|
2339 | CALL allocate_prt_memory( trrp_count_recv ) |
---|
2340 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trrp' |
---|
2341 | ! CALL local_flush( 9 ) |
---|
2342 | ENDIF |
---|
2343 | ENDIF |
---|
2344 | |
---|
2345 | CALL MPI_SENDRECV( trlp(1)%age, trlp_count, mpi_particle_type, & |
---|
2346 | pleft, 1, particles(number_of_particles+1)%age, & |
---|
2347 | trrp_count_recv, mpi_particle_type, pright, 1, & |
---|
2348 | comm2d, status, ierr ) |
---|
2349 | |
---|
2350 | IF ( use_particle_tails ) THEN |
---|
2351 | |
---|
2352 | CALL MPI_SENDRECV( trlpt_count, 1, MPI_INTEGER, pleft, 0, & |
---|
2353 | trrpt_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
2354 | comm2d, status, ierr ) |
---|
2355 | |
---|
2356 | IF ( number_of_tails+trrpt_count_recv > maximum_number_of_tails ) & |
---|
2357 | THEN |
---|
2358 | IF ( netcdf_output ) THEN |
---|
2359 | message_string = 'maximum_number_of_tails ' // & |
---|
2360 | 'needs to be increased ' // & |
---|
2361 | '&but this is not allowed wi'// & |
---|
2362 | 'th NetCDF output switched on' |
---|
2363 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2364 | ELSE |
---|
2365 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trrpt' |
---|
2366 | ! CALL local_flush( 9 ) |
---|
2367 | CALL allocate_tail_memory( trrpt_count_recv ) |
---|
2368 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trrpt' |
---|
2369 | ! CALL local_flush( 9 ) |
---|
2370 | ENDIF |
---|
2371 | ENDIF |
---|
2372 | |
---|
2373 | CALL MPI_SENDRECV( trlpt(1,1,1), trlpt_count*tlength, MPI_REAL, & |
---|
2374 | pleft, 1, & |
---|
2375 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
2376 | trrpt_count_recv*tlength, MPI_REAL, pright, 1, & |
---|
2377 | comm2d, status, ierr ) |
---|
2378 | ! |
---|
2379 | !-- Update the tail ids for the transferred particles |
---|
2380 | nn = number_of_tails |
---|
2381 | DO n = number_of_particles+1, number_of_particles+trrp_count_recv |
---|
2382 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2383 | nn = nn + 1 |
---|
2384 | particles(n)%tail_id = nn |
---|
2385 | ENDIF |
---|
2386 | ENDDO |
---|
2387 | |
---|
2388 | ENDIF |
---|
2389 | |
---|
2390 | number_of_particles = number_of_particles + trrp_count_recv |
---|
2391 | number_of_tails = number_of_tails + trrpt_count_recv |
---|
2392 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2393 | ! WRITE (9,*) '--- advec_particles: #3' |
---|
2394 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2395 | ! CALL local_flush( 9 ) |
---|
2396 | ! ENDIF |
---|
2397 | |
---|
2398 | ! |
---|
2399 | !-- Send right boundary, receive left boundary |
---|
2400 | CALL MPI_SENDRECV( trrp_count, 1, MPI_INTEGER, pright, 0, & |
---|
2401 | trlp_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
2402 | comm2d, status, ierr ) |
---|
2403 | |
---|
2404 | IF ( number_of_particles + trlp_count_recv > & |
---|
2405 | maximum_number_of_particles ) & |
---|
2406 | THEN |
---|
2407 | IF ( netcdf_output ) THEN |
---|
2408 | message_string = 'maximum_number_of_particles ' // & |
---|
2409 | 'needs to be increased ' // & |
---|
2410 | '&but this is not allowed with '// & |
---|
2411 | 'NetCDF output switched on' |
---|
2412 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2413 | ELSE |
---|
2414 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trlp' |
---|
2415 | ! CALL local_flush( 9 ) |
---|
2416 | CALL allocate_prt_memory( trlp_count_recv ) |
---|
2417 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trlp' |
---|
2418 | ! CALL local_flush( 9 ) |
---|
2419 | ENDIF |
---|
2420 | ENDIF |
---|
2421 | |
---|
2422 | CALL MPI_SENDRECV( trrp(1)%age, trrp_count, mpi_particle_type, & |
---|
2423 | pright, 1, particles(number_of_particles+1)%age, & |
---|
2424 | trlp_count_recv, mpi_particle_type, pleft, 1, & |
---|
2425 | comm2d, status, ierr ) |
---|
2426 | |
---|
2427 | IF ( use_particle_tails ) THEN |
---|
2428 | |
---|
2429 | CALL MPI_SENDRECV( trrpt_count, 1, MPI_INTEGER, pright, 0, & |
---|
2430 | trlpt_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
2431 | comm2d, status, ierr ) |
---|
2432 | |
---|
2433 | IF ( number_of_tails+trlpt_count_recv > maximum_number_of_tails ) & |
---|
2434 | THEN |
---|
2435 | IF ( netcdf_output ) THEN |
---|
2436 | message_string = 'maximum_number_of_tails ' // & |
---|
2437 | 'needs to be increased ' // & |
---|
2438 | '&but this is not allowed wi'// & |
---|
2439 | 'th NetCDF output switched on' |
---|
2440 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2441 | ELSE |
---|
2442 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trlpt' |
---|
2443 | ! CALL local_flush( 9 ) |
---|
2444 | CALL allocate_tail_memory( trlpt_count_recv ) |
---|
2445 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trlpt' |
---|
2446 | ! CALL local_flush( 9 ) |
---|
2447 | ENDIF |
---|
2448 | ENDIF |
---|
2449 | |
---|
2450 | CALL MPI_SENDRECV( trrpt(1,1,1), trrpt_count*tlength, MPI_REAL, & |
---|
2451 | pright, 1, & |
---|
2452 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
2453 | trlpt_count_recv*tlength, MPI_REAL, pleft, 1, & |
---|
2454 | comm2d, status, ierr ) |
---|
2455 | ! |
---|
2456 | !-- Update the tail ids for the transferred particles |
---|
2457 | nn = number_of_tails |
---|
2458 | DO n = number_of_particles+1, number_of_particles+trlp_count_recv |
---|
2459 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2460 | nn = nn + 1 |
---|
2461 | particles(n)%tail_id = nn |
---|
2462 | ENDIF |
---|
2463 | ENDDO |
---|
2464 | |
---|
2465 | ENDIF |
---|
2466 | |
---|
2467 | number_of_particles = number_of_particles + trlp_count_recv |
---|
2468 | number_of_tails = number_of_tails + trlpt_count_recv |
---|
2469 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2470 | ! WRITE (9,*) '--- advec_particles: #4' |
---|
2471 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2472 | ! CALL local_flush( 9 ) |
---|
2473 | ! ENDIF |
---|
2474 | |
---|
2475 | IF ( use_particle_tails ) THEN |
---|
2476 | DEALLOCATE( trlpt, trrpt ) |
---|
2477 | ENDIF |
---|
2478 | DEALLOCATE( trlp, trrp ) |
---|
2479 | |
---|
2480 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'pause' ) |
---|
2481 | |
---|
2482 | ENDIF |
---|
2483 | |
---|
2484 | ! WRITE ( 9, * ) '*** advec_particles: ##3' |
---|
2485 | ! CALL local_flush( 9 ) |
---|
2486 | ! nd = 0 |
---|
2487 | ! DO n = 1, number_of_particles |
---|
2488 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2489 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2490 | ! THEN |
---|
2491 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2492 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2493 | ! CALL local_flush( 9 ) |
---|
2494 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2495 | ! ENDIF |
---|
2496 | ! ENDDO |
---|
2497 | ! IF ( nd /= deleted_particles ) THEN |
---|
2498 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2499 | ! CALL local_flush( 9 ) |
---|
2500 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2501 | ! ENDIF |
---|
2502 | |
---|
2503 | ! |
---|
2504 | !-- Check whether particles have crossed the boundaries in y direction. Note |
---|
2505 | !-- that this case can also apply to particles that have just been received |
---|
2506 | !-- from the adjacent right or left PE. |
---|
2507 | !-- Find out first the number of particles to be transferred and allocate |
---|
2508 | !-- temporary arrays needed to store them. |
---|
2509 | !-- For a one-dimensional decomposition along x, no transfer is necessary, |
---|
2510 | !-- because the particle remains on the PE. |
---|
2511 | trsp_count = 0 |
---|
2512 | trspt_count = 0 |
---|
2513 | trnp_count = 0 |
---|
2514 | trnpt_count = 0 |
---|
2515 | IF ( pdims(2) /= 1 ) THEN |
---|
2516 | ! |
---|
2517 | !-- First calculate the storage necessary for sending and receiving the |
---|
2518 | !-- data |
---|
2519 | DO n = 1, number_of_particles |
---|
2520 | IF ( particle_mask(n) ) THEN |
---|
2521 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
2522 | ! |
---|
2523 | !-- Above calculation does not work for indices less than zero |
---|
2524 | IF ( particles(n)%y < -0.5 * dy ) j = -1 |
---|
2525 | |
---|
2526 | IF ( j < nys ) THEN |
---|
2527 | trsp_count = trsp_count + 1 |
---|
2528 | IF ( particles(n)%tail_id /= 0 ) trspt_count = trspt_count+1 |
---|
2529 | ELSEIF ( j > nyn ) THEN |
---|
2530 | trnp_count = trnp_count + 1 |
---|
2531 | IF ( particles(n)%tail_id /= 0 ) trnpt_count = trnpt_count+1 |
---|
2532 | ENDIF |
---|
2533 | ENDIF |
---|
2534 | ENDDO |
---|
2535 | IF ( trsp_count == 0 ) trsp_count = 1 |
---|
2536 | IF ( trspt_count == 0 ) trspt_count = 1 |
---|
2537 | IF ( trnp_count == 0 ) trnp_count = 1 |
---|
