[1585] | 1 | ! path: $Source$ |
---|
| 2 | ! author: $Author: miacono $ |
---|
| 3 | ! revision: $Revision: 23308 $ |
---|
| 4 | ! created: $Date: 2013-12-27 17:23:51 -0500 (Fri, 27 Dec 2013) $ |
---|
| 5 | |
---|
| 6 | module rrtmg_sw_cldprmc |
---|
| 7 | |
---|
| 8 | ! -------------------------------------------------------------------------- |
---|
| 9 | ! | | |
---|
| 10 | ! | Copyright 2002-2009, Atmospheric & Environmental Research, Inc. (AER). | |
---|
| 11 | ! | This software may be used, copied, or redistributed as long as it is | |
---|
| 12 | ! | not sold and this copyright notice is reproduced on each copy made. | |
---|
| 13 | ! | This model is provided as is without any express or implied warranties. | |
---|
| 14 | ! | (http://www.rtweb.aer.com/) | |
---|
| 15 | ! | | |
---|
| 16 | ! -------------------------------------------------------------------------- |
---|
| 17 | |
---|
| 18 | ! ------- Modules ------- |
---|
| 19 | |
---|
| 20 | use parkind, only : im => kind_im, rb => kind_rb |
---|
| 21 | use parrrsw, only : ngptsw, jpband, jpb1, jpb2 |
---|
| 22 | use rrsw_cld, only : extliq1, ssaliq1, asyliq1, & |
---|
| 23 | extice2, ssaice2, asyice2, & |
---|
| 24 | extice3, ssaice3, asyice3, fdlice3, & |
---|
| 25 | abari, bbari, cbari, dbari, ebari, fbari |
---|
| 26 | use rrsw_wvn, only : wavenum1, wavenum2, ngb |
---|
| 27 | use rrsw_vsn, only : hvrclc, hnamclc |
---|
| 28 | |
---|
| 29 | implicit none |
---|
| 30 | |
---|
| 31 | contains |
---|
| 32 | |
---|
| 33 | ! ---------------------------------------------------------------------------- |
---|
| 34 | subroutine cldprmc_sw(nlayers, inflag, iceflag, liqflag, cldfmc, & |
---|
| 35 | ciwpmc, clwpmc, reicmc, relqmc, & |
---|
| 36 | taormc, taucmc, ssacmc, asmcmc, fsfcmc) |
---|
| 37 | ! ---------------------------------------------------------------------------- |
---|
| 38 | |
---|
| 39 | ! Purpose: Compute the cloud optical properties for each cloudy layer |
---|
| 40 | ! and g-point interval for use by the McICA method. |
---|
| 41 | ! Note: Only inflag = 0 and inflag=2/liqflag=1/iceflag=1,2,3 are available; |
---|
| 42 | ! (Hu & Stamnes, Ebert and Curry, Key, and Fu) are implemented. |
---|
| 43 | |
---|
| 44 | ! ------- Input ------- |
---|
| 45 | |
---|
| 46 | integer(kind=im), intent(in) :: nlayers ! total number of layers |
---|
| 47 | integer(kind=im), intent(in) :: inflag ! see definitions |
---|
| 48 | integer(kind=im), intent(in) :: iceflag ! see definitions |
---|
| 49 | integer(kind=im), intent(in) :: liqflag ! see definitions |
---|
| 50 | |
---|
| 51 | real(kind=rb), intent(in) :: cldfmc(:,:) ! cloud fraction [mcica] |
---|
| 52 | ! Dimensions: (ngptsw,nlayers) |
---|
| 53 | real(kind=rb), intent(in) :: ciwpmc(:,:) ! cloud ice water path [mcica] |
---|
| 54 | ! Dimensions: (ngptsw,nlayers) |
