[1585] | 1 | ! path: $Source: /storm/rc1/cvsroot/rc/rrtmg_lw/src/rrtmg_lw_taumol.f90,v $ |
---|
| 2 | ! author: $Author: miacono $ |
---|
| 3 | ! revision: $Revision: 1.8 $ |
---|
| 4 | ! created: $Date: 2011/04/08 20:25:01 $ |
---|
| 5 | ! |
---|
| 6 | module rrtmg_lw_taumol |
---|
| 7 | |
---|
| 8 | ! -------------------------------------------------------------------------- |
---|
| 9 | ! | | |
---|
| 10 | ! | Copyright 2002-2009, Atmospheric & Environmental Research, Inc. (AER). | |
---|
| 11 | ! | This software may be used, copied, or redistributed as long as it is | |
---|
| 12 | ! | not sold and this copyright notice is reproduced on each copy made. | |
---|
| 13 | ! | This model is provided as is without any express or implied warranties. | |
---|
| 14 | ! | (http://www.rtweb.aer.com/) | |
---|
| 15 | ! | | |
---|
| 16 | ! -------------------------------------------------------------------------- |
---|
| 17 | |
---|
| 18 | ! ------- Modules ------- |
---|
| 19 | |
---|
| 20 | use parkind, only : im => kind_im, rb => kind_rb |
---|
| 21 | use parrrtm, only : mg, nbndlw, maxxsec, ngptlw |
---|
| 22 | use rrlw_con, only: oneminus |
---|
| 23 | use rrlw_wvn, only: nspa, nspb |
---|
| 24 | use rrlw_vsn, only: hvrtau, hnamtau |
---|
| 25 | |
---|
| 26 | implicit none |
---|
| 27 | |
---|
| 28 | contains |
---|
| 29 | |
---|
| 30 | !---------------------------------------------------------------------------- |
---|
| 31 | subroutine taumol(nlayers, pavel, wx, coldry, & |
---|
| 32 | laytrop, jp, jt, jt1, planklay, planklev, plankbnd, & |
---|
| 33 | colh2o, colco2, colo3, coln2o, colco, colch4, colo2, & |
---|
| 34 | colbrd, fac00, fac01, fac10, fac11, & |
---|
| 35 | rat_h2oco2, rat_h2oco2_1, rat_h2oo3, rat_h2oo3_1, & |
---|
| 36 | rat_h2on2o, rat_h2on2o_1, rat_h2och4, rat_h2och4_1, & |
---|
| 37 | rat_n2oco2, rat_n2oco2_1, rat_o3co2, rat_o3co2_1, & |
---|
| 38 | selffac, selffrac, indself, forfac, forfrac, indfor, & |
---|
| 39 | minorfrac, scaleminor, scaleminorn2, indminor, & |
---|
| 40 | fracs, taug) |
---|
| 41 | !---------------------------------------------------------------------------- |
---|
| 42 | |
---|
| 43 | ! ******************************************************************************* |
---|
| 44 | ! * * |
---|
| 45 | ! * Optical depths developed for the * |
---|
| 46 | ! * * |
---|
| 47 | ! * RAPID RADIATIVE TRANSFER MODEL (RRTM) * |
---|
| 48 | ! * * |
---|
| 49 | ! * * |
---|
| 50 | ! * ATMOSPHERIC AND ENVIRONMENTAL RESEARCH, INC. * |
---|
| 51 | ! * 131 HARTWELL AVENUE * |
---|
| 52 | ! * LEXINGTON, MA 02421 * |
---|
| 53 | ! * * |
---|
| 54 | ! * * |
---|
| 55 | ! * ELI J. MLAWER * |
---|
| 56 | ! * JENNIFER DELAMERE * |
---|
| 57 | ! * STEVEN J. TAUBMAN * |
---|
| 58 | ! * SHEPARD A. CLOUGH * |
---|
| 59 | ! * * |
---|
| 60 | ! * * |
---|
| 61 | ! * * |
---|
| 62 | ! * * |
---|
| 63 | ! * email: mlawer@aer.com * |
---|
| 64 | ! * email: jdelamer@aer.com * |
---|
| 65 | ! * * |
---|
| 66 | ! * The authors wish to acknowledge the contributions of the * |
---|
| 67 | ! * following people: Karen Cady-Pereira, Patrick D. Brown, * |
---|
| 68 | ! * Michael J. Iacono, Ronald E. Farren, Luke Chen, Robert Bergstrom. * |
---|
| 69 | ! * * |
---|
| 70 | ! ******************************************************************************* |
---|
| 71 | ! * * |
---|
| 72 | ! * Revision for g-point reduction: Michael J. Iacono, AER, Inc. * |
---|
| 73 | ! * * |
---|
| 74 | ! ******************************************************************************* |
---|
| 75 | ! * TAUMOL * |
---|
| 76 | ! * * |
---|
| 77 | ! * This file contains the subroutines TAUGBn (where n goes from * |
---|
| 78 | ! * 1 to 16). TAUGBn calculates the optical depths and Planck fractions * |
---|
| 79 | ! * per g-value and layer for band n. * |
---|
| 80 | ! * * |
---|
| 81 | ! * Output: optical depths (unitless) * |
---|
| 82 | ! * fractions needed to compute Planck functions at every layer * |
---|
| 83 | ! * and g-value * |
---|
| 84 | ! * * |
---|
| 85 | ! * COMMON /TAUGCOM/ TAUG(MXLAY,MG) * |
---|
| 86 | ! * COMMON /PLANKG/ FRACS(MXLAY,MG) * |
---|
| 87 | ! * * |
---|
| 88 | ! * Input * |
---|
| 89 | ! * * |
---|
| 90 | ! * COMMON /FEATURES/ NG(NBANDS),NSPA(NBANDS),NSPB(NBANDS) * |
---|
| 91 | ! * COMMON /PRECISE/ ONEMINUS * |
---|
| 92 | ! * COMMON /PROFILE/ NLAYERS,PAVEL(MXLAY),TAVEL(MXLAY), * |
---|
| 93 | ! * & PZ(0:MXLAY),TZ(0:MXLAY) * |
---|
| 94 | ! * COMMON /PROFDATA/ LAYTROP, * |
---|
| 95 | ! * & COLH2O(MXLAY),COLCO2(MXLAY),COLO3(MXLAY), * |
---|
| 96 | ! * & COLN2O(MXLAY),COLCO(MXLAY),COLCH4(MXLAY), * |
---|
| 97 | ! * & COLO2(MXLAY) |
---|
| 98 | ! * COMMON /INTFAC/ FAC00(MXLAY),FAC01(MXLAY), * |
---|
| 99 | ! * & FAC10(MXLAY),FAC11(MXLAY) * |
---|
| 100 | ! * COMMON /INTIND/ JP(MXLAY),JT(MXLAY),JT1(MXLAY) * |
---|
| 101 | ! * COMMON /SELF/ SELFFAC(MXLAY), SELFFRAC(MXLAY), INDSELF(MXLAY) * |
---|
| 102 | ! * * |
---|
| 103 | ! * Description: * |
---|
| 104 | ! * NG(IBAND) - number of g-values in band IBAND * |
---|
| 105 | ! * NSPA(IBAND) - for the lower atmosphere, the number of reference * |
---|
| 106 | ! * atmospheres that are stored for band IBAND per * |
---|
| 107 | ! * pressure level and temperature. Each of these * |
---|
| 108 | ! * atmospheres has different relative amounts of the * |
---|
| 109 | ! * key species for the band (i.e. different binary * |
---|
| 110 | ! * species parameters). * |
---|
| 111 | ! * NSPB(IBAND) - same for upper atmosphere * |
---|
| 112 | ! * ONEMINUS - since problems are caused in some cases by interpolation * |
---|
| 113 | ! * parameters equal to or greater than 1, for these cases * |
---|
| 114 | ! * these parameters are set to this value, slightly < 1. * |
---|
| 115 | ! * PAVEL - layer pressures (mb) * |
---|
| 116 | ! * TAVEL - layer temperatures (degrees K) * |
---|
| 117 | ! * PZ - level pressures (mb) * |
---|
| 118 | ! * TZ - level temperatures (degrees K) * |
---|
| 119 | ! * LAYTROP - layer at which switch is made from one combination of * |
---|
| 120 | ! * key species to another * |
---|
| 121 | ! * COLH2O, COLCO2, COLO3, COLN2O, COLCH4 - column amounts of water * |
---|
| 122 | ! * vapor,carbon dioxide, ozone, nitrous ozide, methane, * |
---|
| 123 | ! * respectively (molecules/cm**2) * |
---|
| 124 | ! * FACij(LAY) - for layer LAY, these are factors that are needed to * |
---|
| 125 | ! * compute the interpolation factors that multiply the * |
---|
| 126 | ! * appropriate reference k-values. A value of 0 (1) for * |
---|
| 127 | ! * i,j indicates that the corresponding factor multiplies * |
---|
| 128 | ! * reference k-value for the lower (higher) of the two * |
---|
