1 | #!/usr/bin/env python3 |
---|
2 | # -*- coding: utf-8 -*- |
---|
3 | # |
---|
4 | #--------------------------------------------------------------------------------# |
---|
5 | # This file is part of the PALM model system. |
---|
6 | # |
---|
7 | # PALM is free software: you can redistribute it and/or modify it under the terms |
---|
8 | # of the GNU General Public License as published by the Free Software Foundation, |
---|
9 | # either version 3 of the License, or (at your option) any later version. |
---|
10 | # |
---|
11 | # PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
12 | # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
13 | # A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
14 | # |
---|
15 | # You should have received a copy of the GNU General Public License along with |
---|
16 | # PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
17 | # |
---|
18 | # Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
19 | #--------------------------------------------------------------------------------# |
---|
20 | # |
---|
21 | # Current revisions: |
---|
22 | # ----------------- |
---|
23 | # |
---|
24 | # |
---|
25 | # Former revisions: |
---|
26 | # ----------------- |
---|
27 | # $Id$ |
---|
28 | # In order to do not omit observations that are on the same site but have different |
---|
29 | # coordinates or feature-types, process all files rather than only one and omit |
---|
30 | # the rest. |
---|
31 | # |
---|
32 | # 4663 2020-09-02 14:54:09Z gronemeier |
---|
33 | # bugfix in non_measurable_vars; ignore station_h if featureType is trajectory |
---|
34 | # |
---|
35 | # 4400 2020-02-10 20:32:41Z suehring |
---|
36 | # Initial revision |
---|
37 | # |
---|
38 | # Description: |
---|
39 | # ------------ |
---|
40 | # Processing tool for creating PIDS conform virtual measurement setup file |
---|
41 | # from UC2 data-standard conform observational data or from prescribed input |
---|
42 | # coordinates. |
---|
43 | # |
---|
44 | # @Authors Matthias Suehring (suehring@muk.uni-hannover.de) |
---|
45 | # Tobias Gronemeier (gronemeier@muk.uni-hannover.de) |
---|
46 | # |
---|
47 | # @todo Add further feature tpyes for customized observations. At the moment only |
---|
48 | # timeSeries is possible. |
---|
49 | #--------------------------------------------------------------------------------# |
---|
50 | |
---|
51 | |
---|
52 | import netCDF4 |
---|
53 | from netCDF4 import Dataset, stringtochar |
---|
54 | import os |
---|
55 | import numpy as np |
---|
56 | |
---|
57 | |
---|
58 | # Function to read the config file |
---|
59 | def read_config_file(): |
---|
60 | |
---|
61 | import configparser |
---|
62 | import os |
---|
63 | import sys |
---|
64 | import json |
---|
65 | |
---|
66 | # Definition of global configuration parameters |
---|
67 | global global_acronym |
---|
68 | global global_author |
---|
69 | global global_campaign |
---|
70 | global global_comment |
---|
71 | global global_contact |
---|
72 | global global_data_content |
---|
73 | global global_dependencies |
---|
74 | global global_institution |
---|
75 | global global_keywords |
---|
76 | global global_location |
---|
77 | global global_references |
---|
78 | global global_site |
---|
79 | global global_source |
---|
80 | global global_palm_version |
---|
81 | global data_path |
---|
82 | global output_path |
---|
83 | global output_filename |
---|
84 | global number_positions |
---|
85 | global input_from_observations |
---|
86 | global coordinates |
---|
87 | global vars_to_be_measured |
---|
88 | global custom_coordinates |
---|
89 | |
---|
90 | global_acronym = " " |
---|
91 | global_author = " " |
---|
92 | global_campaign = " " |
---|
93 | global_comment = " " |
---|
94 | global_contact = " " |
---|
95 | global_data_content = " " |
---|
96 | global_dependencies = " " |
---|
97 | global_institution = " " |
---|
98 | global_keywords = " " |
---|
99 | global_location = " " |
---|