2538 | IF ( trnpt_count == 0 ) trnpt_count = 1 |
---|
2539 | |
---|
2540 | ALLOCATE( trsp(trsp_count), trnp(trnp_count) ) |
---|
2541 | |
---|
2542 | trsp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2543 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2544 | 0.0, 0, 0, 0, 0 ) |
---|
2545 | trnp = particle_type( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2546 | 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, & |
---|
2547 | 0.0, 0, 0, 0, 0 ) |
---|
2548 | |
---|
2549 | IF ( use_particle_tails ) THEN |
---|
2550 | ALLOCATE( trspt(maximum_number_of_tailpoints,5,trspt_count), & |
---|
2551 | trnpt(maximum_number_of_tailpoints,5,trnpt_count) ) |
---|
2552 | tlength = maximum_number_of_tailpoints * 5 |
---|
2553 | ENDIF |
---|
2554 | |
---|
2555 | trsp_count = 0 |
---|
2556 | trspt_count = 0 |
---|
2557 | trnp_count = 0 |
---|
2558 | trnpt_count = 0 |
---|
2559 | |
---|
2560 | ENDIF |
---|
2561 | |
---|
2562 | ! WRITE ( 9, * ) '*** advec_particles: ##4' |
---|
2563 | ! CALL local_flush( 9 ) |
---|
2564 | ! nd = 0 |
---|
2565 | ! DO n = 1, number_of_particles |
---|
2566 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2567 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2568 | ! THEN |
---|
2569 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2570 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2571 | ! CALL local_flush( 9 ) |
---|
2572 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2573 | ! ENDIF |
---|
2574 | ! ENDDO |
---|
2575 | ! IF ( nd /= deleted_particles ) THEN |
---|
2576 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2577 | ! CALL local_flush( 9 ) |
---|
2578 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2579 | ! ENDIF |
---|
2580 | |
---|
2581 | DO n = 1, number_of_particles |
---|
2582 | |
---|
2583 | nn = particles(n)%tail_id |
---|
2584 | ! |
---|
2585 | !-- Only those particles that have not been marked as 'deleted' may be |
---|
2586 | !-- moved. |
---|
2587 | IF ( particle_mask(n) ) THEN |
---|
2588 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
2589 | ! |
---|
2590 | !-- Above calculation does not work for indices less than zero |
---|
2591 | IF ( particles(n)%y < -0.5 * dy ) j = -1 |
---|
2592 | |
---|
2593 | IF ( j < nys ) THEN |
---|
2594 | IF ( j < 0 ) THEN |
---|
2595 | ! |
---|
2596 | !-- Apply boundary condition along y |
---|
2597 | IF ( ibc_par_ns == 0 ) THEN |
---|
2598 | ! |
---|
2599 | !-- Cyclic condition |
---|
2600 | IF ( pdims(2) == 1 ) THEN |
---|
2601 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
2602 | particles(n)%origin_y = ( ny + 1 ) * dy + & |
---|
2603 | particles(n)%origin_y |
---|
2604 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2605 | i = particles(n)%tailpoints |
---|
2606 | particle_tail_coordinates(1:i,2,nn) = ( ny+1 ) * dy& |
---|
2607 | + particle_tail_coordinates(1:i,2,nn) |
---|
2608 | ENDIF |
---|
2609 | ELSE |
---|
2610 | trsp_count = trsp_count + 1 |
---|
2611 | trsp(trsp_count) = particles(n) |
---|
2612 | trsp(trsp_count)%y = ( ny + 1 ) * dy + & |
---|
2613 | trsp(trsp_count)%y |
---|
2614 | trsp(trsp_count)%origin_y = trsp(trsp_count)%origin_y & |
---|
2615 | + ( ny + 1 ) * dy |
---|
2616 | particle_mask(n) = .FALSE. |
---|
2617 | deleted_particles = deleted_particles + 1 |
---|
2618 | |
---|
2619 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2620 | trspt_count = trspt_count + 1 |
---|
2621 | trspt(:,:,trspt_count) = & |
---|
2622 | particle_tail_coordinates(:,:,nn) |
---|
2623 | trspt(:,2,trspt_count) = ( ny + 1 ) * dy + & |
---|
2624 | trspt(:,2,trspt_count) |
---|
2625 | tail_mask(nn) = .FALSE. |
---|
2626 | deleted_tails = deleted_tails + 1 |
---|
2627 | ENDIF |
---|
2628 | ENDIF |
---|
2629 | |
---|
2630 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
2631 | ! |
---|
2632 | !-- Particle absorption |
---|
2633 | particle_mask(n) = .FALSE. |
---|
2634 | deleted_particles = deleted_particles + 1 |
---|
2635 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2636 | tail_mask(nn) = .FALSE. |
---|
2637 | deleted_tails = deleted_tails + 1 |
---|
2638 | ENDIF |
---|
2639 | |
---|
2640 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
2641 | ! |
---|
2642 | !-- Particle reflection |
---|
2643 | particles(n)%y = -particles(n)%y |
---|
2644 | particles(n)%speed_y = -particles(n)%speed_y |
---|
2645 | |
---|
2646 | ENDIF |
---|
2647 | ELSE |
---|
2648 | ! |
---|
2649 | !-- Store particle data in the transfer array, which will be send |
---|
2650 | !-- to the neighbouring PE |
---|
2651 | trsp_count = trsp_count + 1 |
---|
2652 | trsp(trsp_count) = particles(n) |
---|
2653 | particle_mask(n) = .FALSE. |
---|
2654 | deleted_particles = deleted_particles + 1 |
---|
2655 | |
---|
2656 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2657 | trspt_count = trspt_count + 1 |
---|
2658 | trspt(:,:,trspt_count) = particle_tail_coordinates(:,:,nn) |
---|
2659 | tail_mask(nn) = .FALSE. |
---|
2660 | deleted_tails = deleted_tails + 1 |
---|
2661 | ENDIF |
---|
2662 | ENDIF |
---|
2663 | |
---|
2664 | ELSEIF ( j > nyn ) THEN |
---|
2665 | IF ( j > ny ) THEN |
---|
2666 | ! |
---|
2667 | !-- Apply boundary condition along x |
---|
2668 | IF ( ibc_par_ns == 0 ) THEN |
---|
2669 | ! |
---|
2670 | !-- Cyclic condition |
---|
2671 | IF ( pdims(2) == 1 ) THEN |
---|
2672 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
2673 | particles(n)%origin_y = particles(n)%origin_y - & |
---|
2674 | ( ny + 1 ) * dy |
---|
2675 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2676 | i = particles(n)%tailpoints |
---|
2677 | particle_tail_coordinates(1:i,2,nn) = - (ny+1) * dy& |
---|
2678 | + particle_tail_coordinates(1:i,2,nn) |
---|
2679 | ENDIF |
---|
2680 | ELSE |
---|
2681 | trnp_count = trnp_count + 1 |
---|
2682 | trnp(trnp_count) = particles(n) |
---|
2683 | trnp(trnp_count)%y = trnp(trnp_count)%y - & |
---|
2684 | ( ny + 1 ) * dy |
---|
2685 | trnp(trnp_count)%origin_y = trnp(trnp_count)%origin_y & |
---|
2686 | - ( ny + 1 ) * dy |
---|
2687 | particle_mask(n) = .FALSE. |
---|
2688 | deleted_particles = deleted_particles + 1 |
---|
2689 | |
---|
2690 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2691 | trnpt_count = trnpt_count + 1 |
---|
2692 | trnpt(:,:,trnpt_count) = & |
---|
2693 | particle_tail_coordinates(:,:,nn) |
---|
2694 | trnpt(:,2,trnpt_count) = trnpt(:,2,trnpt_count) - & |
---|
2695 | ( ny + 1 ) * dy |
---|
2696 | tail_mask(nn) = .FALSE. |
---|
2697 | deleted_tails = deleted_tails + 1 |
---|
2698 | ENDIF |
---|
2699 | ENDIF |
---|
2700 | |
---|
2701 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
2702 | ! |
---|
2703 | !-- Particle absorption |
---|
2704 | particle_mask(n) = .FALSE. |
---|
2705 | deleted_particles = deleted_particles + 1 |
---|
2706 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2707 | tail_mask(nn) = .FALSE. |
---|
2708 | deleted_tails = deleted_tails + 1 |
---|
2709 | ENDIF |
---|
2710 | |
---|
2711 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
2712 | ! |
---|
2713 | !-- Particle reflection |
---|
2714 | particles(n)%y = 2 * ( ny * dy ) - particles(n)%y |
---|
2715 | particles(n)%speed_y = -particles(n)%speed_y |
---|
2716 | |
---|
2717 | ENDIF |
---|
2718 | ELSE |
---|
2719 | ! |
---|
2720 | !-- Store particle data in the transfer array, which will be send |
---|
2721 | !-- to the neighbouring PE |
---|
2722 | trnp_count = trnp_count + 1 |
---|
2723 | trnp(trnp_count) = particles(n) |
---|
2724 | particle_mask(n) = .FALSE. |
---|
2725 | deleted_particles = deleted_particles + 1 |
---|
2726 | |
---|
2727 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2728 | trnpt_count = trnpt_count + 1 |
---|
2729 | trnpt(:,:,trnpt_count) = particle_tail_coordinates(:,:,nn) |
---|
2730 | tail_mask(nn) = .FALSE. |
---|
2731 | deleted_tails = deleted_tails + 1 |
---|
2732 | ENDIF |
---|
2733 | ENDIF |
---|
2734 | |
---|
2735 | ENDIF |
---|
2736 | ENDIF |
---|
2737 | ENDDO |
---|
2738 | |
---|
2739 | ! WRITE ( 9, * ) '*** advec_particles: ##5' |
---|
2740 | ! CALL local_flush( 9 ) |
---|
2741 | ! nd = 0 |
---|
2742 | ! DO n = 1, number_of_particles |
---|
2743 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2744 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2745 | ! THEN |
---|
2746 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2747 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2748 | ! CALL local_flush( 9 ) |
---|
2749 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2750 | ! ENDIF |
---|
2751 | ! ENDDO |
---|
2752 | ! IF ( nd /= deleted_particles ) THEN |
---|
2753 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2754 | ! CALL local_flush( 9 ) |
---|
2755 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2756 | ! ENDIF |