| 129 | ! * appropriate temperatures, and altitudes, respectively. * |
---|
| 130 | ! * JP - the index of the lower (in altitude) of the two appropriate * |
---|
| 131 | ! * reference pressure levels needed for interpolation * |
---|
| 132 | ! * JT, JT1 - the indices of the lower of the two appropriate reference * |
---|
| 133 | ! * temperatures needed for interpolation (for pressure * |
---|
| 134 | ! * levels JP and JP+1, respectively) * |
---|
| 135 | ! * SELFFAC - scale factor needed for water vapor self-continuum, equals * |
---|
| 136 | ! * (water vapor density)/(atmospheric density at 296K and * |
---|
| 137 | ! * 1013 mb) * |
---|
| 138 | ! * SELFFRAC - factor needed for temperature interpolation of reference * |
---|
| 139 | ! * water vapor self-continuum data * |
---|
| 140 | ! * INDSELF - index of the lower of the two appropriate reference * |
---|
| 141 | ! * temperatures needed for the self-continuum interpolation * |
---|
| 142 | ! * FORFAC - scale factor needed for water vapor foreign-continuum. * |
---|
| 143 | ! * FORFRAC - factor needed for temperature interpolation of reference * |
---|
| 144 | ! * water vapor foreign-continuum data * |
---|
| 145 | ! * INDFOR - index of the lower of the two appropriate reference * |
---|
| 146 | ! * temperatures needed for the foreign-continuum interpolation * |
---|
| 147 | ! * * |
---|
| 148 | ! * Data input * |
---|
| 149 | ! * COMMON /Kn/ KA(NSPA(n),5,13,MG), KB(NSPB(n),5,13:59,MG), SELFREF(10,MG),* |
---|
| 150 | ! * FORREF(4,MG), KA_M'MGAS', KB_M'MGAS' * |
---|
| 151 | ! * (note: n is the band number,'MGAS' is the species name of the minor * |
---|
| 152 | ! * gas) * |
---|
| 153 | ! * * |
---|
| 154 | ! * Description: * |
---|
| 155 | ! * KA - k-values for low reference atmospheres (key-species only) * |
---|
| 156 | ! * (units: cm**2/molecule) * |
---|
| 157 | ! * KB - k-values for high reference atmospheres (key-species only) * |
---|
| 158 | ! * (units: cm**2/molecule) * |
---|
| 159 | ! * KA_M'MGAS' - k-values for low reference atmosphere minor species * |
---|
| 160 | ! * (units: cm**2/molecule) * |
---|
| 161 | ! * KB_M'MGAS' - k-values for high reference atmosphere minor species * |
---|
| 162 | ! * (units: cm**2/molecule) * |
---|
| 163 | ! * SELFREF - k-values for water vapor self-continuum for reference * |
---|
| 164 | ! * atmospheres (used below LAYTROP) * |
---|
| 165 | ! * (units: cm**2/molecule) * |
---|
| 166 | ! * FORREF - k-values for water vapor foreign-continuum for reference * |
---|
| 167 | ! * atmospheres (used below/above LAYTROP) * |
---|
| 168 | ! * (units: cm**2/molecule) * |
---|
| 169 | ! * * |
---|
| 170 | ! * DIMENSION ABSA(65*NSPA(n),MG), ABSB(235*NSPB(n),MG) * |
---|
| 171 | ! * EQUIVALENCE (KA,ABSA),(KB,ABSB) * |
---|
| 172 | ! * * |
---|
| 173 | !******************************************************************************* |
---|
| 174 | |
---|
| 175 | ! ------- Declarations ------- |
---|
| 176 | |
---|
| 177 | ! ----- Input ----- |
---|
| 178 | integer(kind=im), intent(in) :: nlayers ! total number of layers |
---|
| 179 | real(kind=rb), intent(in) :: pavel(:) ! layer pressures (mb) |
---|
| 180 | ! Dimensions: (nlayers) |
---|
| 181 | real(kind=rb), intent(in) :: wx(:,:) ! cross-section amounts (mol/cm2) |
---|
| 182 | ! Dimensions: (maxxsec,nlayers) |
---|
| 183 | real(kind=rb), intent(in) :: coldry(:) ! column amount (dry air) |
---|
| 184 | ! Dimensions: (nlayers) |
---|
| 185 | |
---|
| 186 | integer(kind=im), intent(in) :: laytrop ! tropopause layer index |
---|
| 187 | integer(kind=im), intent(in) :: jp(:) ! |
---|
| 188 | ! Dimensions: (nlayers) |
---|
| 189 | integer(kind=im), intent(in) :: jt(:) ! |
---|
| 190 | ! Dimensions: (nlayers) |
---|
| 191 | integer(kind=im), intent(in) :: jt1(:) ! |
---|
| 192 | ! Dimensions: (nlayers) |
---|
| 193 | real(kind=rb), intent(in) :: planklay(:,:) ! |
---|
| 194 | ! Dimensions: (nlayers,nbndlw) |
---|
| 195 | real(kind=rb), intent(in) :: planklev(0:,:) ! |
---|
| 196 | ! Dimensions: (nlayers,nbndlw) |
---|
| 197 | real(kind=rb), intent(in) :: plankbnd(:) ! |
---|
| 198 | ! Dimensions: (nbndlw) |
---|
| 199 | |
---|
| 200 | real(kind=rb), intent(in) :: colh2o(:) ! column amount (h2o) |
---|
| 201 | ! Dimensions: (nlayers) |
---|
| 202 | real(kind=rb), intent(in) :: colco2(:) ! column amount (co2) |
---|
| 203 | ! Dimensions: (nlayers) |
---|
| 204 | real(kind=rb), intent(in) :: colo3(:) ! column amount (o3) |
---|
| 205 | ! Dimensions: (nlayers) |
---|
| 206 | real(kind=rb), intent(in) :: coln2o(:) ! column amount (n2o) |
---|
| 207 | ! Dimensions: (nlayers) |
---|
| 208 | real(kind=rb), intent(in) :: colco(:) ! column amount (co) |
---|
| 209 | ! Dimensions: (nlayers) |
---|
| 210 | real(kind=rb), intent(in) :: colch4(:) ! column amount (ch4) |
---|
| 211 | ! Dimensions: (nlayers) |
---|
| 212 | real(kind=rb), intent(in) :: colo2(:) ! column amount (o2) |
---|
| 213 | ! Dimensions: (nlayers) |
---|
| 214 | real(kind=rb), intent(in) :: colbrd(:) ! column amount (broadening gases) |
---|
| 215 | ! Dimensions: (nlayers) |
---|
| 216 | |
---|
| 217 | integer(kind=im), intent(in) :: indself(:) |
---|
| 218 | ! Dimensions: (nlayers) |
---|
| 219 | integer(kind=im), intent(in) :: indfor(:) |
---|
| 220 | ! Dimensions: (nlayers) |
---|
| 221 | real(kind=rb), intent(in) :: selffac(:) |
---|
| 222 | ! Dimensions: (nlayers) |
---|
| 223 | real(kind=rb), intent(in) :: selffrac(:) |
---|
| 224 | ! Dimensions: (nlayers) |
---|
| 225 | real(kind=rb), intent(in) :: forfac(:) |
---|
| 226 | ! Dimensions: (nlayers) |
---|
| 227 | real(kind=rb), intent(in) :: forfrac(:) |
---|
| 228 | ! Dimensions: (nlayers) |
---|
| 229 | |
---|
| 230 | integer(kind=im), intent(in) :: indminor(:) |
---|
| 231 | ! Dimensions: (nlayers) |
---|
| 232 | real(kind=rb), intent(in) :: minorfrac(:) |
---|
| 233 | ! Dimensions: (nlayers) |
---|
| 234 | real(kind=rb), intent(in) :: scaleminor(:) |
---|
| 235 | ! Dimensions: (nlayers) |
---|
| 236 | real(kind=rb), intent(in) :: scaleminorn2(:) |
---|
| 237 | ! Dimensions: (nlayers) |
---|
| 238 | |
---|
| 239 | real(kind=rb), intent(in) :: & ! |
---|
| 240 | fac00(:), fac01(:), & ! Dimensions: (nlayers) |
---|
| 241 | fac10(:), fac11(:) |
---|
| 242 | real(kind=rb), intent(in) :: & ! |
---|
| 243 | rat_h2oco2(:),rat_h2oco2_1(:), & |
---|
| 244 | rat_h2oo3(:),rat_h2oo3_1(:), & ! Dimensions: (nlayers) |
---|
| 245 | rat_h2on2o(:),rat_h2on2o_1(:), & |
---|
| 246 | rat_h2och4(:),rat_h2och4_1(:), & |
---|
| 247 | rat_n2oco2(:),rat_n2oco2_1(:), & |
---|
| 248 | rat_o3co2(:),rat_o3co2_1(:) |
---|
| 249 | |
---|
| 250 | ! ----- Output ----- |
---|
| 251 | real(kind=rb), intent(out) :: fracs(:,:) ! planck fractions |