---|
| 55 | real(kind=rb), intent(in) :: clwpmc(:,:) ! cloud liquid water path [mcica] |
---|
| 56 | ! Dimensions: (ngptsw,nlayers) |
---|
| 57 | real(kind=rb), intent(in) :: relqmc(:) ! cloud liquid particle effective radius (microns) |
---|
| 58 | ! Dimensions: (nlayers) |
---|
| 59 | real(kind=rb), intent(in) :: reicmc(:) ! cloud ice particle effective radius (microns) |
---|
| 60 | ! Dimensions: (nlayers) |
---|
| 61 | ! specific definition of reicmc depends on setting of iceflag: |
---|
| 62 | ! iceflag = 0: (inactive) |
---|
| 63 | ! |
---|
| 64 | ! iceflag = 1: ice effective radius, r_ec, (Ebert and Curry, 1992), |
---|
| 65 | ! r_ec range is limited to 13.0 to 130.0 microns |
---|
| 66 | ! iceflag = 2: ice effective radius, r_k, (Key, Streamer Ref. Manual, 1996) |
---|
| 67 | ! r_k range is limited to 5.0 to 131.0 microns |
---|
| 68 | ! iceflag = 3: generalized effective size, dge, (Fu, 1996), |
---|
| 69 | ! dge range is limited to 5.0 to 140.0 microns |
---|
| 70 | ! [dge = 1.0315 * r_ec] |
---|
| 71 | real(kind=rb), intent(in) :: fsfcmc(:,:) ! cloud forward scattering fraction |
---|
| 72 | ! Dimensions: (ngptsw,nlayers) |
---|
| 73 | |
---|
| 74 | ! ------- Output ------- |
---|
| 75 | |
---|
| 76 | real(kind=rb), intent(inout) :: taucmc(:,:) ! cloud optical depth (delta scaled) |
---|
| 77 | ! Dimensions: (ngptsw,nlayers) |
---|
| 78 | real(kind=rb), intent(inout) :: ssacmc(:,:) ! single scattering albedo (delta scaled) |
---|
| 79 | ! Dimensions: (ngptsw,nlayers) |
---|
| 80 | real(kind=rb), intent(inout) :: asmcmc(:,:) ! asymmetry parameter (delta scaled) |
---|
| 81 | ! Dimensions: (ngptsw,nlayers) |
---|
| 82 | real(kind=rb), intent(out) :: taormc(:,:) ! cloud optical depth (non-delta scaled) |
---|
| 83 | ! Dimensions: (ngptsw,nlayers) |
---|
| 84 | |
---|
| 85 | ! ------- Local ------- |
---|
| 86 | |
---|
| 87 | ! integer(kind=im) :: ncbands |
---|
| 88 | integer(kind=im) :: ib, lay, istr, index, icx, ig |
---|
| 89 | |
---|
| 90 | real(kind=rb), parameter :: eps = 1.e-06_rb ! epsilon |
---|
| 91 | real(kind=rb), parameter :: cldmin = 1.e-20_rb ! minimum value for cloud quantities |
---|
| 92 | real(kind=rb) :: cwp ! total cloud water path |
---|
| 93 | real(kind=rb) :: radliq ! cloud liquid droplet radius (microns) |
---|
| 94 | real(kind=rb) :: radice ! cloud ice effective size (microns) |
---|
| 95 | real(kind=rb) :: factor |
---|
| 96 | real(kind=rb) :: fint |
---|
| 97 | |
---|
| 98 | real(kind=rb) :: taucldorig_a, taucloud_a, ssacloud_a, ffp, ffp1, ffpssa |
---|
| 99 | real(kind=rb) :: tauiceorig, scatice, ssaice, tauice, tauliqorig, scatliq, ssaliq, tauliq |
---|
| 100 | |
---|
| 101 | real(kind=rb) :: fdelta(ngptsw) |
---|
| 102 | real(kind=rb) :: extcoice(ngptsw), gice(ngptsw) |
---|
| 103 | real(kind=rb) :: ssacoice(ngptsw), forwice(ngptsw) |