100 | global_references = " " |
---|
101 | global_site = " " |
---|
102 | global_source = " " |
---|
103 | global_palm_version = 6.0 |
---|
104 | data_path = " " |
---|
105 | output_path = " " |
---|
106 | output_filename = "none" |
---|
107 | number_positions = -999 |
---|
108 | input_from_observations = False |
---|
109 | coordinates = [] |
---|
110 | vars_to_be_measured = [] |
---|
111 | custom_coordinates = False |
---|
112 | |
---|
113 | # Check if configuration files exists and quit otherwise |
---|
114 | input_config = ".cvd.config.default" |
---|
115 | for i in range(1,len(sys.argv)): |
---|
116 | input_config = str(sys.argv[i]) |
---|
117 | |
---|
118 | # Allow empty settings |
---|
119 | config = configparser.RawConfigParser(allow_no_value=True) |
---|
120 | |
---|
121 | # Check if a config file exists. |
---|
122 | if ( os.path.isfile(input_config) == False ): |
---|
123 | print ("Error. No configuration file " + input_config + " found.") |
---|
124 | quit() |
---|
125 | |
---|
126 | config.read(input_config) |
---|
127 | |
---|
128 | for section in range( 0, len( config.sections() ) ): |
---|
129 | |
---|
130 | current_section = config.sections()[section] |
---|
131 | |
---|
132 | # read global attributes which are written into the output file header |
---|
133 | if ( current_section == 'global' ): |
---|
134 | |
---|
135 | global_acronym = config.get( current_section, 'acronym' ) |
---|
136 | global_author = config.get( current_section, 'author' ) |
---|
137 | global_campaign = config.get( current_section, 'campaign' ) |
---|
138 | global_comment = config.get( current_section, 'comment' ) |
---|
139 | global_contact = config.get( current_section, 'contact_person' ) |
---|
140 | global_data_content = config.get( current_section, 'data_content' ) |
---|
141 | global_dependencies = config.get( current_section, 'dependencies' ) |
---|
142 | global_institution = config.get( current_section, 'institution' ) |
---|
143 | global_keywords = config.get( current_section, 'keywords' ) |
---|
144 | global_location = config.get( current_section, 'location' ) |
---|
145 | global_references = config.get( current_section, 'references' ) |
---|
146 | global_site = config.get( current_section, 'site' ) |
---|
147 | global_source = config.get( current_section, 'source' ) |
---|
148 | global_palm_version = float( config.get( current_section, 'palm_version' ) ) |
---|
149 | |
---|
150 | # Read data input path for observational data |
---|
151 | elif ( current_section == 'input' ): |
---|
152 | |
---|
153 | data_path = config.get( current_section, 'data_path' ) |
---|
154 | input_from_observations = True |
---|
155 | |
---|
156 | # Read output path and filename for the VM driver |
---|
157 | elif ( current_section == 'output' ): |
---|
158 | |
---|
159 | output_path = config.get( current_section, 'output_path' ) |
---|
160 | output_filename = config.get( current_section, 'output_filename' ) |
---|
161 | |
---|
162 | # Read customized coordinates where virtual measurements shall be taken, |
---|
163 | # as well as the variables that should be sampled. |
---|
164 | elif ( current_section == 'custom_positions' ): |
---|
165 | |
---|
166 | number_positions = config.get( current_section, 'number_positions' ) |
---|
167 | |
---|
168 | for count in range( 0, int( number_positions ) ): |
---|
169 | coordinates.append( json.loads( config.get( current_section, \ |
---|
170 | "coordinates" + str( count + 1 ) ) ) ) |
---|
171 | # If coordinates are given, set a global flag. |
---|
172 | custom_coordinates = True |
---|
173 | |
---|
174 | for count in range( 0, int( number_positions ) ): |
---|
175 | vars_to_be_measured.append( json.loads( config.get( current_section, \ |
---|
176 | "vars_to_be_measured" + str( count + 1 ) ) ) ) |
---|
177 | |
---|
178 | |
---|
179 | return 0 |
---|
180 | |
---|
181 | #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
182 | # Main program: |
---|
183 | #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