---|
| 252 | ! Dimensions: (nlayers,ngptlw) |
---|
| 253 | real(kind=rb), intent(out) :: taug(:,:) ! gaseous optical depth |
---|
| 254 | ! Dimensions: (nlayers,ngptlw) |
---|
| 255 | |
---|
| 256 | hvrtau = '$Revision: 1.8 $' |
---|
| 257 | |
---|
| 258 | ! Calculate gaseous optical depth and planck fractions for each spectral band. |
---|
| 259 | |
---|
| 260 | call taugb1 |
---|
| 261 | call taugb2 |
---|
| 262 | call taugb3 |
---|
| 263 | call taugb4 |
---|
| 264 | call taugb5 |
---|
| 265 | call taugb6 |
---|
| 266 | call taugb7 |
---|
| 267 | call taugb8 |
---|
| 268 | call taugb9 |
---|
| 269 | call taugb10 |
---|
| 270 | call taugb11 |
---|
| 271 | call taugb12 |
---|
| 272 | call taugb13 |
---|
| 273 | call taugb14 |
---|
| 274 | call taugb15 |
---|
| 275 | call taugb16 |
---|
| 276 | |
---|
| 277 | contains |
---|
| 278 | |
---|
| 279 | !---------------------------------------------------------------------------- |
---|
| 280 | subroutine taugb1 |
---|
| 281 | !---------------------------------------------------------------------------- |
---|
| 282 | |
---|
| 283 | ! ------- Modifications ------- |
---|
| 284 | ! Written by Eli J. Mlawer, Atmospheric & Environmental Research. |
---|
| 285 | ! Revised by Michael J. Iacono, Atmospheric & Environmental Research. |
---|
| 286 | ! |
---|
| 287 | ! band 1: 10-350 cm-1 (low key - h2o; low minor - n2) |
---|
| 288 | ! (high key - h2o; high minor - n2) |
---|
| 289 | ! |
---|
| 290 | ! note: previous versions of rrtm band 1: |
---|
| 291 | ! 10-250 cm-1 (low - h2o; high - h2o) |
---|
| 292 | !---------------------------------------------------------------------------- |
---|
| 293 | |
---|
| 294 | ! ------- Modules ------- |
---|
| 295 | |
---|
| 296 | use parrrtm, only : ng1 |
---|
| 297 | use rrlw_kg01, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 298 | ka_mn2, kb_mn2, selfref, forref |
---|
| 299 | |
---|
| 300 | ! ------- Declarations ------- |
---|
| 301 | |
---|
| 302 | ! Local |
---|
| 303 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 304 | real(kind=rb) :: pp, corradj, scalen2, tauself, taufor, taun2 |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | ! Minor gas mapping levels: |
---|
| 308 | ! lower - n2, p = 142.5490 mbar, t = 215.70 k |
---|
| 309 | ! upper - n2, p = 142.5490 mbar, t = 215.70 k |
---|
| 310 | |
---|
| 311 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 312 | ! temperature. Below laytrop, the water vapor self-continuum and |
---|
| 313 | ! foreign continuum is interpolated (in temperature) separately. |
---|
| 314 | |
---|
| 315 | ! Lower atmosphere loop |
---|
| 316 | do lay = 1, laytrop |
---|
| 317 | |
---|
| 318 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(1) + 1 |
---|
| 319 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(1) + 1 |
---|
| 320 | inds = indself(lay) |
---|
| 321 | indf = indfor(lay) |
---|
| 322 | indm = indminor(lay) |
---|
| 323 | pp = pavel(lay) |
---|
| 324 | corradj = 1. |
---|
| 325 | if (pp .lt. 250._rb) then |
---|
| 326 | corradj = 1._rb - 0.15_rb * (250._rb-pp) / 154.4_rb |
---|
| 327 | endif |
---|
| 328 | |
---|
| 329 | scalen2 = colbrd(lay) * scaleminorn2(lay) |
---|
| 330 | do ig = 1, ng1 |
---|
| 331 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 332 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 333 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 334 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 335 | taun2 = scalen2*(ka_mn2(indm,ig) + & |
---|
| 336 | minorfrac(lay) * (ka_mn2(indm+1,ig) - ka_mn2(indm,ig))) |
---|
| 337 | taug(lay,ig) = corradj * (colh2o(lay) * & |
---|
| 338 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 339 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 340 | fac01(lay) * absa(ind1,ig) + & |
---|
| 341 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 342 | + tauself + taufor + taun2) |
---|
| 343 | fracs(lay,ig) = fracrefa(ig) |
---|
| 344 | enddo |
---|
| 345 | enddo |
---|
| 346 | |
---|
| 347 | ! Upper atmosphere loop |
---|
| 348 | do lay = laytrop+1, nlayers |
---|
| 349 | |
---|
| 350 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(1) + 1 |
---|
| 351 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(1) + 1 |
---|
| 352 | indf = indfor(lay) |
---|
| 353 | indm = indminor(lay) |
---|
| 354 | pp = pavel(lay) |
---|
| 355 | corradj = 1._rb - 0.15_rb * (pp / 95.6_rb) |
---|
| 356 | |
---|
| 357 | scalen2 = colbrd(lay) * scaleminorn2(lay) |
---|
| 358 | do ig = 1, ng1 |
---|
| 359 | taufor = forfac(lay) * (forref(indf,ig) + & |
---|
| 360 | forfrac(lay) * (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 361 | taun2 = scalen2*(kb_mn2(indm,ig) + & |
---|
| 362 | minorfrac(lay) * (kb_mn2(indm+1,ig) - kb_mn2(indm,ig))) |
---|
| 363 | taug(lay,ig) = corradj * (colh2o(lay) * & |
---|
| 364 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 365 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 366 | fac01(lay) * absb(ind1,ig) + & |
---|
| 367 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 368 | + taufor + taun2) |
---|
| 369 | fracs(lay,ig) = fracrefb(ig) |
---|
| 370 | enddo |
---|
| 371 | enddo |
---|
| 372 | |
---|
| 373 | end subroutine taugb1 |
---|
| 374 | |
---|
| 375 | !---------------------------------------------------------------------------- |
---|
| 376 | subroutine taugb2 |
---|
| 377 | !---------------------------------------------------------------------------- |
---|
| 378 | ! |
---|
| 379 | ! band 2: 350-500 cm-1 (low key - h2o; high key - h2o) |
---|
| 380 | ! |
---|
| 381 | ! note: previous version of rrtm band 2: |
---|
| 382 | ! 250 - 500 cm-1 (low - h2o; high - h2o) |
---|
| 383 | !---------------------------------------------------------------------------- |
---|
| 384 | |
---|
| 385 | ! ------- Modules ------- |
---|
| 386 | |
---|
| 387 | use parrrtm, only : ng2, ngs1 |
---|
| 388 | use rrlw_kg02, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 389 | selfref, forref |
---|
| 390 | |
---|
| 391 | ! ------- Declarations ------- |
---|
| 392 | |
---|
| 393 | ! Local |
---|
| 394 | integer(kind=im) :: lay, ind0, ind1, inds, indf, ig |
---|
| 395 | real(kind=rb) :: pp, corradj, tauself, taufor |
---|
| 396 | |
---|
| 397 | |
---|
| 398 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 399 | ! temperature. Below laytrop, the water vapor self-continuum and |
---|
| 400 | ! foreign continuum is interpolated (in temperature) separately. |
---|
| 401 | |
---|
| 402 | ! Lower atmosphere loop |
---|
| 403 | do lay = 1, laytrop |
---|
| 404 | |
---|
| 405 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(2) + 1 |
---|