---|
2757 | |
---|
2758 | ! |
---|
2759 | !-- Send front boundary, receive back boundary (but first exchange how many |
---|
2760 | !-- and check, if particle storage must be extended) |
---|
2761 | IF ( pdims(2) /= 1 ) THEN |
---|
2762 | |
---|
2763 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'continue' ) |
---|
2764 | CALL MPI_SENDRECV( trsp_count, 1, MPI_INTEGER, psouth, 0, & |
---|
2765 | trnp_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
2766 | comm2d, status, ierr ) |
---|
2767 | |
---|
2768 | IF ( number_of_particles + trnp_count_recv > & |
---|
2769 | maximum_number_of_particles ) & |
---|
2770 | THEN |
---|
2771 | IF ( netcdf_output ) THEN |
---|
2772 | message_string = 'maximum_number_of_particles ' // & |
---|
2773 | 'needs to be increased ' // & |
---|
2774 | '&but this is not allowed with '// & |
---|
2775 | 'NetCDF output switched on' |
---|
2776 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2777 | ELSE |
---|
2778 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trnp' |
---|
2779 | ! CALL local_flush( 9 ) |
---|
2780 | CALL allocate_prt_memory( trnp_count_recv ) |
---|
2781 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trnp' |
---|
2782 | ! CALL local_flush( 9 ) |
---|
2783 | ENDIF |
---|
2784 | ENDIF |
---|
2785 | |
---|
2786 | CALL MPI_SENDRECV( trsp(1)%age, trsp_count, mpi_particle_type, & |
---|
2787 | psouth, 1, particles(number_of_particles+1)%age, & |
---|
2788 | trnp_count_recv, mpi_particle_type, pnorth, 1, & |
---|
2789 | comm2d, status, ierr ) |
---|
2790 | |
---|
2791 | IF ( use_particle_tails ) THEN |
---|
2792 | |
---|
2793 | CALL MPI_SENDRECV( trspt_count, 1, MPI_INTEGER, psouth, 0, & |
---|
2794 | trnpt_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
2795 | comm2d, status, ierr ) |
---|
2796 | |
---|
2797 | IF ( number_of_tails+trnpt_count_recv > maximum_number_of_tails ) & |
---|
2798 | THEN |
---|
2799 | IF ( netcdf_output ) THEN |
---|
2800 | message_string = 'maximum_number_of_tails ' // & |
---|
2801 | 'needs to be increased ' // & |
---|
2802 | '&but this is not allowed wi' // & |
---|
2803 | 'th NetCDF output switched on' |
---|
2804 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2805 | ELSE |
---|
2806 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trnpt' |
---|
2807 | ! CALL local_flush( 9 ) |
---|
2808 | CALL allocate_tail_memory( trnpt_count_recv ) |
---|
2809 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trnpt' |
---|
2810 | ! CALL local_flush( 9 ) |
---|
2811 | ENDIF |
---|
2812 | ENDIF |
---|
2813 | |
---|
2814 | CALL MPI_SENDRECV( trspt(1,1,1), trspt_count*tlength, MPI_REAL, & |
---|
2815 | psouth, 1, & |
---|
2816 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
2817 | trnpt_count_recv*tlength, MPI_REAL, pnorth, 1, & |
---|
2818 | comm2d, status, ierr ) |
---|
2819 | |
---|
2820 | ! |
---|
2821 | !-- Update the tail ids for the transferred particles |
---|
2822 | nn = number_of_tails |
---|
2823 | DO n = number_of_particles+1, number_of_particles+trnp_count_recv |
---|
2824 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2825 | nn = nn + 1 |
---|
2826 | particles(n)%tail_id = nn |
---|
2827 | ENDIF |
---|
2828 | ENDDO |
---|
2829 | |
---|
2830 | ENDIF |
---|
2831 | |
---|
2832 | number_of_particles = number_of_particles + trnp_count_recv |
---|
2833 | number_of_tails = number_of_tails + trnpt_count_recv |
---|
2834 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2835 | ! WRITE (9,*) '--- advec_particles: #5' |
---|
2836 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2837 | ! CALL local_flush( 9 ) |
---|
2838 | ! ENDIF |
---|
2839 | |
---|
2840 | ! |
---|
2841 | !-- Send back boundary, receive front boundary |
---|
2842 | CALL MPI_SENDRECV( trnp_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
2843 | trsp_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
2844 | comm2d, status, ierr ) |
---|
2845 | |
---|
2846 | IF ( number_of_particles + trsp_count_recv > & |
---|
2847 | maximum_number_of_particles ) & |
---|
2848 | THEN |
---|
2849 | IF ( netcdf_output ) THEN |
---|
2850 | message_string = 'maximum_number_of_particles ' // & |
---|
2851 | 'needs to be increased ' // & |
---|
2852 | '&but this is not allowed with ' // & |
---|
2853 | 'NetCDF output switched on' |
---|
2854 | CALL message( 'advec_particles', 'PA0146', 2, 2, -1, 6, 1 ) |
---|
2855 | ELSE |
---|
2856 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_prt_memory trsp' |
---|
2857 | ! CALL local_flush( 9 ) |
---|
2858 | CALL allocate_prt_memory( trsp_count_recv ) |
---|
2859 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_prt_memory trsp' |
---|
2860 | ! CALL local_flush( 9 ) |
---|
2861 | ENDIF |
---|
2862 | ENDIF |
---|
2863 | |
---|
2864 | CALL MPI_SENDRECV( trnp(1)%age, trnp_count, mpi_particle_type, & |
---|
2865 | pnorth, 1, particles(number_of_particles+1)%age, & |
---|
2866 | trsp_count_recv, mpi_particle_type, psouth, 1, & |
---|
2867 | comm2d, status, ierr ) |
---|
2868 | |
---|
2869 | IF ( use_particle_tails ) THEN |
---|
2870 | |
---|
2871 | CALL MPI_SENDRECV( trnpt_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
2872 | trspt_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
2873 | comm2d, status, ierr ) |
---|
2874 | |
---|
2875 | IF ( number_of_tails+trspt_count_recv > maximum_number_of_tails ) & |
---|
2876 | THEN |
---|
2877 | IF ( netcdf_output ) THEN |
---|
2878 | message_string = 'maximum_number_of_tails ' // & |
---|
2879 | 'needs to be increased ' // & |
---|
2880 | '&but this is not allowed wi'// & |
---|
2881 | 'th NetCDF output switched on' |
---|
2882 | CALL message( 'advec_particles', 'PA0147', 2, 2, -1, 6, 1 ) |
---|
2883 | ELSE |
---|
2884 | ! WRITE ( 9, * ) '*** advec_particles: before allocate_tail_memory trspt' |
---|
2885 | ! CALL local_flush( 9 ) |
---|
2886 | CALL allocate_tail_memory( trspt_count_recv ) |
---|
2887 | ! WRITE ( 9, * ) '*** advec_particles: after allocate_tail_memory trspt' |
---|
2888 | ! CALL local_flush( 9 ) |
---|
2889 | ENDIF |
---|
2890 | ENDIF |
---|
2891 | |
---|
2892 | CALL MPI_SENDRECV( trnpt(1,1,1), trnpt_count*tlength, MPI_REAL, & |
---|
2893 | pnorth, 1, & |
---|
2894 | particle_tail_coordinates(1,1,number_of_tails+1), & |
---|
2895 | trspt_count_recv*tlength, MPI_REAL, psouth, 1, & |
---|
2896 | comm2d, status, ierr ) |
---|
2897 | ! |
---|
2898 | !-- Update the tail ids for the transferred particles |
---|
2899 | nn = number_of_tails |
---|
2900 | DO n = number_of_particles+1, number_of_particles+trsp_count_recv |
---|
2901 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
2902 | nn = nn + 1 |
---|
2903 | particles(n)%tail_id = nn |
---|
2904 | ENDIF |
---|
2905 | ENDDO |
---|
2906 | |
---|
2907 | ENDIF |
---|
2908 | |
---|
2909 | number_of_particles = number_of_particles + trsp_count_recv |
---|
2910 | number_of_tails = number_of_tails + trspt_count_recv |
---|
2911 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
2912 | ! WRITE (9,*) '--- advec_particles: #6' |
---|
2913 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
2914 | ! CALL local_flush( 9 ) |
---|
2915 | ! ENDIF |
---|
2916 | |
---|
2917 | IF ( use_particle_tails ) THEN |
---|
2918 | DEALLOCATE( trspt, trnpt ) |
---|
2919 | ENDIF |
---|
2920 | DEALLOCATE( trsp, trnp ) |
---|
2921 | |
---|
2922 | CALL cpu_log( log_point_s(23), 'sendrcv_particles', 'stop' ) |
---|
2923 | |
---|
2924 | ENDIF |
---|
2925 | |
---|
2926 | ! WRITE ( 9, * ) '*** advec_particles: ##6' |
---|
2927 | ! CALL local_flush( 9 ) |
---|
2928 | ! nd = 0 |
---|
2929 | ! DO n = 1, number_of_particles |
---|
2930 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
2931 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
2932 | ! THEN |
---|
2933 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
2934 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
2935 | ! CALL local_flush( 9 ) |
---|
2936 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2937 | ! ENDIF |
---|
2938 | ! ENDDO |
---|
2939 | ! IF ( nd /= deleted_particles ) THEN |
---|
2940 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
2941 | ! CALL local_flush( 9 ) |
---|
2942 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
2943 | ! ENDIF |
---|
2944 | |
---|
2945 | #else |
---|
2946 | |
---|
2947 | ! |
---|
2948 | !-- Apply boundary conditions |
---|
2949 | DO n = 1, number_of_particles |
---|
2950 | |
---|
2951 | nn = particles(n)%tail_id |
---|
2952 | |
---|
2953 | IF ( particles(n)%x < -0.5 * dx ) THEN |
---|
2954 | |
---|
2955 | IF ( ibc_par_lr == 0 ) THEN |
---|
2956 | ! |
---|
2957 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2958 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