---|
184 | |
---|
185 | |
---|
186 | # Define strings |
---|
187 | name_featuretype = "featureType" |
---|
188 | name_ts = "timeSeries" |
---|
189 | name_traj = "trajectory" |
---|
190 | name_ntime = "ntime" |
---|
191 | name_time = "time" |
---|
192 | name_station = "station" |
---|
193 | name_traj_dim = "traj" |
---|
194 | name_nz = "nz" |
---|
195 | name_datacontent = "data_content" |
---|
196 | name_eutm = "E_UTM" |
---|
197 | name_nutm = "N_UTM" |
---|
198 | name_hao = "height_above_origin" |
---|
199 | name_station_h = "station_h" |
---|
200 | name_z = "z" |
---|
201 | name_soil_sampling = "soil_sample" |
---|
202 | name_num_stat = "number_of_stations" |
---|
203 | name_fill = "_FillValue" |
---|
204 | name_site = "site" |
---|
205 | name_acro = "acronym" |
---|
206 | name_content = "data_content" |
---|
207 | name_orig_x = "origin_x" |
---|
208 | name_orig_y = "origin_y" |
---|
209 | name_orig_z = "origin_z" |
---|
210 | |
---|
211 | max_string_len = 50 |
---|
212 | |
---|
213 | name_measvars = "measured_variables" |
---|
214 | |
---|
215 | non_measurable_vars = ['station_name', 'time', 'time_bounds', 'crs', \ |
---|
216 | 'vrs', 'x', 'y', 'z', 'lon', 'lat', 'ntime', 'station', 'traj', \ |
---|
217 | 'E_UTM', 'N_UTM', 'height_above_origin', 'station_h', \ |
---|
218 | 'traj_name', 'height', 'band_pm_size', 'bands_pm', 'bands_pm_size_bounds', \ |
---|
219 | 'bands_pm_size', 'ancillary_detected_layer' ] |
---|
220 | |
---|
221 | soil_vars = [ 't_soil', 'm_soil', 'lwc', 'lwcs', 'smp' ] |
---|
222 | |
---|
223 | dims_out = [ name_eutm, name_nutm, name_hao, name_z, name_station_h ] |
---|
224 | |
---|
225 | # Define list of attributes which need to be of type float. In the data set this is not |
---|
226 | # necessarily guranteed. |
---|
227 | atts_float = [ 'origin_x', 'origin_y', 'origin_z', 'origin_lon', 'origin_lat', 'rotation_angle' ] |
---|
228 | |
---|
229 | # Define list of default variables that shall be measured at each site |
---|
230 | vars_default = [ 'u', 'v', 'w', 'theta', 'hus' ] |
---|
231 | |
---|
232 | |
---|
233 | #Read config file |
---|
234 | read_config_file() |
---|
235 | |
---|
236 | # Initialize counter variable for the number of sites |
---|
237 | num_sites = 0 |
---|
238 | |
---|
239 | # Set the output path for the data |
---|
240 | output_filename = output_path + output_filename |
---|
241 | |
---|
242 | # Open output file |
---|
243 | ncfile_out = Dataset( output_filename, "w", format="NETCDF4" ) |
---|
244 | |
---|
245 | # First, add global attributes |
---|
246 | ncfile_out.setncattr( 'acronym', global_acronym ) |
---|
247 | ncfile_out.setncattr( 'author', global_author ) |
---|
248 | ncfile_out.setncattr( 'campaign', global_campaign ) |
---|
249 | ncfile_out.setncattr( 'comment', global_comment ) |
---|
250 | ncfile_out.setncattr( 'contact_person', global_contact ) |
---|
251 | ncfile_out.setncattr( 'data_content', global_data_content ) |
---|
252 | ncfile_out.setncattr( 'dependencies', global_dependencies ) |
---|
253 | ncfile_out.setncattr( 'institution', global_institution ) |
---|
254 | ncfile_out.setncattr( 'keywords', global_keywords ) |
---|
255 | ncfile_out.setncattr( 'location', global_location ) |
---|
256 | ncfile_out.setncattr( 'references', global_references ) |
---|
257 | ncfile_out.setncattr( 'site', global_site ) |
---|
258 | ncfile_out.setncattr( 'source', global_source ) |
---|
259 | ncfile_out.setncattr( 'palm_version', global_palm_version ) |
---|
260 | |
---|
261 | # Create universal dimension for the string length. |
---|
262 | ncfile_out.createDimension("string_len", max_string_len) |
---|
263 | |
---|
264 | |
---|
265 | # Check if observational data is available. This case, |
---|
266 | # obtain an alphabetically sorted list of input data. List is sorted |
---|
267 | # just for the sake of clarity in the resulting setup file. |
---|
268 | if ( input_from_observations == True ): |
---|