| 406 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(2) + 1 |
---|
| 407 | inds = indself(lay) |
---|
| 408 | indf = indfor(lay) |
---|
| 409 | pp = pavel(lay) |
---|
| 410 | corradj = 1._rb - .05_rb * (pp - 100._rb) / 900._rb |
---|
| 411 | do ig = 1, ng2 |
---|
| 412 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 413 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 414 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 415 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 416 | taug(lay,ngs1+ig) = corradj * (colh2o(lay) * & |
---|
| 417 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 418 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 419 | fac01(lay) * absa(ind1,ig) + & |
---|
| 420 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 421 | + tauself + taufor) |
---|
| 422 | fracs(lay,ngs1+ig) = fracrefa(ig) |
---|
| 423 | enddo |
---|
| 424 | enddo |
---|
| 425 | |
---|
| 426 | ! Upper atmosphere loop |
---|
| 427 | do lay = laytrop+1, nlayers |
---|
| 428 | |
---|
| 429 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(2) + 1 |
---|
| 430 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(2) + 1 |
---|
| 431 | indf = indfor(lay) |
---|
| 432 | do ig = 1, ng2 |
---|
| 433 | taufor = forfac(lay) * (forref(indf,ig) + & |
---|
| 434 | forfrac(lay) * (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 435 | taug(lay,ngs1+ig) = colh2o(lay) * & |
---|
| 436 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 437 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 438 | fac01(lay) * absb(ind1,ig) + & |
---|
| 439 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 440 | + taufor |
---|
| 441 | fracs(lay,ngs1+ig) = fracrefb(ig) |
---|
| 442 | enddo |
---|
| 443 | enddo |
---|
| 444 | |
---|
| 445 | end subroutine taugb2 |
---|
| 446 | |
---|
| 447 | !---------------------------------------------------------------------------- |
---|
| 448 | subroutine taugb3 |
---|
| 449 | !---------------------------------------------------------------------------- |
---|
| 450 | ! |
---|
| 451 | ! band 3: 500-630 cm-1 (low key - h2o,co2; low minor - n2o) |
---|
| 452 | ! (high key - h2o,co2; high minor - n2o) |
---|
| 453 | !---------------------------------------------------------------------------- |
---|
| 454 | |
---|
| 455 | ! ------- Modules ------- |
---|
| 456 | |
---|
| 457 | use parrrtm, only : ng3, ngs2 |
---|
| 458 | use rrlw_ref, only : chi_mls |
---|
| 459 | use rrlw_kg03, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 460 | ka_mn2o, kb_mn2o, selfref, forref |
---|
| 461 | |
---|
| 462 | ! ------- Declarations ------- |
---|
| 463 | |
---|
| 464 | ! Local |
---|
| 465 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 466 | integer(kind=im) :: js, js1, jmn2o, jpl |
---|
| 467 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 468 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 469 | real(kind=rb) :: speccomb_mn2o, specparm_mn2o, specmult_mn2o, & |
---|
| 470 | fmn2o, fmn2omf, chi_n2o, ratn2o, adjfac, adjcoln2o |
---|
| 471 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 472 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 473 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 474 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 475 | real(kind=rb) :: tauself, taufor, n2om1, n2om2, absn2o |
---|
| 476 | real(kind=rb) :: refrat_planck_a, refrat_planck_b, refrat_m_a, refrat_m_b |
---|
| 477 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 478 | |
---|
| 479 | |
---|
| 480 | ! Minor gas mapping levels: |
---|
| 481 | ! lower - n2o, p = 706.272 mbar, t = 278.94 k |
---|
| 482 | ! upper - n2o, p = 95.58 mbar, t = 215.7 k |
---|
| 483 | |
---|
| 484 | ! P = 212.725 mb |
---|
| 485 | refrat_planck_a = chi_mls(1,9)/chi_mls(2,9) |
---|
| 486 | |
---|
| 487 | ! P = 95.58 mb |
---|
| 488 | refrat_planck_b = chi_mls(1,13)/chi_mls(2,13) |
---|
| 489 | |
---|
| 490 | ! P = 706.270mb |
---|
| 491 | refrat_m_a = chi_mls(1,3)/chi_mls(2,3) |
---|
| 492 | |
---|
| 493 | ! P = 95.58 mb |
---|
| 494 | refrat_m_b = chi_mls(1,13)/chi_mls(2,13) |
---|
| 495 | |
---|
| 496 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 497 | ! temperature, and appropriate species. Below laytrop, the water vapor |
---|
| 498 | ! self-continuum and foreign continuum is interpolated (in temperature) |
---|
| 499 | ! separately. |
---|
| 500 | |
---|
| 501 | ! Lower atmosphere loop |
---|
| 502 | do lay = 1, laytrop |
---|
| 503 | |
---|
| 504 | speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) |
---|
| 505 | specparm = colh2o(lay)/speccomb |
---|
| 506 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 507 | specmult = 8._rb*(specparm) |
---|
| 508 | js = 1 + int(specmult) |
---|
| 509 | fs = mod(specmult,1.0_rb) |
---|
| 510 | |
---|
| 511 | speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) |
---|
| 512 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 513 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 514 | specmult1 = 8._rb*(specparm1) |
---|
| 515 | js1 = 1 + int(specmult1) |
---|
| 516 | fs1 = mod(specmult1,1.0_rb) |
---|
| 517 | |
---|
| 518 | speccomb_mn2o = colh2o(lay) + refrat_m_a*colco2(lay) |
---|
| 519 | specparm_mn2o = colh2o(lay)/speccomb_mn2o |
---|
| 520 | if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus |
---|
| 521 | specmult_mn2o = 8._rb*specparm_mn2o |
---|
| 522 | jmn2o = 1 + int(specmult_mn2o) |
---|
| 523 | fmn2o = mod(specmult_mn2o,1.0_rb) |
---|
| 524 | fmn2omf = minorfrac(lay)*fmn2o |
---|
| 525 | ! In atmospheres where the amount of N2O is too great to be considered |
---|
| 526 | ! a minor species, adjust the column amount of N2O by an empirical factor |
---|
| 527 | ! to obtain the proper contribution. |
---|
| 528 | chi_n2o = coln2o(lay)/coldry(lay) |
---|
| 529 | ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) |
---|
| 530 | if (ratn2o .gt. 1.5_rb) then |
---|
| 531 | adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb |
---|
| 532 | adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 533 | else |
---|
| 534 | adjcoln2o = coln2o(lay) |
---|
| 535 | endif |
---|
| 536 | |
---|
| 537 | speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) |
---|
| 538 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 539 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 540 | specmult_planck = 8._rb*specparm_planck |
---|
| 541 | jpl= 1 + int(specmult_planck) |
---|
| 542 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 543 | |
---|
| 544 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(3) + js |
---|
| 545 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(3) + js1 |
---|
| 546 | inds = indself(lay) |