2959 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2960 | i = particles(n)%tailpoints |
---|
2961 | particle_tail_coordinates(1:i,1,nn) = ( nx + 1 ) * dx + & |
---|
2962 | particle_tail_coordinates(1:i,1,nn) |
---|
2963 | ENDIF |
---|
2964 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
2965 | ! |
---|
2966 | !-- Particle absorption |
---|
2967 | particle_mask(n) = .FALSE. |
---|
2968 | deleted_particles = deleted_particles + 1 |
---|
2969 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2970 | tail_mask(nn) = .FALSE. |
---|
2971 | deleted_tails = deleted_tails + 1 |
---|
2972 | ENDIF |
---|
2973 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
2974 | ! |
---|
2975 | !-- Particle reflection |
---|
2976 | particles(n)%x = -dx - particles(n)%x |
---|
2977 | particles(n)%speed_x = -particles(n)%speed_x |
---|
2978 | ENDIF |
---|
2979 | |
---|
2980 | ELSEIF ( particles(n)%x >= ( nx + 0.5 ) * dx ) THEN |
---|
2981 | |
---|
2982 | IF ( ibc_par_lr == 0 ) THEN |
---|
2983 | ! |
---|
2984 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
2985 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
2986 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2987 | i = particles(n)%tailpoints |
---|
2988 | particle_tail_coordinates(1:i,1,nn) = - ( nx + 1 ) * dx + & |
---|
2989 | particle_tail_coordinates(1:i,1,nn) |
---|
2990 | ENDIF |
---|
2991 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
2992 | ! |
---|
2993 | !-- Particle absorption |
---|
2994 | particle_mask(n) = .FALSE. |
---|
2995 | deleted_particles = deleted_particles + 1 |
---|
2996 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
2997 | tail_mask(nn) = .FALSE. |
---|
2998 | deleted_tails = deleted_tails + 1 |
---|
2999 | ENDIF |
---|
3000 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
3001 | ! |
---|
3002 | !-- Particle reflection |
---|
3003 | particles(n)%x = ( nx + 1 ) * dx - particles(n)%x |
---|
3004 | particles(n)%speed_x = -particles(n)%speed_x |
---|
3005 | ENDIF |
---|
3006 | |
---|
3007 | ENDIF |
---|
3008 | |
---|
3009 | IF ( particles(n)%y < -0.5 * dy ) THEN |
---|
3010 | |
---|
3011 | IF ( ibc_par_ns == 0 ) THEN |
---|
3012 | ! |
---|
3013 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
3014 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
3015 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3016 | i = particles(n)%tailpoints |
---|
3017 | particle_tail_coordinates(1:i,2,nn) = ( ny + 1 ) * dy + & |
---|
3018 | particle_tail_coordinates(1:i,2,nn) |
---|
3019 | ENDIF |
---|
3020 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
3021 | ! |
---|
3022 | !-- Particle absorption |
---|
3023 | particle_mask(n) = .FALSE. |
---|
3024 | deleted_particles = deleted_particles + 1 |
---|
3025 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3026 | tail_mask(nn) = .FALSE. |
---|
3027 | deleted_tails = deleted_tails + 1 |
---|
3028 | ENDIF |
---|
3029 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
3030 | ! |
---|
3031 | !-- Particle reflection |
---|
3032 | particles(n)%y = -dy - particles(n)%y |
---|
3033 | particles(n)%speed_y = -particles(n)%speed_y |
---|
3034 | ENDIF |
---|
3035 | |
---|
3036 | ELSEIF ( particles(n)%y >= ( ny + 0.5 ) * dy ) THEN |
---|
3037 | |
---|
3038 | IF ( ibc_par_ns == 0 ) THEN |
---|
3039 | ! |
---|
3040 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
3041 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
3042 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3043 | i = particles(n)%tailpoints |
---|
3044 | particle_tail_coordinates(1:i,2,nn) = - ( ny + 1 ) * dy + & |
---|
3045 | particle_tail_coordinates(1:i,2,nn) |
---|
3046 | ENDIF |
---|
3047 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
3048 | ! |
---|
3049 | !-- Particle absorption |
---|
3050 | particle_mask(n) = .FALSE. |
---|
3051 | deleted_particles = deleted_particles + 1 |
---|
3052 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3053 | tail_mask(nn) = .FALSE. |
---|
3054 | deleted_tails = deleted_tails + 1 |
---|
3055 | ENDIF |
---|
3056 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
3057 | ! |
---|
3058 | !-- Particle reflection |
---|
3059 | particles(n)%y = ( ny + 1 ) * dy - particles(n)%y |
---|
3060 | particles(n)%speed_y = -particles(n)%speed_y |
---|
3061 | ENDIF |
---|
3062 | |
---|
3063 | ENDIF |
---|
3064 | ENDDO |
---|
3065 | |
---|
3066 | #endif |
---|
3067 | |
---|
3068 | ! |
---|
3069 | !-- Apply boundary conditions to those particles that have crossed the top or |
---|
3070 | !-- bottom boundary and delete those particles, which are older than allowed |
---|
3071 | DO n = 1, number_of_particles |
---|
3072 | |
---|
3073 | nn = particles(n)%tail_id |
---|
3074 | |
---|
3075 | ! |
---|
3076 | !-- Stop if particles have moved further than the length of one |
---|
3077 | !-- PE subdomain (newly released particles have age = age_m!) |
---|
3078 | IF ( particles(n)%age /= particles(n)%age_m ) THEN |
---|
3079 | IF ( ABS(particles(n)%speed_x) > & |
---|
3080 | ((nxr-nxl+2)*dx)/(particles(n)%age-particles(n)%age_m) .OR. & |
---|
3081 | ABS(particles(n)%speed_y) > & |
---|
3082 | ((nyn-nys+2)*dy)/(particles(n)%age-particles(n)%age_m) ) THEN |
---|
3083 | |
---|
3084 | WRITE( message_string, * ) 'particle too fast. n = ', n |
---|
3085 | CALL message( 'advec_particles', 'PA0148', 2, 2, -1, 6, 1 ) |
---|
3086 | ENDIF |
---|
3087 | ENDIF |
---|
3088 | |
---|
3089 | IF ( particles(n)%age > particle_maximum_age .AND. & |
---|
3090 | particle_mask(n) ) & |
---|
3091 | THEN |
---|
3092 | particle_mask(n) = .FALSE. |
---|
3093 | deleted_particles = deleted_particles + 1 |
---|
3094 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3095 | tail_mask(nn) = .FALSE. |
---|
3096 | deleted_tails = deleted_tails + 1 |
---|
3097 | ENDIF |
---|
3098 | ENDIF |
---|
3099 | |
---|
3100 | IF ( particles(n)%z >= zu(nz) .AND. particle_mask(n) ) THEN |
---|
3101 | IF ( ibc_par_t == 1 ) THEN |
---|
3102 | ! |
---|
3103 | !-- Particle absorption |
---|
3104 | particle_mask(n) = .FALSE. |
---|
3105 | deleted_particles = deleted_particles + 1 |
---|
3106 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3107 | tail_mask(nn) = .FALSE. |
---|
3108 | deleted_tails = deleted_tails + 1 |
---|
3109 | ENDIF |
---|
3110 | ELSEIF ( ibc_par_t == 2 ) THEN |
---|
3111 | ! |
---|
3112 | !-- Particle reflection |
---|
3113 | particles(n)%z = 2.0 * zu(nz) - particles(n)%z |
---|
3114 | particles(n)%speed_z = -particles(n)%speed_z |
---|
3115 | IF ( use_sgs_for_particles .AND. & |
---|
3116 | particles(n)%speed_z_sgs > 0.0 ) THEN |
---|
3117 | particles(n)%speed_z_sgs = -particles(n)%speed_z_sgs |
---|
3118 | ENDIF |
---|
3119 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3120 | particle_tail_coordinates(1,3,nn) = 2.0 * zu(nz) - & |
---|
3121 | particle_tail_coordinates(1,3,nn) |
---|
3122 | ENDIF |
---|
3123 | ENDIF |
---|
3124 | ENDIF |
---|
3125 | IF ( particles(n)%z < zw(0) .AND. particle_mask(n) ) THEN |
---|
3126 | IF ( ibc_par_b == 1 ) THEN |
---|
3127 | ! |
---|
3128 | !-- Particle absorption |
---|
3129 | particle_mask(n) = .FALSE. |
---|
3130 | deleted_particles = deleted_particles + 1 |
---|
3131 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3132 | tail_mask(nn) = .FALSE. |
---|
3133 | deleted_tails = deleted_tails + 1 |
---|
3134 | ENDIF |
---|
3135 | ELSEIF ( ibc_par_b == 2 ) THEN |
---|
3136 | ! |
---|
3137 | !-- Particle reflection |
---|
3138 | particles(n)%z = 2.0 * zw(0) - particles(n)%z |
---|
3139 | particles(n)%speed_z = -particles(n)%speed_z |
---|
3140 | IF ( use_sgs_for_particles .AND. & |
---|
3141 | particles(n)%speed_z_sgs < 0.0 ) THEN |
---|
3142 | particles(n)%speed_z_sgs = -particles(n)%speed_z_sgs |
---|
3143 | ENDIF |
---|
3144 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3145 | particle_tail_coordinates(1,3,nn) = 2.0 * zu(nz) - & |
---|
3146 | particle_tail_coordinates(1,3,nn) |
---|
3147 | ENDIF |
---|
3148 | IF ( use_particle_tails .AND. nn /= 0 ) THEN |
---|
3149 | particle_tail_coordinates(1,3,nn) = 2.0 * zw(0) - & |
---|
3150 | particle_tail_coordinates(1,3,nn) |
---|
3151 | ENDIF |
---|
3152 | ENDIF |
---|
3153 | ENDIF |
---|
3154 | ENDDO |
---|
3155 | |
---|
3156 | ! WRITE ( 9, * ) '*** advec_particles: ##7' |
---|
3157 | ! CALL local_flush( 9 ) |
---|
3158 | ! nd = 0 |
---|
3159 | ! DO n = 1, number_of_particles |
---|
3160 | ! IF ( .NOT. particle_mask(n) ) nd = nd + 1 |
---|
3161 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3162 | ! THEN |
---|
3163 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3164 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3165 | ! CALL local_flush( 9 ) |
---|