269 | list_input_data = sorted( os.listdir( data_path ) ) |
---|
270 | |
---|
271 | if ( input_from_observations ): |
---|
272 | |
---|
273 | # Run loop over all subdirectories, detect the files and extract a list of sites. |
---|
274 | # This is done to reduce the number of virtual measurements in the model. Each |
---|
275 | # virtual measurement has an overhead and consumes memory. |
---|
276 | sites = [] |
---|
277 | input_files = [] |
---|
278 | for dirname in list_input_data: |
---|
279 | data_file = data_path + dirname |
---|
280 | |
---|
281 | # Directory may contain various file versions. |
---|
282 | # Take the one with highest cycle number. |
---|
283 | highest_cycle_nr = 0 |
---|
284 | for filename in os.listdir(data_file): |
---|
285 | start_seq = len( filename ) - 6 |
---|
286 | end_seq = len( filename ) - 3 |
---|
287 | if int( filename[start_seq:end_seq] ) > highest_cycle_nr: |
---|
288 | highest_cycle_nr = int(filename[start_seq:end_seq]) |
---|
289 | latest_file = filename |
---|
290 | |
---|
291 | # Open the NetCDF file |
---|
292 | input_file = data_file + "/" + latest_file |
---|
293 | ncfile_in = Dataset( input_file, "r", format="NETCDF4", encoding='ascii') |
---|
294 | input_files.append(input_file) |
---|
295 | |
---|
296 | # Define a nested list of default variables that shall be measured. Based on this list, |
---|
297 | # the final number of measured variables is determined. |
---|
298 | measured_variables_all_sites = [ ['u', 'v', 'w', 'theta', 'hus'] for var in range(0, len(input_files))] |
---|
299 | |
---|
300 | # Run loop over all subdirectories that contain observational data |
---|
301 | for counter, file in enumerate(input_files): |
---|
302 | |
---|
303 | # Open the NetCDF input file |
---|
304 | input_file = input_files[counter] |
---|
305 | ncfile_in = Dataset( input_file, "r", format="NETCDF4", encoding='ascii' ) |
---|
306 | |
---|
307 | # Determine index for the treated site |
---|
308 | num_vmeas = input_files.index( input_file ) + 1 |
---|
309 | print( counter, num_vmeas ) |
---|
310 | |
---|
311 | # Read global attributes and write them immediately into the output file |
---|
312 | for att in ncfile_in.ncattrs(): |
---|
313 | if ( att == name_featuretype ): |
---|
314 | feature = ncfile_in.getncattr(att) |
---|
315 | if ( att == name_datacontent ): |
---|
316 | content = ncfile_in.getncattr(att) |
---|
317 | if ( att == name_site ): |
---|
318 | site = ncfile_in.getncattr(att) |
---|
319 | |
---|
320 | if ( att in atts_float ): |
---|
321 | ncfile_out.setncattr( att + str(num_vmeas), np.double(ncfile_in.getncattr(att)) ) |
---|
322 | else: |
---|
323 | ncfile_out.setncattr( att + str(num_vmeas), ncfile_in.getncattr(att) ) |
---|
324 | |
---|
325 | #timeSeries |
---|
326 | if ( feature == name_ts ): |
---|
327 | ntime = len( ncfile_in.dimensions[name_ntime] ) |
---|
328 | nstat = len( ncfile_in.dimensions[name_station] ) |
---|
329 | ncfile_out.createDimension( name_ntime + str(num_vmeas), ntime ) |
---|
330 | ncfile_out.createDimension( name_station + str(num_vmeas), nstat ) |
---|
331 | |
---|
332 | #trajectory |
---|
333 | elif ( feature == name_traj ): |
---|
334 | ntime = len( ncfile_in.dimensions[name_ntime] ) |
---|
335 | ntraj = len( ncfile_in.dimensions[name_traj_dim] ) |
---|
336 | ncfile_out.createDimension( name_ntime + str(num_vmeas), ntime ) |
---|
337 | ncfile_out.createDimension( name_traj_dim + str(num_vmeas), ntraj ) |
---|
338 | |
---|
339 | #timeseriesProfile |
---|
340 | else: |
---|
341 | ntime = len( ncfile_in.dimensions[name_ntime] ) |
---|
342 | nstat = len( ncfile_in.dimensions[name_station] ) |
---|
343 | nz = len( ncfile_in.dimensions[name_nz] ) |
---|
344 | ncfile_out.createDimension( name_ntime + str(num_vmeas), ntime ) |
---|
345 | ncfile_out.createDimension( name_station + str(num_vmeas), nstat ) |
---|
346 | ncfile_out.createDimension( name_nz + str(num_vmeas), nz ) |
---|
347 | |
---|
348 | for var in ncfile_in.variables.keys(): |
---|