---|
| 547 | indf = indfor(lay) |
---|
| 548 | indm = indminor(lay) |
---|
| 549 | |
---|
| 550 | if (specparm .lt. 0.125_rb) then |
---|
| 551 | p = fs - 1 |
---|
| 552 | p4 = p**4 |
---|
| 553 | fk0 = p4 |
---|
| 554 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 555 | fk2 = p + p4 |
---|
| 556 | fac000 = fk0*fac00(lay) |
---|
| 557 | fac100 = fk1*fac00(lay) |
---|
| 558 | fac200 = fk2*fac00(lay) |
---|
| 559 | fac010 = fk0*fac10(lay) |
---|
| 560 | fac110 = fk1*fac10(lay) |
---|
| 561 | fac210 = fk2*fac10(lay) |
---|
| 562 | else if (specparm .gt. 0.875_rb) then |
---|
| 563 | p = -fs |
---|
| 564 | p4 = p**4 |
---|
| 565 | fk0 = p4 |
---|
| 566 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 567 | fk2 = p + p4 |
---|
| 568 | fac000 = fk0*fac00(lay) |
---|
| 569 | fac100 = fk1*fac00(lay) |
---|
| 570 | fac200 = fk2*fac00(lay) |
---|
| 571 | fac010 = fk0*fac10(lay) |
---|
| 572 | fac110 = fk1*fac10(lay) |
---|
| 573 | fac210 = fk2*fac10(lay) |
---|
| 574 | else |
---|
| 575 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 576 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 577 | fac100 = fs * fac00(lay) |
---|
| 578 | fac110 = fs * fac10(lay) |
---|
| 579 | endif |
---|
| 580 | if (specparm1 .lt. 0.125_rb) then |
---|
| 581 | p = fs1 - 1 |
---|
| 582 | p4 = p**4 |
---|
| 583 | fk0 = p4 |
---|
| 584 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 585 | fk2 = p + p4 |
---|
| 586 | fac001 = fk0*fac01(lay) |
---|
| 587 | fac101 = fk1*fac01(lay) |
---|
| 588 | fac201 = fk2*fac01(lay) |
---|
| 589 | fac011 = fk0*fac11(lay) |
---|
| 590 | fac111 = fk1*fac11(lay) |
---|
| 591 | fac211 = fk2*fac11(lay) |
---|
| 592 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 593 | p = -fs1 |
---|
| 594 | p4 = p**4 |
---|
| 595 | fk0 = p4 |
---|
| 596 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 597 | fk2 = p + p4 |
---|
| 598 | fac001 = fk0*fac01(lay) |
---|
| 599 | fac101 = fk1*fac01(lay) |
---|
| 600 | fac201 = fk2*fac01(lay) |
---|
| 601 | fac011 = fk0*fac11(lay) |
---|
| 602 | fac111 = fk1*fac11(lay) |
---|
| 603 | fac211 = fk2*fac11(lay) |
---|
| 604 | else |
---|
| 605 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 606 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 607 | fac101 = fs1 * fac01(lay) |
---|
| 608 | fac111 = fs1 * fac11(lay) |
---|
| 609 | endif |
---|
| 610 | |
---|
| 611 | do ig = 1, ng3 |
---|
| 612 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 613 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 614 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 615 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 616 | n2om1 = ka_mn2o(jmn2o,indm,ig) + fmn2o * & |
---|
| 617 | (ka_mn2o(jmn2o+1,indm,ig) - ka_mn2o(jmn2o,indm,ig)) |
---|
| 618 | n2om2 = ka_mn2o(jmn2o,indm+1,ig) + fmn2o * & |
---|
| 619 | (ka_mn2o(jmn2o+1,indm+1,ig) - ka_mn2o(jmn2o,indm+1,ig)) |
---|
| 620 | absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) |
---|
| 621 | |
---|
| 622 | if (specparm .lt. 0.125_rb) then |
---|
| 623 | tau_major = speccomb * & |
---|
| 624 | (fac000 * absa(ind0,ig) + & |
---|
| 625 | fac100 * absa(ind0+1,ig) + & |
---|
| 626 | fac200 * absa(ind0+2,ig) + & |
---|
| 627 | fac010 * absa(ind0+9,ig) + & |
---|
| 628 | fac110 * absa(ind0+10,ig) + & |
---|
| 629 | fac210 * absa(ind0+11,ig)) |
---|
| 630 | else if (specparm .gt. 0.875_rb) then |
---|
| 631 | tau_major = speccomb * & |
---|
| 632 | (fac200 * absa(ind0-1,ig) + & |
---|
| 633 | fac100 * absa(ind0,ig) + & |
---|
| 634 | fac000 * absa(ind0+1,ig) + & |
---|
| 635 | fac210 * absa(ind0+8,ig) + & |
---|
| 636 | fac110 * absa(ind0+9,ig) + & |
---|
| 637 | fac010 * absa(ind0+10,ig)) |
---|
| 638 | else |
---|
| 639 | tau_major = speccomb * & |
---|
| 640 | (fac000 * absa(ind0,ig) + & |
---|
| 641 | fac100 * absa(ind0+1,ig) + & |
---|
| 642 | fac010 * absa(ind0+9,ig) + & |
---|
| 643 | fac110 * absa(ind0+10,ig)) |
---|
| 644 | endif |
---|
| 645 | |
---|
| 646 | if (specparm1 .lt. 0.125_rb) then |
---|
| 647 | tau_major1 = speccomb1 * & |
---|
| 648 | (fac001 * absa(ind1,ig) + & |
---|
| 649 | fac101 * absa(ind1+1,ig) + & |
---|
| 650 | fac201 * absa(ind1+2,ig) + & |
---|
| 651 | fac011 * absa(ind1+9,ig) + & |
---|
| 652 | fac111 * absa(ind1+10,ig) + & |
---|
| 653 | fac211 * absa(ind1+11,ig)) |
---|
| 654 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 655 | tau_major1 = speccomb1 * & |
---|
| 656 | (fac201 * absa(ind1-1,ig) + & |
---|
| 657 | fac101 * absa(ind1,ig) + & |
---|
| 658 | fac001 * absa(ind1+1,ig) + & |
---|
| 659 | fac211 * absa(ind1+8,ig) + & |
---|
| 660 | fac111 * absa(ind1+9,ig) + & |
---|
| 661 | fac011 * absa(ind1+10,ig)) |
---|
| 662 | else |
---|
| 663 | tau_major1 = speccomb1 * & |
---|
| 664 | (fac001 * absa(ind1,ig) + & |
---|
| 665 | fac101 * absa(ind1+1,ig) + & |
---|
| 666 | fac011 * absa(ind1+9,ig) + & |
---|
| 667 | fac111 * absa(ind1+10,ig)) |
---|
| 668 | endif |
---|
| 669 | |
---|
| 670 | taug(lay,ngs2+ig) = tau_major + tau_major1 & |
---|
| 671 | + tauself + taufor & |
---|
| 672 | + adjcoln2o*absn2o |
---|
| 673 | fracs(lay,ngs2+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 674 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 675 | enddo |
---|
| 676 | enddo |
---|
| 677 | |
---|
| 678 | ! Upper atmosphere loop |
---|
| 679 | do lay = laytrop+1, nlayers |
---|
| 680 | |
---|
| 681 | speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) |
---|
| 682 | specparm = colh2o(lay)/speccomb |
---|
| 683 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 684 | specmult = 4._rb*(specparm) |
---|
| 685 | js = 1 + int(specmult) |
---|
| 686 | fs = mod(specmult,1.0_rb) |
---|
| 687 | |
---|
| 688 | speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) |
---|
| 689 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 690 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 691 | specmult1 = 4._rb*(specparm1) |
---|
| 692 | js1 = 1 + int(specmult1) |
---|
| 693 | fs1 = mod(specmult1,1.0_rb) |
---|
| 694 | |
---|
| 695 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 696 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 697 | fac100 = fs * fac00(lay) |
---|
| 698 | fac110 = fs * fac10(lay) |
---|
| 699 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 700 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 701 | fac101 = fs1 * fac01(lay) |
---|
| 702 | fac111 = fs1 * fac11(lay) |
---|
| 703 | |
---|
| 704 | speccomb_mn2o = colh2o(lay) + refrat_m_b*colco2(lay) |
---|
| 705 | specparm_mn2o = colh2o(lay)/speccomb_mn2o |
---|
| 706 | if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus |
---|
| 707 | specmult_mn2o = 4._rb*specparm_mn2o |