---|
| 104 | real(kind=rb) :: extcoliq(ngptsw), gliq(ngptsw) |
---|
| 105 | real(kind=rb) :: ssacoliq(ngptsw), forwliq(ngptsw) |
---|
| 106 | |
---|
| 107 | ! Initialize |
---|
| 108 | |
---|
| 109 | hvrclc = '$Revision: 23308 $' |
---|
| 110 | |
---|
| 111 | ! Some of these initializations are done elsewhere |
---|
| 112 | do lay = 1, nlayers |
---|
| 113 | do ig = 1, ngptsw |
---|
| 114 | taormc(ig,lay) = taucmc(ig,lay) |
---|
| 115 | ! taucmc(ig,lay) = 0.0_rb |
---|
| 116 | ! ssacmc(ig,lay) = 1.0_rb |
---|
| 117 | ! asmcmc(ig,lay) = 0.0_rb |
---|
| 118 | enddo |
---|
| 119 | enddo |
---|
| 120 | |
---|
| 121 | ! Main layer loop |
---|
| 122 | do lay = 1, nlayers |
---|
| 123 | |
---|
| 124 | ! Main g-point interval loop |
---|
| 125 | do ig = 1, ngptsw |
---|
| 126 | cwp = ciwpmc(ig,lay) + clwpmc(ig,lay) |
---|
| 127 | if (cldfmc(ig,lay) .ge. cldmin .and. & |
---|
| 128 | (cwp .ge. cldmin .or. taucmc(ig,lay) .ge. cldmin)) then |
---|
| 129 | |
---|
| 130 | ! (inflag=0): Cloud optical properties input directly |
---|
| 131 | if (inflag .eq. 0) then |
---|
| 132 | ! Cloud optical properties already defined in taucmc, ssacmc, asmcmc are unscaled; |
---|
| 133 | ! Apply delta-M scaling here (using Henyey-Greenstein approximation) |
---|
| 134 | taucldorig_a = taucmc(ig,lay) |
---|
| 135 | ffp = fsfcmc(ig,lay) |
---|
| 136 | ffp1 = 1.0_rb - ffp |
---|
| 137 | ffpssa = 1.0_rb - ffp * ssacmc(ig,lay) |
---|
| 138 | ssacloud_a = ffp1 * ssacmc(ig,lay) / ffpssa |
---|
| 139 | taucloud_a = ffpssa * taucldorig_a |
---|
| 140 | |
---|
| 141 | taormc(ig,lay) = taucldorig_a |
---|
| 142 | ssacmc(ig,lay) = ssacloud_a |
---|
| 143 | taucmc(ig,lay) = taucloud_a |
---|
| 144 | asmcmc(ig,lay) = (asmcmc(ig,lay) - ffp) / (ffp1) |
---|
| 145 | |
---|
| 146 | elseif (inflag .eq. 1) then |
---|
| 147 | stop 'INFLAG = 1 OPTION NOT AVAILABLE WITH MCICA' |
---|
| 148 | |
---|
| 149 | ! (inflag=2): Separate treatement of ice clouds and water clouds. |
---|
| 150 | elseif (inflag .eq. 2) then |
---|
| 151 | radice = reicmc(lay) |
---|
| 152 | |
---|
| 153 | ! Calculation of absorption coefficients due to ice clouds. |
---|
| 154 | if (ciwpmc(ig,lay) .eq. 0.0_rb) then |
---|
| 155 | extcoice(ig) = 0.0_rb |
---|
| 156 | ssacoice(ig) = 0.0_rb |
---|
| 157 | gice(ig) = 0.0_rb |
---|
| 158 | forwice(ig) = 0.0_rb |
---|
| 159 | |
---|
| 160 | ! (iceflag = 1): |
---|
| 161 | ! Note: This option uses Ebert and Curry approach for all particle sizes similar to |
---|
| 162 | ! CAM3 implementation, though this is somewhat unjustified for large ice particles |
---|
| 163 | elseif (iceflag .eq. 1) then |
---|
| 164 | if (radice .lt. 13.0_rb .or. radice .gt. 130._rb) stop & |
---|
| 165 | 'ICE RADIUS OUT OF BOUNDS' |
---|
| 166 | ib = ngb(ig) |
---|
| 167 | if (wavenum2(ib) .gt. 1.43e04_rb) then |