3166 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3167 | ! ENDIF |
---|
3168 | ! ENDDO |
---|
3169 | ! IF ( nd /= deleted_particles ) THEN |
---|
3170 | ! WRITE (9,*) '*** nd=',nd,' deleted_particles=',deleted_particles |
---|
3171 | ! CALL local_flush( 9 ) |
---|
3172 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3173 | ! ENDIF |
---|
3174 | |
---|
3175 | ! |
---|
3176 | !-- Pack particles (eliminate those marked for deletion), |
---|
3177 | !-- determine new number of particles |
---|
3178 | IF ( number_of_particles > 0 .AND. deleted_particles > 0 ) THEN |
---|
3179 | nn = 0 |
---|
3180 | nd = 0 |
---|
3181 | DO n = 1, number_of_particles |
---|
3182 | IF ( particle_mask(n) ) THEN |
---|
3183 | nn = nn + 1 |
---|
3184 | particles(nn) = particles(n) |
---|
3185 | ELSE |
---|
3186 | nd = nd + 1 |
---|
3187 | ENDIF |
---|
3188 | ENDDO |
---|
3189 | ! IF ( nd /= deleted_particles ) THEN |
---|
3190 | ! WRITE (9,*) '*** advec_part nd=',nd,' deleted_particles=',deleted_particles |
---|
3191 | ! CALL local_flush( 9 ) |
---|
3192 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3193 | ! ENDIF |
---|
3194 | |
---|
3195 | number_of_particles = number_of_particles - deleted_particles |
---|
3196 | ! |
---|
3197 | !-- Pack the tails, store the new tail ids and re-assign it to the |
---|
3198 | !-- respective |
---|
3199 | !-- particles |
---|
3200 | IF ( use_particle_tails ) THEN |
---|
3201 | nn = 0 |
---|
3202 | nd = 0 |
---|
3203 | DO n = 1, number_of_tails |
---|
3204 | IF ( tail_mask(n) ) THEN |
---|
3205 | nn = nn + 1 |
---|
3206 | particle_tail_coordinates(:,:,nn) = & |
---|
3207 | particle_tail_coordinates(:,:,n) |
---|
3208 | new_tail_id(n) = nn |
---|
3209 | ELSE |
---|
3210 | nd = nd + 1 |
---|
3211 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_tails,' #oftails)' |
---|
3212 | ! WRITE (9,*) ' id=',new_tail_id(n) |
---|
3213 | ! CALL local_flush( 9 ) |
---|
3214 | ENDIF |
---|
3215 | ENDDO |
---|
3216 | ENDIF |
---|
3217 | |
---|
3218 | ! IF ( nd /= deleted_tails .AND. use_particle_tails ) THEN |
---|
3219 | ! WRITE (9,*) '*** advec_part nd=',nd,' deleted_tails=',deleted_tails |
---|
3220 | ! CALL local_flush( 9 ) |
---|
3221 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3222 | ! ENDIF |
---|
3223 | |
---|
3224 | number_of_tails = number_of_tails - deleted_tails |
---|
3225 | |
---|
3226 | ! nn = 0 |
---|
3227 | DO n = 1, number_of_particles |
---|
3228 | IF ( particles(n)%tail_id /= 0 ) THEN |
---|
3229 | ! nn = nn + 1 |
---|
3230 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id > number_of_tails ) THEN |
---|
3231 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3232 | ! WRITE (9,*) ' tail_id=',particles(n)%tail_id |
---|
3233 | ! WRITE (9,*) ' new_tail_id=', new_tail_id(particles(n)%tail_id), & |
---|
3234 | ! ' of (',number_of_tails,')' |
---|
3235 | ! CALL local_flush( 9 ) |
---|
3236 | ! ENDIF |
---|
3237 | particles(n)%tail_id = new_tail_id(particles(n)%tail_id) |
---|
3238 | ENDIF |
---|
3239 | ENDDO |
---|
3240 | |
---|
3241 | ! IF ( nn /= number_of_tails .AND. use_particle_tails ) THEN |
---|
3242 | ! WRITE (9,*) '*** advec_part #of_tails=',number_of_tails,' nn=',nn |
---|
3243 | ! CALL local_flush( 9 ) |
---|
3244 | ! DO n = 1, number_of_particles |
---|
3245 | ! WRITE (9,*) 'prt# ',n,' tail_id=',particles(n)%tail_id, & |
---|
3246 | ! ' x=',particles(n)%x, ' y=',particles(n)%y, & |
---|
3247 | ! ' z=',particles(n)%z |
---|
3248 | ! ENDDO |
---|
3249 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3250 | ! ENDIF |
---|
3251 | |
---|
3252 | ENDIF |
---|
3253 | |
---|
3254 | ! IF ( number_of_particles /= number_of_tails ) THEN |
---|
3255 | ! WRITE (9,*) '--- advec_particles: #7' |
---|
3256 | ! WRITE (9,*) ' #of p=',number_of_particles,' #of t=',number_of_tails |
---|
3257 | ! CALL local_flush( 9 ) |
---|
3258 | ! ENDIF |
---|
3259 | ! WRITE ( 9, * ) '*** advec_particles: ##8' |
---|
3260 | ! CALL local_flush( 9 ) |
---|
3261 | ! DO n = 1, number_of_particles |
---|
3262 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3263 | ! THEN |
---|
3264 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3265 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3266 | ! CALL local_flush( 9 ) |
---|
3267 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3268 | ! ENDIF |
---|
3269 | ! ENDDO |
---|
3270 | |
---|
3271 | ! WRITE ( 9, * ) '*** advec_particles: ##9' |
---|
3272 | ! CALL local_flush( 9 ) |
---|
3273 | ! DO n = 1, number_of_particles |
---|
3274 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3275 | ! THEN |
---|
3276 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3277 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3278 | ! CALL local_flush( 9 ) |
---|
3279 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3280 | ! ENDIF |
---|
3281 | ! ENDDO |
---|
3282 | |
---|
3283 | ! |
---|
3284 | !-- Accumulate the number of particles transferred between the subdomains |
---|
3285 | #if defined( __parallel ) |
---|
3286 | trlp_count_sum = trlp_count_sum + trlp_count |
---|
3287 | trlp_count_recv_sum = trlp_count_recv_sum + trlp_count_recv |
---|
3288 | trrp_count_sum = trrp_count_sum + trrp_count |
---|
3289 | trrp_count_recv_sum = trrp_count_recv_sum + trrp_count_recv |
---|
3290 | trsp_count_sum = trsp_count_sum + trsp_count |
---|
3291 | trsp_count_recv_sum = trsp_count_recv_sum + trsp_count_recv |
---|
3292 | trnp_count_sum = trnp_count_sum + trnp_count |
---|
3293 | trnp_count_recv_sum = trnp_count_recv_sum + trnp_count_recv |
---|
3294 | #endif |
---|
3295 | |
---|
3296 | IF ( dt_3d_reached ) EXIT |
---|
3297 | |
---|
3298 | ENDDO ! timestep loop |
---|
3299 | |
---|
3300 | |
---|
3301 | ! |
---|
3302 | !-- Sort particles in the sequence the gridboxes are stored in the memory |
---|
3303 | time_sort_particles = time_sort_particles + dt_3d |
---|
3304 | IF ( time_sort_particles >= dt_sort_particles ) THEN |
---|
3305 | CALL sort_particles |
---|
3306 | time_sort_particles = MOD( time_sort_particles, & |
---|
3307 | MAX( dt_sort_particles, dt_3d ) ) |
---|
3308 | ENDIF |
---|
3309 | |
---|
3310 | |
---|
3311 | ! |
---|
3312 | !-- Re-evaluate the weighting factors. After advection, particles within a |
---|
3313 | !-- grid box may have different weighting factors if some have been advected |
---|
3314 | !-- from a neighbouring box. The factors are re-evaluated so that they are |
---|
3315 | !-- the same for all particles of one box. This procedure must conserve the |
---|
3316 | !-- liquid water content within one box. |
---|
3317 | IF ( cloud_droplets ) THEN |
---|
3318 | |
---|
3319 | CALL cpu_log( log_point_s(45), 'advec_part_reeval_we', 'start' ) |
---|
3320 | |
---|
3321 | ql = 0.0; ql_v = 0.0; ql_vp = 0.0 |
---|
3322 | |
---|
3323 | ! |
---|
3324 | !-- Re-calculate the weighting factors and calculate the liquid water content |
---|
3325 | DO i = nxl, nxr |
---|
3326 | DO j = nys, nyn |
---|
3327 | DO k = nzb, nzt+1 |
---|
3328 | |
---|
3329 | ! |
---|
3330 | !-- Calculate the total volume of particles in the boxes (ql_vp) as |
---|
3331 | !-- well as the real volume (ql_v, weighting factor has to be |
---|
3332 | !-- included) |
---|
3333 | psi = prt_start_index(k,j,i) |
---|
3334 | DO n = psi, psi+prt_count(k,j,i)-1 |
---|
3335 | ql_vp(k,j,i) = ql_vp(k,j,i) + particles(n)%radius**3 |
---|
3336 | |
---|
3337 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * & |
---|
3338 | particles(n)%radius**3 |
---|
3339 | ENDDO |
---|
3340 | |
---|
3341 | ! |
---|
3342 | !-- Re-calculate the weighting factors and calculate the liquid |
---|
3343 | !-- water content |
---|
3344 | IF ( ql_vp(k,j,i) /= 0.0 ) THEN |
---|
3345 | ql_vp(k,j,i) = ql_v(k,j,i) / ql_vp(k,j,i) |
---|
3346 | ql(k,j,i) = ql(k,j,i) + rho_l * 1.33333333 * pi * & |
---|
3347 | ql_v(k,j,i) / & |
---|
3348 | ( rho_surface * dx * dy * dz ) |
---|
3349 | ELSE |
---|
3350 | ql(k,j,i) = 0.0 |
---|
3351 | ENDIF |
---|
3352 | |
---|
3353 | ! |
---|
3354 | !-- Re-assign the weighting factor to the particles |
---|
3355 | DO n = psi, psi+prt_count(k,j,i)-1 |
---|
3356 | particles(n)%weight_factor = ql_vp(k,j,i) |
---|
3357 | ENDDO |
---|
3358 | |
---|
3359 | ENDDO |
---|
3360 | ENDDO |
---|
3361 | ENDDO |
---|
3362 | |
---|
3363 | CALL cpu_log( log_point_s(45), 'advec_part_reeval_we', 'stop' ) |
---|
3364 | |
---|
3365 | ENDIF |
---|
3366 | |
---|
3367 | ! |
---|
3368 | !-- Set particle attributes |
---|
3369 | CALL set_particle_attributes |
---|
3370 | |
---|
3371 | ! |
---|
3372 | !-- Set particle attributes defined by the user |
---|
3373 | CALL user_particle_attributes |
---|
3374 | ! WRITE ( 9, * ) '*** advec_particles: ##10' |
---|
3375 | ! CALL local_flush( 9 ) |
---|