---|
| 708 | jmn2o = 1 + int(specmult_mn2o) |
---|
| 709 | fmn2o = mod(specmult_mn2o,1.0_rb) |
---|
| 710 | fmn2omf = minorfrac(lay)*fmn2o |
---|
| 711 | ! In atmospheres where the amount of N2O is too great to be considered |
---|
| 712 | ! a minor species, adjust the column amount of N2O by an empirical factor |
---|
| 713 | ! to obtain the proper contribution. |
---|
| 714 | chi_n2o = coln2o(lay)/coldry(lay) |
---|
| 715 | ratn2o = 1.e20*chi_n2o/chi_mls(4,jp(lay)+1) |
---|
| 716 | if (ratn2o .gt. 1.5_rb) then |
---|
| 717 | adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb |
---|
| 718 | adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 719 | else |
---|
| 720 | adjcoln2o = coln2o(lay) |
---|
| 721 | endif |
---|
| 722 | |
---|
| 723 | speccomb_planck = colh2o(lay)+refrat_planck_b*colco2(lay) |
---|
| 724 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 725 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 726 | specmult_planck = 4._rb*specparm_planck |
---|
| 727 | jpl= 1 + int(specmult_planck) |
---|
| 728 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 729 | |
---|
| 730 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(3) + js |
---|
| 731 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(3) + js1 |
---|
| 732 | indf = indfor(lay) |
---|
| 733 | indm = indminor(lay) |
---|
| 734 | |
---|
| 735 | do ig = 1, ng3 |
---|
| 736 | taufor = forfac(lay) * (forref(indf,ig) + & |
---|
| 737 | forfrac(lay) * (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 738 | n2om1 = kb_mn2o(jmn2o,indm,ig) + fmn2o * & |
---|
| 739 | (kb_mn2o(jmn2o+1,indm,ig)-kb_mn2o(jmn2o,indm,ig)) |
---|
| 740 | n2om2 = kb_mn2o(jmn2o,indm+1,ig) + fmn2o * & |
---|
| 741 | (kb_mn2o(jmn2o+1,indm+1,ig)-kb_mn2o(jmn2o,indm+1,ig)) |
---|
| 742 | absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) |
---|
| 743 | taug(lay,ngs2+ig) = speccomb * & |
---|
| 744 | (fac000 * absb(ind0,ig) + & |
---|
| 745 | fac100 * absb(ind0+1,ig) + & |
---|
| 746 | fac010 * absb(ind0+5,ig) + & |
---|
| 747 | fac110 * absb(ind0+6,ig)) & |
---|
| 748 | + speccomb1 * & |
---|
| 749 | (fac001 * absb(ind1,ig) + & |
---|
| 750 | fac101 * absb(ind1+1,ig) + & |
---|
| 751 | fac011 * absb(ind1+5,ig) + & |
---|
| 752 | fac111 * absb(ind1+6,ig)) & |
---|
| 753 | + taufor & |
---|
| 754 | + adjcoln2o*absn2o |
---|
| 755 | fracs(lay,ngs2+ig) = fracrefb(ig,jpl) + fpl * & |
---|
| 756 | (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) |
---|
| 757 | enddo |
---|
| 758 | enddo |
---|
| 759 | |
---|
| 760 | end subroutine taugb3 |
---|
| 761 | |
---|
| 762 | !---------------------------------------------------------------------------- |
---|
| 763 | subroutine taugb4 |
---|
| 764 | !---------------------------------------------------------------------------- |
---|
| 765 | ! |
---|
| 766 | ! band 4: 630-700 cm-1 (low key - h2o,co2; high key - o3,co2) |
---|
| 767 | !---------------------------------------------------------------------------- |
---|
| 768 | |
---|
| 769 | ! ------- Modules ------- |
---|
| 770 | |
---|
| 771 | use parrrtm, only : ng4, ngs3 |
---|
| 772 | use rrlw_ref, only : chi_mls |
---|
| 773 | use rrlw_kg04, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 774 | selfref, forref |
---|
| 775 | |
---|
| 776 | ! ------- Declarations ------- |
---|
| 777 | |
---|
| 778 | ! Local |
---|
| 779 | integer(kind=im) :: lay, ind0, ind1, inds, indf, ig |
---|
| 780 | integer(kind=im) :: js, js1, jpl |
---|
| 781 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 782 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 783 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 784 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 785 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 786 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 787 | real(kind=rb) :: tauself, taufor |
---|
| 788 | real(kind=rb) :: refrat_planck_a, refrat_planck_b |
---|
| 789 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 790 | |
---|
| 791 | |
---|
| 792 | ! P = 142.5940 mb |
---|
| 793 | refrat_planck_a = chi_mls(1,11)/chi_mls(2,11) |
---|
| 794 | |
---|
| 795 | ! P = 95.58350 mb |
---|
| 796 | refrat_planck_b = chi_mls(3,13)/chi_mls(2,13) |
---|
| 797 | |
---|
| 798 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 799 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 800 | ! vapor self-continuum and foreign continuum is interpolated (in temperature) |
---|
| 801 | ! separately. |
---|
| 802 | |
---|
| 803 | ! Lower atmosphere loop |
---|
| 804 | do lay = 1, laytrop |
---|
| 805 | |
---|
| 806 | speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) |
---|
| 807 | specparm = colh2o(lay)/speccomb |
---|
| 808 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 809 | specmult = 8._rb*(specparm) |
---|
| 810 | js = 1 + int(specmult) |
---|
| 811 | fs = mod(specmult,1.0_rb) |
---|
| 812 | |
---|
| 813 | speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) |
---|
| 814 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 815 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 816 | specmult1 = 8._rb*(specparm1) |
---|
| 817 | js1 = 1 + int(specmult1) |
---|
| 818 | fs1 = mod(specmult1,1.0_rb) |
---|
| 819 | |
---|
| 820 | speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) |
---|
| 821 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 822 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 823 | specmult_planck = 8._rb*specparm_planck |
---|
| 824 | jpl= 1 + int(specmult_planck) |
---|
| 825 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 826 | |
---|
| 827 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(4) + js |
---|
| 828 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(4) + js1 |
---|
| 829 | inds = indself(lay) |
---|
| 830 | indf = indfor(lay) |
---|
| 831 | |
---|
| 832 | if (specparm .lt. 0.125_rb) then |
---|
| 833 | p = fs - 1 |
---|
| 834 | p4 = p**4 |
---|
| 835 | fk0 = p4 |
---|
| 836 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 837 | fk2 = p + p4 |
---|
| 838 | fac000 = fk0*fac00(lay) |
---|
| 839 | fac100 = fk1*fac00(lay) |
---|
| 840 | fac200 = fk2*fac00(lay) |
---|
| 841 | fac010 = fk0*fac10(lay) |
---|
| 842 | fac110 = fk1*fac10(lay) |
---|
| 843 | fac210 = fk2*fac10(lay) |
---|
| 844 | else if (specparm .gt. 0.875_rb) then |
---|
| 845 | p = -fs |
---|
| 846 | p4 = p**4 |
---|
| 847 | fk0 = p4 |
---|
| 848 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 849 | fk2 = p + p4 |
---|
| 850 | fac000 = fk0*fac00(lay) |
---|
| 851 | fac100 = fk1*fac00(lay) |
---|
| 852 | fac200 = fk2*fac00(lay) |
---|
| 853 | fac010 = fk0*fac10(lay) |
---|
| 854 | fac110 = fk1*fac10(lay) |