---|
| 168 | icx = 1 |
---|
| 169 | elseif (wavenum2(ib) .gt. 7.7e03_rb) then |
---|
| 170 | icx = 2 |
---|
| 171 | elseif (wavenum2(ib) .gt. 5.3e03_rb) then |
---|
| 172 | icx = 3 |
---|
| 173 | elseif (wavenum2(ib) .gt. 4.0e03_rb) then |
---|
| 174 | icx = 4 |
---|
| 175 | elseif (wavenum2(ib) .ge. 2.5e03_rb) then |
---|
| 176 | icx = 5 |
---|
| 177 | endif |
---|
| 178 | extcoice(ig) = (abari(icx) + bbari(icx)/radice) |
---|
| 179 | ssacoice(ig) = 1._rb - cbari(icx) - dbari(icx) * radice |
---|
| 180 | gice(ig) = ebari(icx) + fbari(icx) * radice |
---|
| 181 | ! Check to ensure upper limit of gice is within physical limits for large particles |
---|
| 182 | if (gice(ig).ge.1._rb) gice(ig) = 1._rb - eps |
---|
| 183 | forwice(ig) = gice(ig)*gice(ig) |
---|
| 184 | ! Check to ensure all calculated quantities are within physical limits. |
---|
| 185 | if (extcoice(ig) .lt. 0.0_rb) stop 'ICE EXTINCTION LESS THAN 0.0' |
---|
| 186 | if (ssacoice(ig) .gt. 1.0_rb) stop 'ICE SSA GRTR THAN 1.0' |
---|
| 187 | if (ssacoice(ig) .lt. 0.0_rb) stop 'ICE SSA LESS THAN 0.0' |
---|
| 188 | if (gice(ig) .gt. 1.0_rb) stop 'ICE ASYM GRTR THAN 1.0' |
---|
| 189 | if (gice(ig) .lt. 0.0_rb) stop 'ICE ASYM LESS THAN 0.0' |
---|
| 190 | |
---|
| 191 | ! For iceflag=2 option, ice particle effective radius is limited to 5.0 to 131.0 microns |
---|
| 192 | |
---|
| 193 | elseif (iceflag .eq. 2) then |
---|
| 194 | if (radice .lt. 5.0_rb .or. radice .gt. 131.0_rb) stop 'ICE RADIUS OUT OF BOUNDS' |
---|
| 195 | factor = (radice - 2._rb)/3._rb |
---|
| 196 | index = int(factor) |
---|
| 197 | if (index .eq. 43) index = 42 |
---|
| 198 | fint = factor - real(index,kind=rb) |
---|
| 199 | ib = ngb(ig) |
---|
| 200 | extcoice(ig) = extice2(index,ib) + fint * & |
---|
| 201 | (extice2(index+1,ib) - extice2(index,ib)) |
---|
| 202 | ssacoice(ig) = ssaice2(index,ib) + fint * & |
---|
| 203 | (ssaice2(index+1,ib) - ssaice2(index,ib)) |
---|
| 204 | gice(ig) = asyice2(index,ib) + fint * & |
---|
| 205 | (asyice2(index+1,ib) - asyice2(index,ib)) |
---|
| 206 | forwice(ig) = gice(ig)*gice(ig) |
---|
| 207 | ! Check to ensure all calculated quantities are within physical limits. |
---|
| 208 | if (extcoice(ig) .lt. 0.0_rb) stop 'ICE EXTINCTION LESS THAN 0.0' |
---|
| 209 | if (ssacoice(ig) .gt. 1.0_rb) stop 'ICE SSA GRTR THAN 1.0' |
---|
| 210 | if (ssacoice(ig) .lt. 0.0_rb) stop 'ICE SSA LESS THAN 0.0' |
---|
| 211 | if (gice(ig) .gt. 1.0_rb) stop 'ICE ASYM GRTR THAN 1.0' |
---|
| 212 | if (gice(ig) .lt. 0.0_rb) stop 'ICE ASYM LESS THAN 0.0' |
---|
| 213 | |
---|
| 214 | ! For iceflag=3 option, ice particle generalized effective size is limited to 5.0 to 140.0 microns |
---|
| 215 | |
---|
| 216 | elseif (iceflag .eq. 3) then |
---|
| 217 | if (radice .lt. 5.0_rb .or. radice .gt. 140.0_rb) stop 'ICE GENERALIZED EFFECTIVE SIZE OUT OF BOUNDS' |