3376 | ! DO n = 1, number_of_particles |
---|
3377 | ! IF ( particles(n)%tail_id<0 .OR. particles(n)%tail_id>number_of_tails ) & |
---|
3378 | ! THEN |
---|
3379 | ! WRITE (9,*) '+++ n=',n,' (of ',number_of_particles,')' |
---|
3380 | ! WRITE (9,*) ' id=',particles(n)%tail_id,' of (',number_of_tails,')' |
---|
3381 | ! CALL local_flush( 9 ) |
---|
3382 | ! CALL MPI_ABORT( comm2d, 9999, ierr ) |
---|
3383 | ! ENDIF |
---|
3384 | ! ENDDO |
---|
3385 | |
---|
3386 | ! |
---|
3387 | !-- If necessary, add the actual particle positions to the particle tails |
---|
3388 | IF ( use_particle_tails ) THEN |
---|
3389 | |
---|
3390 | distance = 0.0 |
---|
3391 | DO n = 1, number_of_particles |
---|
3392 | |
---|
3393 | nn = particles(n)%tail_id |
---|
3394 | |
---|
3395 | IF ( nn /= 0 ) THEN |
---|
3396 | ! |
---|
3397 | !-- Calculate the distance between the actual particle position and the |
---|
3398 | !-- next tailpoint |
---|
3399 | ! WRITE ( 9, * ) '*** advec_particles: ##10.1 nn=',nn |
---|
3400 | ! CALL local_flush( 9 ) |
---|
3401 | IF ( minimum_tailpoint_distance /= 0.0 ) THEN |
---|
3402 | distance = ( particle_tail_coordinates(1,1,nn) - & |
---|
3403 | particle_tail_coordinates(2,1,nn) )**2 + & |
---|
3404 | ( particle_tail_coordinates(1,2,nn) - & |
---|
3405 | particle_tail_coordinates(2,2,nn) )**2 + & |
---|
3406 | ( particle_tail_coordinates(1,3,nn) - & |
---|
3407 | particle_tail_coordinates(2,3,nn) )**2 |
---|
3408 | ENDIF |
---|
3409 | ! WRITE ( 9, * ) '*** advec_particles: ##10.2' |
---|
3410 | ! CALL local_flush( 9 ) |
---|
3411 | ! |
---|
3412 | !-- First, increase the index of all existings tailpoints by one |
---|
3413 | IF ( distance >= minimum_tailpoint_distance ) THEN |
---|
3414 | DO i = particles(n)%tailpoints, 1, -1 |
---|
3415 | particle_tail_coordinates(i+1,:,nn) = & |
---|
3416 | particle_tail_coordinates(i,:,nn) |
---|
3417 | ENDDO |
---|
3418 | ! |
---|
3419 | !-- Increase the counter which contains the number of tailpoints. |
---|
3420 | !-- This must always be smaller than the given maximum number of |
---|
3421 | !-- tailpoints because otherwise the index bounds of |
---|
3422 | !-- particle_tail_coordinates would be exceeded |
---|
3423 | IF ( particles(n)%tailpoints < maximum_number_of_tailpoints-1 )& |
---|
3424 | THEN |
---|
3425 | particles(n)%tailpoints = particles(n)%tailpoints + 1 |
---|
3426 | ENDIF |
---|
3427 | ENDIF |
---|
3428 | ! WRITE ( 9, * ) '*** advec_particles: ##10.3' |
---|
3429 | ! CALL local_flush( 9 ) |
---|
3430 | ! |
---|
3431 | !-- In any case, store the new point at the beginning of the tail |
---|
3432 | particle_tail_coordinates(1,1,nn) = particles(n)%x |
---|
3433 | particle_tail_coordinates(1,2,nn) = particles(n)%y |
---|
3434 | particle_tail_coordinates(1,3,nn) = particles(n)%z |
---|
3435 | particle_tail_coordinates(1,4,nn) = particles(n)%color |
---|
3436 | ! WRITE ( 9, * ) '*** advec_particles: ##10.4' |
---|
3437 | ! CALL local_flush( 9 ) |
---|
3438 | ! |
---|
3439 | !-- Increase the age of the tailpoints |
---|
3440 | IF ( minimum_tailpoint_distance /= 0.0 ) THEN |
---|
3441 | particle_tail_coordinates(2:particles(n)%tailpoints,5,nn) = & |
---|
3442 | particle_tail_coordinates(2:particles(n)%tailpoints,5,nn) + & |
---|
3443 | dt_3d |
---|
3444 | ! |
---|
3445 | !-- Delete the last tailpoint, if it has exceeded its maximum age |
---|
3446 | IF ( particle_tail_coordinates(particles(n)%tailpoints,5,nn) > & |
---|
3447 | maximum_tailpoint_age ) THEN |
---|
3448 | particles(n)%tailpoints = particles(n)%tailpoints - 1 |
---|
3449 | ENDIF |
---|
3450 | ENDIF |
---|
3451 | ! WRITE ( 9, * ) '*** advec_particles: ##10.5' |
---|
3452 | ! CALL local_flush( 9 ) |
---|
3453 | |
---|
3454 | ENDIF |
---|
3455 | |
---|
3456 | ENDDO |
---|
3457 | |
---|
3458 | ENDIF |
---|
3459 | ! WRITE ( 9, * ) '*** advec_particles: ##11' |
---|
3460 | ! CALL local_flush( 9 ) |
---|
3461 | |
---|
3462 | ! |
---|
3463 | !-- Write particle statistics on file |
---|
3464 | IF ( write_particle_statistics ) THEN |
---|
3465 | CALL check_open( 80 ) |
---|
3466 | #if defined( __parallel ) |
---|
3467 | WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, & |
---|
3468 | number_of_particles, pleft, trlp_count_sum, & |
---|
3469 | trlp_count_recv_sum, pright, trrp_count_sum, & |
---|
3470 | trrp_count_recv_sum, psouth, trsp_count_sum, & |
---|
3471 | trsp_count_recv_sum, pnorth, trnp_count_sum, & |
---|
3472 | trnp_count_recv_sum, maximum_number_of_particles |
---|
3473 | CALL close_file( 80 ) |
---|
3474 | #else |
---|
3475 | WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, & |
---|
3476 | number_of_particles, maximum_number_of_particles |
---|
3477 | #endif |
---|
3478 | ENDIF |
---|
3479 | |
---|
3480 | CALL cpu_log( log_point(25), 'advec_particles', 'stop' ) |
---|
3481 | |
---|
3482 | ! |
---|
3483 | !-- Formats |
---|
3484 | 8000 FORMAT (I6,1X,F7.2,4X,I6,5X,4(I3,1X,I4,'/',I4,2X),6X,I6) |
---|
3485 | |
---|
3486 | END SUBROUTINE advec_particles |
---|
3487 | |
---|
3488 | |
---|
3489 | SUBROUTINE allocate_prt_memory( number_of_new_particles ) |
---|
3490 | |
---|
3491 | !------------------------------------------------------------------------------! |
---|
3492 | ! Description: |
---|
3493 | ! ------------ |
---|
3494 | ! Extend particle memory |
---|
3495 | !------------------------------------------------------------------------------! |
---|
3496 | |
---|
3497 | USE particle_attributes |
---|
3498 | |
---|
3499 | IMPLICIT NONE |
---|
3500 | |
---|
3501 | INTEGER :: new_maximum_number, number_of_new_particles |
---|
3502 | |
---|
3503 | LOGICAL, DIMENSION(:), ALLOCATABLE :: tmp_particle_mask |
---|
3504 | |
---|
3505 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles |
---|
3506 | |
---|
3507 | |
---|
3508 | new_maximum_number = maximum_number_of_particles + & |
---|
3509 | MAX( 5*number_of_new_particles, number_of_initial_particles ) |
---|
3510 | |
---|
3511 | IF ( write_particle_statistics ) THEN |
---|
3512 | CALL check_open( 80 ) |
---|
3513 | WRITE ( 80, '(''*** Request: '', I7, '' new_maximum_number(prt)'')' ) & |
---|
3514 | new_maximum_number |
---|
3515 | CALL close_file( 80 ) |
---|
3516 | ENDIF |
---|
3517 | |
---|
3518 | ALLOCATE( tmp_particles(maximum_number_of_particles), & |
---|
3519 | tmp_particle_mask(maximum_number_of_particles) ) |
---|
3520 | tmp_particles = particles |
---|
3521 | tmp_particle_mask = particle_mask |
---|
3522 | |
---|
3523 | DEALLOCATE( particles, particle_mask ) |
---|
3524 | ALLOCATE( particles(new_maximum_number), & |
---|
3525 | particle_mask(new_maximum_number) ) |
---|
3526 | maximum_number_of_particles = new_maximum_number |
---|
3527 | |
---|
3528 | particles(1:number_of_particles) = tmp_particles(1:number_of_particles) |
---|
3529 | particle_mask(1:number_of_particles) = & |
---|
3530 | tmp_particle_mask(1:number_of_particles) |
---|
3531 | particle_mask(number_of_particles+1:maximum_number_of_particles) = .TRUE. |
---|
3532 | DEALLOCATE( tmp_particles, tmp_particle_mask ) |
---|
3533 | |
---|
3534 | END SUBROUTINE allocate_prt_memory |
---|
3535 | |
---|
3536 | |
---|
3537 | SUBROUTINE allocate_tail_memory( number_of_new_tails ) |
---|
3538 | |
---|
3539 | !------------------------------------------------------------------------------! |
---|
3540 | ! Description: |
---|
3541 | ! ------------ |
---|
3542 | ! Extend tail memory |
---|
3543 | !------------------------------------------------------------------------------! |
---|
3544 | |
---|
3545 | USE particle_attributes |
---|
3546 | |
---|
3547 | IMPLICIT NONE |
---|
3548 | |
---|
3549 | INTEGER :: new_maximum_number, number_of_new_tails |
---|
3550 | |
---|
3551 | LOGICAL, DIMENSION(maximum_number_of_tails) :: tmp_tail_mask |
---|
3552 | |
---|
3553 | REAL, DIMENSION(maximum_number_of_tailpoints,5,maximum_number_of_tails) :: & |
---|
3554 | tmp_tail |
---|
3555 | |
---|
3556 | |
---|
3557 | new_maximum_number = maximum_number_of_tails + & |
---|
3558 | MAX( 5*number_of_new_tails, number_of_initial_tails ) |
---|
3559 | |
---|
3560 | IF ( write_particle_statistics ) THEN |
---|
3561 | CALL check_open( 80 ) |
---|
3562 | WRITE ( 80, '(''*** Request: '', I5, '' new_maximum_number(tails)'')' ) & |
---|
3563 | new_maximum_number |
---|
3564 | CALL close_file( 80 ) |
---|
3565 | ENDIF |
---|
3566 | WRITE (9,*) '*** Request: ',new_maximum_number,' new_maximum_number(tails)' |
---|
3567 | ! CALL local_flush( 9 ) |
---|
3568 | |
---|
3569 | tmp_tail(:,:,1:number_of_tails) = & |
---|
3570 | particle_tail_coordinates(:,:,1:number_of_tails) |
---|
3571 | tmp_tail_mask(1:number_of_tails) = tail_mask(1:number_of_tails) |
---|
3572 | |
---|
3573 | DEALLOCATE( new_tail_id, particle_tail_coordinates, tail_mask ) |