---|
| 855 | fac210 = fk2*fac10(lay) |
---|
| 856 | else |
---|
| 857 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 858 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 859 | fac100 = fs * fac00(lay) |
---|
| 860 | fac110 = fs * fac10(lay) |
---|
| 861 | endif |
---|
| 862 | |
---|
| 863 | if (specparm1 .lt. 0.125_rb) then |
---|
| 864 | p = fs1 - 1 |
---|
| 865 | p4 = p**4 |
---|
| 866 | fk0 = p4 |
---|
| 867 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 868 | fk2 = p + p4 |
---|
| 869 | fac001 = fk0*fac01(lay) |
---|
| 870 | fac101 = fk1*fac01(lay) |
---|
| 871 | fac201 = fk2*fac01(lay) |
---|
| 872 | fac011 = fk0*fac11(lay) |
---|
| 873 | fac111 = fk1*fac11(lay) |
---|
| 874 | fac211 = fk2*fac11(lay) |
---|
| 875 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 876 | p = -fs1 |
---|
| 877 | p4 = p**4 |
---|
| 878 | fk0 = p4 |
---|
| 879 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 880 | fk2 = p + p4 |
---|
| 881 | fac001 = fk0*fac01(lay) |
---|
| 882 | fac101 = fk1*fac01(lay) |
---|
| 883 | fac201 = fk2*fac01(lay) |
---|
| 884 | fac011 = fk0*fac11(lay) |
---|
| 885 | fac111 = fk1*fac11(lay) |
---|
| 886 | fac211 = fk2*fac11(lay) |
---|
| 887 | else |
---|
| 888 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 889 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 890 | fac101 = fs1 * fac01(lay) |
---|
| 891 | fac111 = fs1 * fac11(lay) |
---|
| 892 | endif |
---|
| 893 | |
---|
| 894 | do ig = 1, ng4 |
---|
| 895 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 896 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 897 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 898 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 899 | |
---|
| 900 | if (specparm .lt. 0.125_rb) then |
---|
| 901 | tau_major = speccomb * & |
---|
| 902 | (fac000 * absa(ind0,ig) + & |
---|
| 903 | fac100 * absa(ind0+1,ig) + & |
---|
| 904 | fac200 * absa(ind0+2,ig) + & |
---|
| 905 | fac010 * absa(ind0+9,ig) + & |
---|
| 906 | fac110 * absa(ind0+10,ig) + & |
---|
| 907 | fac210 * absa(ind0+11,ig)) |
---|
| 908 | else if (specparm .gt. 0.875_rb) then |
---|
| 909 | tau_major = speccomb * & |
---|
| 910 | (fac200 * absa(ind0-1,ig) + & |
---|
| 911 | fac100 * absa(ind0,ig) + & |
---|
| 912 | fac000 * absa(ind0+1,ig) + & |
---|
| 913 | fac210 * absa(ind0+8,ig) + & |
---|
| 914 | fac110 * absa(ind0+9,ig) + & |
---|
| 915 | fac010 * absa(ind0+10,ig)) |
---|
| 916 | else |
---|
| 917 | tau_major = speccomb * & |
---|
| 918 | (fac000 * absa(ind0,ig) + & |
---|
| 919 | fac100 * absa(ind0+1,ig) + & |
---|
| 920 | fac010 * absa(ind0+9,ig) + & |
---|
| 921 | fac110 * absa(ind0+10,ig)) |
---|
| 922 | endif |
---|
| 923 | |
---|
| 924 | if (specparm1 .lt. 0.125_rb) then |
---|
| 925 | tau_major1 = speccomb1 * & |
---|
| 926 | (fac001 * absa(ind1,ig) + & |
---|
| 927 | fac101 * absa(ind1+1,ig) + & |
---|
| 928 | fac201 * absa(ind1+2,ig) + & |
---|
| 929 | fac011 * absa(ind1+9,ig) + & |
---|
| 930 | fac111 * absa(ind1+10,ig) + & |
---|
| 931 | fac211 * absa(ind1+11,ig)) |
---|
| 932 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 933 | tau_major1 = speccomb1 * & |
---|
| 934 | (fac201 * absa(ind1-1,ig) + & |
---|
| 935 | fac101 * absa(ind1,ig) + & |
---|
| 936 | fac001 * absa(ind1+1,ig) + & |
---|
| 937 | fac211 * absa(ind1+8,ig) + & |
---|
| 938 | fac111 * absa(ind1+9,ig) + & |
---|
| 939 | fac011 * absa(ind1+10,ig)) |
---|
| 940 | else |
---|
| 941 | tau_major1 = speccomb1 * & |
---|
| 942 | (fac001 * absa(ind1,ig) + & |
---|
| 943 | fac101 * absa(ind1+1,ig) + & |
---|
| 944 | fac011 * absa(ind1+9,ig) + & |
---|
| 945 | fac111 * absa(ind1+10,ig)) |
---|
| 946 | endif |
---|
| 947 | |
---|
| 948 | taug(lay,ngs3+ig) = tau_major + tau_major1 & |
---|
| 949 | + tauself + taufor |
---|
| 950 | fracs(lay,ngs3+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 951 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 952 | enddo |
---|
| 953 | enddo |
---|
| 954 | |
---|
| 955 | ! Upper atmosphere loop |
---|
| 956 | do lay = laytrop+1, nlayers |
---|
| 957 | |
---|
| 958 | speccomb = colo3(lay) + rat_o3co2(lay)*colco2(lay) |
---|
| 959 | specparm = colo3(lay)/speccomb |
---|
| 960 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 961 | specmult = 4._rb*(specparm) |
---|
| 962 | js = 1 + int(specmult) |
---|
| 963 | fs = mod(specmult,1.0_rb) |
---|
| 964 | |
---|
| 965 | speccomb1 = colo3(lay) + rat_o3co2_1(lay)*colco2(lay) |
---|
| 966 | specparm1 = colo3(lay)/speccomb1 |
---|
| 967 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 968 | specmult1 = 4._rb*(specparm1) |
---|
| 969 | js1 = 1 + int(specmult1) |
---|
| 970 | fs1 = mod(specmult1,1.0_rb) |
---|
| 971 | |
---|
| 972 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 973 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 974 | fac100 = fs * fac00(lay) |
---|
| 975 | fac110 = fs * fac10(lay) |
---|
| 976 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 977 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 978 | fac101 = fs1 * fac01(lay) |
---|
| 979 | fac111 = fs1 * fac11(lay) |
---|
| 980 | |
---|
| 981 | speccomb_planck = colo3(lay)+refrat_planck_b*colco2(lay) |
---|
| 982 | specparm_planck = colo3(lay)/speccomb_planck |
---|
| 983 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 984 | specmult_planck = 4._rb*specparm_planck |
---|
| 985 | jpl= 1 + int(specmult_planck) |
---|
| 986 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 987 | |
---|
| 988 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(4) + js |
---|
| 989 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(4) + js1 |
---|
| 990 | |
---|
| 991 | do ig = 1, ng4 |
---|
| 992 | taug(lay,ngs3+ig) = speccomb * & |
---|
| 993 | (fac000 * absb(ind0,ig) + & |
---|
| 994 | fac100 * absb(ind0+1,ig) + & |
---|
| 995 | fac010 * absb(ind0+5,ig) + & |
---|
| 996 | fac110 * absb(ind0+6,ig)) & |
---|
| 997 | + speccomb1 * & |
---|
| 998 | (fac001 * absb(ind1,ig) + & |
---|
| 999 | fac101 * absb(ind1+1,ig) + & |
---|
| 1000 | fac011 * absb(ind1+5,ig) + & |
---|
| 1001 | fac111 * absb(ind1+6,ig)) |
---|
| 1002 | fracs(lay,ngs3+ig) = fracrefb(ig,jpl) + fpl * & |
---|
| 1003 | (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) |
---|
| 1004 | enddo |
---|
| 1005 | |
---|
| 1006 | ! Empirical modification to code to improve stratospheric cooling rates |
---|
| 1007 | ! for co2. Revised to apply weighting for g-point reduction in this band. |
---|
| 1008 | |
---|
| 1009 | taug(lay,ngs3+8)=taug(lay,ngs3+8)*0.92 |
---|
| 1010 | taug(lay,ngs3+9)=taug(lay,ngs3+9)*0.88 |
---|
| 1011 | taug(lay,ngs3+10)=taug(lay,ngs3+10)*1.07 |
---|