349 | if ( var in dims_out ): |
---|
350 | # Create a variable and write it to file after it is read. In order to |
---|
351 | # avoid fill values in the dimensions, these are converted to zero |
---|
352 | # before written to file. Depending on the featureType of the measurement, |
---|
353 | # the array shape is different. For more informations, please see |
---|
354 | # [UC]2 data standard. |
---|
355 | # Timeseries |
---|
356 | if ( feature == name_ts ): |
---|
357 | temp_ts = ncfile_out.createVariable( var + str(num_vmeas), float, \ |
---|
358 | name_station + str(num_vmeas)) |
---|
359 | temp_ts[:] = np.nan_to_num( ncfile_in.variables[var][:] ) |
---|
360 | |
---|
361 | # Trajectories |
---|
362 | elif ( feature == name_traj ): |
---|
363 | # @note: If there are files where station_h is present although featureType is |
---|
364 | # trajectory, station_h must not be read. |
---|
365 | if var != name_station_h: |
---|
366 | temp_traj = ncfile_out.createVariable( var + str(num_vmeas), float, \ |
---|
367 | ( name_traj_dim + str(num_vmeas), \ |
---|
368 | name_ntime + str(num_vmeas) ) ) |
---|
369 | temp_traj[:,:] = np.nan_to_num( ncfile_in.variables[var][:,:] ) |
---|
370 | |
---|
371 | # TimeseriesProfiles |
---|
372 | else: |
---|
373 | if ( var == 'z' ): |
---|
374 | temp_pr = ncfile_out.createVariable( var + str(num_vmeas), float, \ |
---|
375 | ( name_station + str(num_vmeas), \ |
---|
376 | name_nz + str(num_vmeas) ) ) |
---|
377 | temp_pr[:] = np.nan_to_num( ncfile_in.variables[var][:,0,:] ) |
---|
378 | else: |
---|
379 | temp_pr = ncfile_out.createVariable( var + str(num_vmeas), float, \ |
---|
380 | name_station + str(num_vmeas)) |
---|
381 | temp_pr[:] = np.nan_to_num( ncfile_in.variables[var][:] ) |
---|
382 | |
---|
383 | # Search for variables to be measured. In case the variable isn't already defined, |
---|
384 | # append the variable to the list. |
---|
385 | for var in ncfile_in.variables.keys(): |
---|
386 | if ( var not in non_measurable_vars and \ |
---|
387 | var not in vars_default and \ |
---|
388 | var not in measured_variables_all_sites[input_files.index( input_file )] ): |
---|
389 | |
---|
390 | measured_variables_all_sites[input_files.index( input_file )].append(var) |
---|
391 | |
---|
392 | # Close the NetCDF input file |
---|
393 | ncfile_in.close() |
---|
394 | |
---|
395 | # After variables are gathered and dimensions / attributes are already written to file, |
---|
396 | # the list of measured variables is written to file. |
---|
397 | for site in input_files: |
---|
398 | |
---|
399 | num_vmeas = input_files.index( site ) + 1 |
---|
400 | |
---|
401 | ncfile_out.createDimension( "nvar"+ str(num_vmeas), \ |
---|
402 | len( measured_variables_all_sites[input_files.index( site )] ) ) |
---|
403 | |
---|
404 | measured = ncfile_out.createVariable( 'measured_variables' + str(num_vmeas), 'S1', \ |
---|
405 | ("nvar" + str(num_vmeas), "string_len")) # must be NC_CHAR |
---|
406 | |
---|
407 | for counter, meas in enumerate( measured_variables_all_sites[input_files.index( site )] ): |
---|
408 | measured[counter] = stringtochar( np.array( meas,"S%s"%(max_string_len) ) ) |
---|
409 | |
---|
410 | # Check if any of the measured variables is a soil variable. Set flag accordingly. |
---|
411 | soil = False |
---|
412 | for var in measured_variables_all_sites[input_files.index( site )]: |
---|
413 | if ( var in soil_vars ): |
---|
414 | soil = True |
---|
415 | |
---|
416 | # Write soil flag |
---|
417 | ncfile_out.setncattr( name_soil_sampling + str( num_vmeas), np.int8(soil) ) |
---|
418 | |
---|
419 | |
---|
420 | |
---|
421 | # Store the number of observational sites |
---|
422 | num_sites += len( input_files ) |
---|
423 | |
---|
424 | |
---|
425 | # Now process the customized input data. Please note, at the moment only timeseries are |
---|
426 | # are possible. |
---|
427 | if ( custom_coordinates ): |
---|
428 | |
---|
429 | count_site = num_sites + 1 |
---|