---|
3574 | ALLOCATE( new_tail_id(new_maximum_number), & |
---|
3575 | particle_tail_coordinates(maximum_number_of_tailpoints,5, & |
---|
3576 | new_maximum_number), & |
---|
3577 | tail_mask(new_maximum_number) ) |
---|
3578 | maximum_number_of_tails = new_maximum_number |
---|
3579 | |
---|
3580 | particle_tail_coordinates = 0.0 |
---|
3581 | particle_tail_coordinates(:,:,1:number_of_tails) = & |
---|
3582 | tmp_tail(:,:,1:number_of_tails) |
---|
3583 | tail_mask(1:number_of_tails) = tmp_tail_mask(1:number_of_tails) |
---|
3584 | tail_mask(number_of_tails+1:maximum_number_of_tails) = .TRUE. |
---|
3585 | |
---|
3586 | END SUBROUTINE allocate_tail_memory |
---|
3587 | |
---|
3588 | |
---|
3589 | SUBROUTINE output_particles_netcdf |
---|
3590 | #if defined( __netcdf ) |
---|
3591 | |
---|
3592 | USE control_parameters |
---|
3593 | USE netcdf_control |
---|
3594 | USE particle_attributes |
---|
3595 | |
---|
3596 | IMPLICIT NONE |
---|
3597 | |
---|
3598 | |
---|
3599 | CALL check_open( 108 ) |
---|
3600 | |
---|
3601 | ! |
---|
3602 | !-- Update the NetCDF time axis |
---|
3603 | prt_time_count = prt_time_count + 1 |
---|
3604 | |
---|
3605 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_time_prt, (/ simulated_time /), & |
---|
3606 | start = (/ prt_time_count /), count = (/ 1 /) ) |
---|
3607 | CALL handle_netcdf_error( 'output_particles_netcdf', 1 ) |
---|
3608 | |
---|
3609 | ! |
---|
3610 | !-- Output the real number of particles used |
---|
3611 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_rnop_prt, & |
---|
3612 | (/ number_of_particles /), & |
---|
3613 | start = (/ prt_time_count /), count = (/ 1 /) ) |
---|
3614 | CALL handle_netcdf_error( 'output_particles_netcdf', 2 ) |
---|
3615 | |
---|
3616 | ! |
---|
3617 | !-- Output all particle attributes |
---|
3618 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(1), particles%age, & |
---|
3619 | start = (/ 1, prt_time_count /), & |
---|
3620 | count = (/ maximum_number_of_particles /) ) |
---|
3621 | CALL handle_netcdf_error( 'output_particles_netcdf', 3 ) |
---|
3622 | |
---|
3623 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(2), particles%dvrp_psize, & |
---|
3624 | start = (/ 1, prt_time_count /), & |
---|
3625 | count = (/ maximum_number_of_particles /) ) |
---|
3626 | CALL handle_netcdf_error( 'output_particles_netcdf', 4 ) |
---|
3627 | |
---|
3628 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(3), particles%origin_x, & |
---|
3629 | start = (/ 1, prt_time_count /), & |
---|
3630 | count = (/ maximum_number_of_particles /) ) |
---|
3631 | CALL handle_netcdf_error( 'output_particles_netcdf', 5 ) |
---|
3632 | |
---|
3633 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(4), particles%origin_y, & |
---|
3634 | start = (/ 1, prt_time_count /), & |
---|
3635 | count = (/ maximum_number_of_particles /) ) |
---|
3636 | CALL handle_netcdf_error( 'output_particles_netcdf', 6 ) |
---|
3637 | |
---|
3638 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(5), particles%origin_z, & |
---|
3639 | start = (/ 1, prt_time_count /), & |
---|
3640 | count = (/ maximum_number_of_particles /) ) |
---|
3641 | CALL handle_netcdf_error( 'output_particles_netcdf', 7 ) |
---|
3642 | |
---|
3643 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(6), particles%radius, & |
---|
3644 | start = (/ 1, prt_time_count /), & |
---|
3645 | count = (/ maximum_number_of_particles /) ) |
---|
3646 | CALL handle_netcdf_error( 'output_particles_netcdf', 8 ) |
---|
3647 | |
---|
3648 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(7), particles%speed_x, & |
---|
3649 | start = (/ 1, prt_time_count /), & |
---|
3650 | count = (/ maximum_number_of_particles /) ) |
---|
3651 | CALL handle_netcdf_error( 'output_particles_netcdf', 9 ) |
---|
3652 | |
---|
3653 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(8), particles%speed_y, & |
---|
3654 | start = (/ 1, prt_time_count /), & |
---|
3655 | count = (/ maximum_number_of_particles /) ) |
---|
3656 | CALL handle_netcdf_error( 'output_particles_netcdf', 10 ) |
---|
3657 | |
---|
3658 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(9), particles%speed_z, & |
---|
3659 | start = (/ 1, prt_time_count /), & |
---|
3660 | count = (/ maximum_number_of_particles /) ) |
---|
3661 | CALL handle_netcdf_error( 'output_particles_netcdf', 11 ) |
---|
3662 | |
---|
3663 | nc_stat = NF90_PUT_VAR( id_set_prt,id_var_prt(10),particles%weight_factor,& |
---|
3664 | start = (/ 1, prt_time_count /), & |
---|
3665 | count = (/ maximum_number_of_particles /) ) |
---|
3666 | CALL handle_netcdf_error( 'output_particles_netcdf', 12 ) |
---|
3667 | |
---|
3668 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(11), particles%x, & |
---|
3669 | start = (/ 1, prt_time_count /), & |
---|
3670 | count = (/ maximum_number_of_particles /) ) |
---|
3671 | CALL handle_netcdf_error( 'output_particles_netcdf', 13 ) |
---|
3672 | |
---|
3673 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(12), particles%y, & |
---|
3674 | start = (/ 1, prt_time_count /), & |
---|
3675 | count = (/ maximum_number_of_particles /) ) |
---|
3676 | CALL handle_netcdf_error( 'output_particles_netcdf', 14 ) |
---|
3677 | |
---|
3678 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(13), particles%z, & |
---|
3679 | start = (/ 1, prt_time_count /), & |
---|
3680 | count = (/ maximum_number_of_particles /) ) |
---|
3681 | CALL handle_netcdf_error( 'output_particles_netcdf', 15 ) |
---|
3682 | |
---|
3683 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(14), particles%color, & |
---|
3684 | start = (/ 1, prt_time_count /), & |
---|
3685 | count = (/ maximum_number_of_particles /) ) |
---|
3686 | CALL handle_netcdf_error( 'output_particles_netcdf', 16 ) |
---|
3687 | |
---|
3688 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(15), particles%group, & |
---|
3689 | start = (/ 1, prt_time_count /), & |
---|
3690 | count = (/ maximum_number_of_particles /) ) |
---|
3691 | CALL handle_netcdf_error( 'output_particles_netcdf', 17 ) |
---|
3692 | |
---|
3693 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(16), particles%tailpoints, & |
---|
3694 | start = (/ 1, prt_time_count /), & |
---|
3695 | count = (/ maximum_number_of_particles /) ) |
---|
3696 | CALL handle_netcdf_error( 'output_particles_netcdf', 18 ) |
---|
3697 | |
---|
3698 | nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(17), particles%tail_id, & |
---|
3699 | start = (/ 1, prt_time_count /), & |
---|
3700 | count = (/ maximum_number_of_particles /) ) |
---|
3701 | CALL handle_netcdf_error( 'output_particles_netcdf', 19 ) |
---|
3702 | |
---|
3703 | #endif |
---|
3704 | END SUBROUTINE output_particles_netcdf |
---|
3705 | |
---|
3706 | |
---|
3707 | SUBROUTINE write_particles |
---|
3708 | |
---|
3709 | !------------------------------------------------------------------------------! |
---|
3710 | ! Description: |
---|
3711 | ! ------------ |
---|
3712 | ! Write particle data on restart file |
---|
3713 | !------------------------------------------------------------------------------! |
---|
3714 | |
---|
3715 | USE control_parameters |
---|
3716 | USE particle_attributes |
---|
3717 | USE pegrid |
---|
3718 | |
---|
3719 | IMPLICIT NONE |
---|
3720 | |
---|
3721 | CHARACTER (LEN=10) :: particle_binary_version |
---|
3722 | |
---|
3723 | ! |
---|
3724 | !-- First open the output unit. |
---|
3725 | IF ( myid_char == '' ) THEN |
---|
3726 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT'//myid_char, & |
---|
3727 | FORM='UNFORMATTED') |
---|
3728 | ELSE |
---|
3729 | IF ( myid == 0 ) CALL local_system( 'mkdir PARTICLE_RESTART_DATA_OUT' ) |
---|
3730 | #if defined( __parallel ) |
---|
3731 | ! |
---|
3732 | !-- Set a barrier in order to allow that thereafter all other processors |
---|
3733 | !-- in the directory created by PE0 can open their file |
---|
3734 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3735 | #endif |
---|
3736 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT/'//myid_char, & |
---|
3737 | FORM='UNFORMATTED' ) |
---|
3738 | ENDIF |
---|
3739 | |
---|
3740 | ! |
---|
3741 | !-- Write the version number of the binary format. |
---|
3742 | !-- Attention: After changes to the following output commands the version |
---|
3743 | !-- --------- number of the variable particle_binary_version must be changed! |
---|
3744 | !-- Also, the version number and the list of arrays to be read in |
---|
3745 | !-- init_particles must be adjusted accordingly. |
---|
3746 | particle_binary_version = '3.0' |
---|
3747 | WRITE ( 90 ) particle_binary_version |
---|
3748 | |
---|
3749 | ! |
---|