---|
| 218 | factor = (radice - 2._rb)/3._rb |
---|
| 219 | index = int(factor) |
---|
| 220 | if (index .eq. 46) index = 45 |
---|
| 221 | fint = factor - real(index,kind=rb) |
---|
| 222 | ib = ngb(ig) |
---|
| 223 | extcoice(ig) = extice3(index,ib) + fint * & |
---|
| 224 | (extice3(index+1,ib) - extice3(index,ib)) |
---|
| 225 | ssacoice(ig) = ssaice3(index,ib) + fint * & |
---|
| 226 | (ssaice3(index+1,ib) - ssaice3(index,ib)) |
---|
| 227 | gice(ig) = asyice3(index,ib) + fint * & |
---|
| 228 | (asyice3(index+1,ib) - asyice3(index,ib)) |
---|
| 229 | fdelta(ig) = fdlice3(index,ib) + fint * & |
---|
| 230 | (fdlice3(index+1,ib) - fdlice3(index,ib)) |
---|
| 231 | if (fdelta(ig) .lt. 0.0_rb) stop 'FDELTA LESS THAN 0.0' |
---|
| 232 | if (fdelta(ig) .gt. 1.0_rb) stop 'FDELTA GT THAN 1.0' |
---|
| 233 | forwice(ig) = fdelta(ig) + 0.5_rb / ssacoice(ig) |
---|
| 234 | ! See Fu 1996 p. 2067 |
---|
| 235 | if (forwice(ig) .gt. gice(ig)) forwice(ig) = gice(ig) |
---|
| 236 | ! Check to ensure all calculated quantities are within physical limits. |
---|
| 237 | if (extcoice(ig) .lt. 0.0_rb) stop 'ICE EXTINCTION LESS THAN 0.0' |
---|
| 238 | if (ssacoice(ig) .gt. 1.0_rb) stop 'ICE SSA GRTR THAN 1.0' |
---|
| 239 | if (ssacoice(ig) .lt. 0.0_rb) stop 'ICE SSA LESS THAN 0.0' |
---|
| 240 | if (gice(ig) .gt. 1.0_rb) stop 'ICE ASYM GRTR THAN 1.0' |
---|
| 241 | if (gice(ig) .lt. 0.0_rb) stop 'ICE ASYM LESS THAN 0.0' |
---|
| 242 | |
---|
| 243 | endif |
---|
| 244 | |
---|
| 245 | ! Calculation of absorption coefficients due to water clouds. |
---|
| 246 | if (clwpmc(ig,lay) .eq. 0.0_rb) then |
---|
| 247 | extcoliq(ig) = 0.0_rb |
---|
| 248 | ssacoliq(ig) = 0.0_rb |
---|
| 249 | gliq(ig) = 0.0_rb |
---|
| 250 | forwliq(ig) = 0.0_rb |
---|
| 251 | |
---|
| 252 | elseif (liqflag .eq. 1) then |
---|
| 253 | radliq = relqmc(lay) |
---|
| 254 | if (radliq .lt. 2.5_rb .or. radliq .gt. 60._rb) stop & |
---|
| 255 | 'LIQUID EFFECTIVE RADIUS OUT OF BOUNDS' |
---|
| 256 | index = int(radliq - 1.5_rb) |
---|
| 257 | if (index .eq. 0) index = 1 |
---|
| 258 | if (index .eq. 58) index = 57 |
---|
| 259 | fint = radliq - 1.5_rb - real(index,kind=rb) |
---|
| 260 | ib = ngb(ig) |
---|
| 261 | extcoliq(ig) = extliq1(index,ib) + fint * & |
---|
| 262 | (extliq1(index+1,ib) - extliq1(index,ib)) |
---|
| 263 | ssacoliq(ig) = ssaliq1(index,ib) + fint * & |
---|
| 264 | (ssaliq1(index+1,ib) - ssaliq1(index,ib)) |
---|
| 265 | if (fint .lt. 0._rb .and. ssacoliq(ig) .gt. 1._rb) & |
---|
| 266 | ssacoliq(ig) = ssaliq1(index,ib) |
---|
| 267 | gliq(ig) = asyliq1(index,ib) + fint * & |
---|
| 268 | (asyliq1(index+1,ib) - asyliq1(index,ib)) |
---|
| 269 | forwliq(ig) = gliq(ig)*gliq(ig) |
---|
| 270 | ! Check to ensure all calculated quantities are within physical limits. |