430 | for coord in coordinates: |
---|
431 | # Define mandatory attributes |
---|
432 | ncfile_out.setncattr( name_featuretype + str(count_site), \ |
---|
433 | name_ts ) |
---|
434 | ncfile_out.setncattr( name_site + str(count_site), \ |
---|
435 | "custom" + str(count_site - num_sites) ) |
---|
436 | ncfile_out.setncattr( name_orig_x + str(count_site), \ |
---|
437 | coord[0] ) |
---|
438 | ncfile_out.setncattr( name_orig_y + str(count_site), \ |
---|
439 | coord[1] ) |
---|
440 | ncfile_out.setncattr( name_orig_z + str(count_site), \ |
---|
441 | 0.0 ) |
---|
442 | |
---|
443 | # Define dimensions |
---|
444 | ntime = 1 |
---|
445 | nstat = 1 |
---|
446 | ncfile_out.createDimension( name_ntime + str(count_site), ntime ) |
---|
447 | ncfile_out.createDimension( name_station + str(count_site), nstat ) |
---|
448 | |
---|
449 | # Define coordinate variables |
---|
450 | temp_ts = ncfile_out.createVariable( name_eutm + str(count_site), \ |
---|
451 | float, \ |
---|
452 | name_station + str(count_site) ) |
---|
453 | temp_ts[:] = np.array( coord[0] ) |
---|
454 | |
---|
455 | temp_ts = ncfile_out.createVariable( name_nutm + str(count_site), \ |
---|
456 | float, \ |
---|
457 | name_station + str(count_site) ) |
---|
458 | temp_ts[:] = np.array( coord[1] ) |
---|
459 | |
---|
460 | temp_ts = ncfile_out.createVariable( name_z + str(count_site), \ |
---|
461 | float, \ |
---|
462 | name_station + str(count_site) ) |
---|
463 | temp_ts[:] = np.array( coord[2] ) |
---|
464 | |
---|
465 | temp_ts = ncfile_out.createVariable( name_station_h + str(count_site), \ |
---|
466 | float, \ |
---|
467 | name_station + str(count_site) ) |
---|
468 | temp_ts[:] = np.array( 0.0 ) |
---|
469 | |
---|
470 | |
---|
471 | count_site += 1 |
---|
472 | |
---|
473 | # Reset counter variable |
---|
474 | count_site = num_sites + 1 |
---|
475 | |
---|
476 | # check if variables are prescribed. If so, prepare final output string |
---|
477 | # stored in measured_variables. |
---|
478 | if ( vars_to_be_measured ): |
---|
479 | |
---|
480 | for custom_vars in vars_to_be_measured: |
---|
481 | |
---|
482 | measured_variables = [] |
---|
483 | for var in vars_default: |
---|
484 | measured_variables.append(var) |
---|
485 | |
---|
486 | # Check if given variables are already in the default variables. |
---|
487 | # If not, extend. |
---|
488 | for var in custom_vars: |
---|
489 | if ( var not in measured_variables ): |
---|
490 | |
---|
491 | measured_variables.append(var) |
---|
492 | |
---|
493 | ncfile_out.createDimension( "nvar"+ str(count_site), \ |
---|
494 | len( measured_variables ) ) |
---|
495 | |
---|
496 | measured_var = ncfile_out.createVariable( 'measured_variables' + str(count_site), 'S1', \ |
---|
497 | ("nvar" + str(count_site), "string_len") ) # must be NC_CHAR |
---|
498 | |
---|
499 | # Write the variables to the file |
---|
500 | for counter, meas in enumerate( measured_variables ): |
---|
501 | measured_var[counter] = stringtochar( np.array( meas,"S%s"%(max_string_len) ) ) |
---|
502 | |
---|
503 | # Add soil attribute for the current measurement. |
---|
504 | soil = False |
---|
505 | if ( any( var == soil_vars for var in measured_variables) ): |
---|
506 | soil = True |
---|
507 | |
---|
508 | # Write soil flag |
---|
509 | ncfile_out.setncattr( name_soil_sampling + str( count_site), np.int8(soil) ) |
---|
510 | |
---|
511 | # Increment counter variable |
---|
512 | count_site += 1 |
---|
513 | |
---|
514 | del ( measured_variables[:] ) |
---|
515 | |
---|
516 | # Add the number of customized sites. |
---|
517 | num_sites += int( number_positions ) |
---|
518 | |
---|
519 | |
---|
520 | # Finally, write the total number of sites to the output file |
---|
521 | ncfile_out.setncattr( name_num_stat, num_sites ) |
---|
522 | |
---|
523 | |
---|
524 | print( "*** palm_cvd has been finished. You can find the output file under: " ) |
---|
525 | print( " " + output_filename ) |
---|
526 | |
---|
527 | quit() |
---|