3750 | !-- Write some particle parameters, the size of the particle arrays as well as |
---|
3751 | !-- other dvrp-plot variables. |
---|
3752 | WRITE ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, & |
---|
3753 | maximum_number_of_particles, maximum_number_of_tailpoints, & |
---|
3754 | maximum_number_of_tails, number_of_initial_particles, & |
---|
3755 | number_of_particles, number_of_particle_groups, & |
---|
3756 | number_of_tails, particle_groups, time_prel, & |
---|
3757 | time_write_particle_data, uniform_particles |
---|
3758 | |
---|
3759 | IF ( number_of_initial_particles /= 0 ) WRITE ( 90 ) initial_particles |
---|
3760 | |
---|
3761 | WRITE ( 90 ) prt_count, prt_start_index |
---|
3762 | WRITE ( 90 ) particles |
---|
3763 | |
---|
3764 | IF ( use_particle_tails ) THEN |
---|
3765 | WRITE ( 90 ) particle_tail_coordinates |
---|
3766 | ENDIF |
---|
3767 | |
---|
3768 | CLOSE ( 90 ) |
---|
3769 | |
---|
3770 | END SUBROUTINE write_particles |
---|
3771 | |
---|
3772 | |
---|
3773 | SUBROUTINE collision_efficiency( mean_r, r, e) |
---|
3774 | !------------------------------------------------------------------------------! |
---|
3775 | ! Description: |
---|
3776 | ! ------------ |
---|
3777 | ! Interpolate collision efficiency from table |
---|
3778 | !------------------------------------------------------------------------------! |
---|
3779 | |
---|
3780 | IMPLICIT NONE |
---|
3781 | |
---|
3782 | INTEGER :: i, j, k |
---|
3783 | |
---|
3784 | LOGICAL, SAVE :: first = .TRUE. |
---|
3785 | |
---|
3786 | REAL :: aa, bb, cc, dd, dx, dy, e, gg, mean_r, mean_rm, r, rm, & |
---|
3787 | x, y |
---|
3788 | |
---|
3789 | REAL, DIMENSION(1:9), SAVE :: collected_r = 0.0 |
---|
3790 | REAL, DIMENSION(1:19), SAVE :: collector_r = 0.0 |
---|
3791 | REAL, DIMENSION(1:9,1:19), SAVE :: ef = 0.0 |
---|
3792 | |
---|
3793 | mean_rm = mean_r * 1.0E06 |
---|
3794 | rm = r * 1.0E06 |
---|
3795 | |
---|
3796 | IF ( first ) THEN |
---|
3797 | collected_r = (/ 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 15.0, 20.0, 25.0 /) |
---|
3798 | collector_r = (/ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 80.0, 100.0, 150.0,& |
---|
3799 | 200.0, 300.0, 400.0, 500.0, 600.0, 1000.0, 1400.0, & |
---|
3800 | 1800.0, 2400.0, 3000.0 /) |
---|
3801 | ef(:,1) = (/0.017, 0.027, 0.037, 0.052, 0.052, 0.052, 0.052, 0.0, 0.0 /) |
---|
3802 | ef(:,2) = (/0.001, 0.016, 0.027, 0.060, 0.12, 0.17, 0.17, 0.17, 0.0 /) |
---|
3803 | ef(:,3) = (/0.001, 0.001, 0.02, 0.13, 0.28, 0.37, 0.54, 0.55, 0.47/) |
---|
3804 | ef(:,4) = (/0.001, 0.001, 0.02, 0.23, 0.4, 0.55, 0.7, 0.75, 0.75/) |
---|
3805 | ef(:,5) = (/0.01, 0.01, 0.03, 0.3, 0.4, 0.58, 0.73, 0.75, 0.79/) |
---|
3806 | ef(:,6) = (/0.01, 0.01, 0.13, 0.38, 0.57, 0.68, 0.80, 0.86, 0.91/) |
---|
3807 | ef(:,7) = (/0.01, 0.085, 0.23, 0.52, 0.68, 0.76, 0.86, 0.92, 0.95/) |
---|
3808 | ef(:,8) = (/0.01, 0.14, 0.32, 0.60, 0.73, 0.81, 0.90, 0.94, 0.96/) |
---|
3809 | ef(:,9) = (/0.025, 0.25, 0.43, 0.66, 0.78, 0.83, 0.92, 0.95, 0.96/) |
---|
3810 | ef(:,10)= (/0.039, 0.3, 0.46, 0.69, 0.81, 0.87, 0.93, 0.95, 0.96/) |
---|
3811 | ef(:,11)= (/0.095, 0.33, 0.51, 0.72, 0.82, 0.87, 0.93, 0.96, 0.97/) |
---|
3812 | ef(:,12)= (/0.098, 0.36, 0.51, 0.73, 0.83, 0.88, 0.93, 0.96, 0.97/) |
---|
3813 | ef(:,13)= (/0.1, 0.36, 0.52, 0.74, 0.83, 0.88, 0.93, 0.96, 0.97/) |
---|
3814 | ef(:,14)= (/0.17, 0.4, 0.54, 0.72, 0.83, 0.88, 0.94, 0.98, 1.0 /) |
---|
3815 | ef(:,15)= (/0.15, 0.37, 0.52, 0.74, 0.82, 0.88, 0.94, 0.98, 1.0 /) |
---|
3816 | ef(:,16)= (/0.11, 0.34, 0.49, 0.71, 0.83, 0.88, 0.94, 0.95, 1.0 /) |
---|
3817 | ef(:,17)= (/0.08, 0.29, 0.45, 0.68, 0.8, 0.86, 0.96, 0.94, 1.0 /) |
---|
3818 | ef(:,18)= (/0.04, 0.22, 0.39, 0.62, 0.75, 0.83, 0.92, 0.96, 1.0 /) |
---|
3819 | ef(:,19)= (/0.02, 0.16, 0.33, 0.55, 0.71, 0.81, 0.90, 0.94, 1.0 /) |
---|
3820 | ENDIF |
---|
3821 | |
---|
3822 | DO k = 1, 8 |
---|
3823 | IF ( collected_r(k) <= mean_rm ) i = k |
---|
3824 | ENDDO |
---|
3825 | |
---|
3826 | DO k = 1, 18 |
---|
3827 | IF ( collector_r(k) <= rm ) j = k |
---|
3828 | ENDDO |
---|
3829 | |
---|
3830 | IF ( rm < 10.0 ) THEN |
---|
3831 | e = 0.0 |
---|
3832 | ELSEIF ( mean_rm < 2.0 ) THEN |
---|
3833 | e = 0.001 |
---|
3834 | ELSEIF ( mean_rm >= 25.0 ) THEN |
---|
3835 | IF( j <= 3 ) e = 0.55 |
---|
3836 | IF( j == 4 ) e = 0.8 |
---|
3837 | IF( j == 5 ) e = 0.9 |
---|
3838 | IF( j >=6 ) e = 1.0 |
---|
3839 | ELSEIF ( rm >= 3000.0 ) THEN |
---|
3840 | e = 1.0 |
---|
3841 | ELSE |
---|
3842 | x = mean_rm - collected_r(i) |
---|
3843 | y = rm - collected_r(j) |
---|
3844 | dx = collected_r(i+1) - collected_r(i) |
---|
3845 | dy = collector_r(j+1) - collector_r(j) |
---|
3846 | aa = x**2 + y**2 |
---|
3847 | bb = ( dx - x )**2 + y**2 |
---|
3848 | cc = x**2 + ( dy - y )**2 |
---|
3849 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3850 | gg = aa + bb + cc + dd |
---|
3851 | |
---|
3852 | e = ( (gg-aa)*ef(i,j) + (gg-bb)*ef(i+1,j) + (gg-cc)*ef(i,j+1) + & |
---|
3853 | (gg-dd)*ef(i+1,j+1) ) / (3.0*gg) |
---|
3854 | ENDIF |
---|
3855 | |
---|
3856 | END SUBROUTINE collision_efficiency |
---|
3857 | |
---|
3858 | |
---|
3859 | |
---|
3860 | SUBROUTINE sort_particles |
---|
3861 | |
---|
3862 | !------------------------------------------------------------------------------! |
---|
3863 | ! Description: |
---|
3864 | ! ------------ |
---|
3865 | ! Sort particles in the sequence the grid boxes are stored in memory |
---|
3866 | !------------------------------------------------------------------------------! |
---|
3867 | |
---|
3868 | USE arrays_3d |
---|
3869 | USE control_parameters |
---|
3870 | USE cpulog |
---|
3871 | USE grid_variables |
---|
3872 | USE indices |
---|
3873 | USE interfaces |
---|
3874 | USE particle_attributes |
---|
3875 | |
---|
3876 | IMPLICIT NONE |
---|
3877 | |
---|
3878 | INTEGER :: i, ilow, j, k, n |
---|
3879 | |
---|
3880 | TYPE(particle_type), DIMENSION(1:number_of_particles) :: particles_temp |
---|
3881 | |
---|
3882 | |
---|
3883 | CALL cpu_log( log_point_s(47), 'sort_particles', 'start' ) |
---|
3884 | |
---|
3885 | ! |
---|
3886 | !-- Initialize the array used for counting and indexing the particles |
---|
3887 | prt_count = 0 |
---|
3888 | |
---|
3889 | ! |
---|
3890 | !-- Count the particles per gridbox |
---|
3891 | DO n = 1, number_of_particles |
---|
3892 | |
---|
3893 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
3894 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
3895 | k = particles(n)%z / dz + 1 + offset_ocean_nzt |
---|
3896 | ! only exact if equidistant |
---|
3897 | |
---|
3898 | prt_count(k,j,i) = prt_count(k,j,i) + 1 |
---|
3899 | |
---|
3900 | IF ( i < nxl .OR. i > nxr .OR. j < nys .OR. j > nyn .OR. k < nzb+1 .OR. & |
---|
3901 | k > nzt ) THEN |
---|
3902 | WRITE( message_string, * ) ' particle out of range: i=', i, ' j=', & |
---|
3903 | j, ' k=', k, & |
---|
3904 | ' &nxl=', nxl, ' nxr=', nxr, & |
---|
3905 | ' nys=', nys, ' nyn=', nyn, & |
---|
3906 | ' nzb=', nzb, ' nzt=', nzt |
---|
3907 | CALL message( 'sort_particles', 'PA0149', 1, 2, 0, 6, 0 ) |
---|
3908 | ENDIF |
---|
3909 | |
---|
3910 | ENDDO |
---|
3911 | |
---|
3912 | ! |
---|
3913 | !-- Calculate the lower indices of those ranges of the particles-array |
---|
3914 | !-- containing particles which belong to the same gridpox i,j,k |
---|
3915 | ilow = 1 |
---|
3916 | DO i = nxl, nxr |
---|
3917 | DO j = nys, nyn |
---|
3918 | DO k = nzb+1, nzt |
---|
3919 | prt_start_index(k,j,i) = ilow |
---|
3920 | ilow = ilow + prt_count(k,j,i) |
---|
3921 | ENDDO |
---|
3922 | ENDDO |
---|
3923 | ENDDO |
---|
3924 | |
---|
3925 | ! |
---|
3926 | !-- Sorting the particles |
---|
3927 | DO n = 1, number_of_particles |
---|
3928 | |
---|
3929 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
3930 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
3931 | k = particles(n)%z / dz + 1 + offset_ocean_nzt |
---|
3932 | ! only exact if equidistant |
---|
3933 | |
---|
3934 | particles_temp(prt_start_index(k,j,i)) = particles(n) |
---|
3935 | |
---|
3936 | prt_start_index(k,j,i) = prt_start_index(k,j,i) + 1 |
---|
3937 | |
---|
3938 | ENDDO |
---|
3939 | |
---|
3940 | particles(1:number_of_particles) = particles_temp |
---|
3941 | |
---|
3942 | ! |
---|
3943 | !-- Reset the index array to the actual start position |
---|
3944 | DO i = nxl, nxr |
---|
3945 | DO j = nys, nyn |
---|
3946 | DO k = nzb+1, nzt |
---|
3947 | prt_start_index(k,j,i) = prt_start_index(k,j,i) - prt_count(k,j,i) |
---|
3948 | ENDDO |
---|
3949 | ENDDO |
---|
3950 | ENDDO |
---|
3951 | |
---|
3952 | CALL cpu_log( log_point_s(47), 'sort_particles', 'stop' ) |
---|
3953 | |
---|
3954 | END SUBROUTINE sort_particles |
---|