---|
| 271 | if (extcoliq(ig) .lt. 0.0_rb) stop 'LIQUID EXTINCTION LESS THAN 0.0' |
---|
| 272 | if (ssacoliq(ig) .gt. 1.0_rb) stop 'LIQUID SSA GRTR THAN 1.0' |
---|
| 273 | if (ssacoliq(ig) .lt. 0.0_rb) stop 'LIQUID SSA LESS THAN 0.0' |
---|
| 274 | if (gliq(ig) .gt. 1.0_rb) stop 'LIQUID ASYM GRTR THAN 1.0' |
---|
| 275 | if (gliq(ig) .lt. 0.0_rb) stop 'LIQUID ASYM LESS THAN 0.0' |
---|
| 276 | endif |
---|
| 277 | |
---|
| 278 | tauliqorig = clwpmc(ig,lay) * extcoliq(ig) |
---|
| 279 | tauiceorig = ciwpmc(ig,lay) * extcoice(ig) |
---|
| 280 | taormc(ig,lay) = tauliqorig + tauiceorig |
---|
| 281 | |
---|
| 282 | ssaliq = ssacoliq(ig) * (1._rb - forwliq(ig)) / & |
---|
| 283 | (1._rb - forwliq(ig) * ssacoliq(ig)) |
---|
| 284 | tauliq = (1._rb - forwliq(ig) * ssacoliq(ig)) * tauliqorig |
---|
| 285 | ssaice = ssacoice(ig) * (1._rb - forwice(ig)) / & |
---|
| 286 | (1._rb - forwice(ig) * ssacoice(ig)) |
---|
| 287 | tauice = (1._rb - forwice(ig) * ssacoice(ig)) * tauiceorig |
---|
| 288 | |
---|
| 289 | scatliq = ssaliq * tauliq |
---|
| 290 | scatice = ssaice * tauice |
---|
| 291 | taucmc(ig,lay) = tauliq + tauice |
---|
| 292 | |
---|
| 293 | ! Ensure non-zero taucmc and scatice |
---|
| 294 | if(taucmc(ig,lay).eq.0.) taucmc(ig,lay) = cldmin |
---|
| 295 | if(scatice.eq.0.) scatice = cldmin |
---|
| 296 | |
---|
| 297 | ssacmc(ig,lay) = (scatliq + scatice) / taucmc(ig,lay) |
---|
| 298 | |
---|
| 299 | if (iceflag .eq. 3) then |
---|
| 300 | ! In accordance with the 1996 Fu paper, equation A.3, |
---|
| 301 | ! the moments for ice were calculated depending on whether using spheres |
---|
| 302 | ! or hexagonal ice crystals. |
---|
| 303 | ! Set asymetry parameter to first moment (istr=1) |
---|
| 304 | istr = 1 |
---|
| 305 | asmcmc(ig,lay) = (1.0_rb/(scatliq+scatice))* & |
---|
| 306 | (scatliq*(gliq(ig)**istr - forwliq(ig)) / & |
---|
| 307 | (1.0_rb - forwliq(ig)) + scatice * ((gice(ig)-forwice(ig))/ & |
---|
| 308 | (1.0_rb - forwice(ig)))**istr) |
---|
| 309 | |
---|
| 310 | else |
---|
| 311 | ! This code is the standard method for delta-m scaling. |
---|
| 312 | ! Set asymetry parameter to first moment (istr=1) |
---|
| 313 | istr = 1 |
---|
| 314 | asmcmc(ig,lay) = (scatliq * & |
---|
| 315 | (gliq(ig)**istr - forwliq(ig)) / & |
---|
| 316 | (1.0_rb - forwliq(ig)) + scatice * (gice(ig)**istr - forwice(ig)) / & |
---|
| 317 | (1.0_rb - forwice(ig)))/(scatliq + scatice) |
---|
| 318 | endif |
---|
| 319 | |
---|
| 320 | endif |
---|
| 321 | |
---|
| 322 | endif |
---|
| 323 | |
---|
| 324 | ! End g-point interval loop |
---|
| 325 | enddo |
---|
| 326 | |
---|
| 327 | ! End layer loop |
---|
| 328 | enddo |
---|
| 329 | |
---|
| 330 | end subroutine cldprmc_sw |
---|
| 331 | |
---|
| 332 | end module rrtmg_sw_cldprmc |
---|
| 333 | |
---|