| 1012 | taug(lay,ngs3+11)=taug(lay,ngs3+11)*1.1 |
---|
| 1013 | taug(lay,ngs3+12)=taug(lay,ngs3+12)*0.99 |
---|
| 1014 | taug(lay,ngs3+13)=taug(lay,ngs3+13)*0.88 |
---|
| 1015 | taug(lay,ngs3+14)=taug(lay,ngs3+14)*0.943 |
---|
| 1016 | |
---|
| 1017 | enddo |
---|
| 1018 | |
---|
| 1019 | end subroutine taugb4 |
---|
| 1020 | |
---|
| 1021 | !---------------------------------------------------------------------------- |
---|
| 1022 | subroutine taugb5 |
---|
| 1023 | !---------------------------------------------------------------------------- |
---|
| 1024 | ! |
---|
| 1025 | ! band 5: 700-820 cm-1 (low key - h2o,co2; low minor - o3, ccl4) |
---|
| 1026 | ! (high key - o3,co2) |
---|
| 1027 | !---------------------------------------------------------------------------- |
---|
| 1028 | |
---|
| 1029 | ! ------- Modules ------- |
---|
| 1030 | |
---|
| 1031 | use parrrtm, only : ng5, ngs4 |
---|
| 1032 | use rrlw_ref, only : chi_mls |
---|
| 1033 | use rrlw_kg05, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 1034 | ka_mo3, selfref, forref, ccl4 |
---|
| 1035 | |
---|
| 1036 | ! ------- Declarations ------- |
---|
| 1037 | |
---|
| 1038 | ! Local |
---|
| 1039 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 1040 | integer(kind=im) :: js, js1, jmo3, jpl |
---|
| 1041 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 1042 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 1043 | real(kind=rb) :: speccomb_mo3, specparm_mo3, specmult_mo3, fmo3 |
---|
| 1044 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 1045 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 1046 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 1047 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 1048 | real(kind=rb) :: tauself, taufor, o3m1, o3m2, abso3 |
---|
| 1049 | real(kind=rb) :: refrat_planck_a, refrat_planck_b, refrat_m_a |
---|
| 1050 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 1051 | |
---|
| 1052 | |
---|
| 1053 | ! Minor gas mapping level : |
---|
| 1054 | ! lower - o3, p = 317.34 mbar, t = 240.77 k |
---|
| 1055 | ! lower - ccl4 |
---|
| 1056 | |
---|
| 1057 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 1058 | ! fraction in lower/upper atmosphere. |
---|
| 1059 | |
---|
| 1060 | ! P = 473.420 mb |
---|
| 1061 | refrat_planck_a = chi_mls(1,5)/chi_mls(2,5) |
---|
| 1062 | |
---|
| 1063 | ! P = 0.2369 mb |
---|
| 1064 | refrat_planck_b = chi_mls(3,43)/chi_mls(2,43) |
---|
| 1065 | |
---|
| 1066 | ! P = 317.3480 |
---|
| 1067 | refrat_m_a = chi_mls(1,7)/chi_mls(2,7) |
---|
| 1068 | |
---|
| 1069 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 1070 | ! temperature, and appropriate species. Below laytrop, the |
---|
| 1071 | ! water vapor self-continuum and foreign continuum is |
---|
| 1072 | ! interpolated (in temperature) separately. |
---|
| 1073 | |
---|
| 1074 | ! Lower atmosphere loop |
---|
| 1075 | do lay = 1, laytrop |
---|
| 1076 | |
---|
| 1077 | speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) |
---|
| 1078 | specparm = colh2o(lay)/speccomb |
---|
| 1079 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 1080 | specmult = 8._rb*(specparm) |
---|
| 1081 | js = 1 + int(specmult) |
---|
| 1082 | fs = mod(specmult,1.0_rb) |
---|
| 1083 | |
---|
| 1084 | speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) |
---|
| 1085 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 1086 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 1087 | specmult1 = 8._rb*(specparm1) |
---|
| 1088 | js1 = 1 + int(specmult1) |
---|
| 1089 | fs1 = mod(specmult1,1.0_rb) |
---|
| 1090 | |
---|
| 1091 | speccomb_mo3 = colh2o(lay) + refrat_m_a*colco2(lay) |
---|
| 1092 | specparm_mo3 = colh2o(lay)/speccomb_mo3 |
---|
| 1093 | if (specparm_mo3 .ge. oneminus) specparm_mo3 = oneminus |
---|
| 1094 | specmult_mo3 = 8._rb*specparm_mo3 |
---|
| 1095 | jmo3 = 1 + int(specmult_mo3) |
---|
| 1096 | fmo3 = mod(specmult_mo3,1.0_rb) |
---|
| 1097 | |
---|
| 1098 | speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) |
---|
| 1099 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 1100 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 1101 | specmult_planck = 8._rb*specparm_planck |
---|
| 1102 | jpl= 1 + int(specmult_planck) |
---|
| 1103 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 1104 | |
---|
| 1105 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(5) + js |
---|
| 1106 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(5) + js1 |
---|
| 1107 | inds = indself(lay) |
---|
| 1108 | indf = indfor(lay) |
---|
| 1109 | indm = indminor(lay) |
---|
| 1110 | |
---|
| 1111 | if (specparm .lt. 0.125_rb) then |
---|
| 1112 | p = fs - 1 |
---|
| 1113 | p4 = p**4 |
---|
| 1114 | fk0 = p4 |
---|
| 1115 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1116 | fk2 = p + p4 |
---|
| 1117 | fac000 = fk0*fac00(lay) |
---|
| 1118 | fac100 = fk1*fac00(lay) |
---|
| 1119 | fac200 = fk2*fac00(lay) |
---|
| 1120 | fac010 = fk0*fac10(lay) |
---|
| 1121 | fac110 = fk1*fac10(lay) |
---|
| 1122 | fac210 = fk2*fac10(lay) |
---|
| 1123 | else if (specparm .gt. 0.875_rb) then |
---|
| 1124 | p = -fs |
---|
| 1125 | p4 = p**4 |
---|
| 1126 | fk0 = p4 |
---|
| 1127 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1128 | fk2 = p + p4 |
---|
| 1129 | fac000 = fk0*fac00(lay) |
---|
| 1130 | fac100 = fk1*fac00(lay) |
---|
| 1131 | fac200 = fk2*fac00(lay) |
---|
| 1132 | fac010 = fk0*fac10(lay) |
---|
| 1133 | fac110 = fk1*fac10(lay) |
---|
| 1134 | fac210 = fk2*fac10(lay) |
---|
| 1135 | else |
---|
| 1136 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 1137 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 1138 | fac100 = fs * fac00(lay) |
---|
| 1139 | fac110 = fs * fac10(lay) |
---|
| 1140 | endif |
---|
| 1141 | |
---|
| 1142 | if (specparm1 .lt. 0.125_rb) then |
---|
| 1143 | p = fs1 - 1 |
---|
| 1144 | p4 = p**4 |
---|
| 1145 | fk0 = p4 |
---|
| 1146 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1147 | fk2 = p + p4 |
---|
| 1148 | fac001 = fk0*fac01(lay) |
---|
| 1149 | fac101 = fk1*fac01(lay) |
---|
| 1150 | fac201 = fk2*fac01(lay) |
---|
| 1151 | fac011 = fk0*fac11(lay) |
---|
| 1152 | fac111 = fk1*fac11(lay) |
---|
| 1153 | fac211 = fk2*fac11(lay) |
---|
| 1154 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 1155 | p = -fs1 |
---|
| 1156 | p4 = p**4 |
---|
| 1157 | fk0 = p4 |
---|
| 1158 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1159 | fk2 = p + p4 |
---|
| 1160 | fac001 = fk0*fac01(lay) |
---|
| 1161 | fac101 = fk1*fac01(lay) |
---|
| 1162 | fac201 = fk2*fac01(lay) |
---|
| 1163 | fac011 = fk0*fac11(lay) |
---|
| 1164 | fac111 = fk1*fac11(lay) |
---|
| 1165 | fac211 = fk2*fac11(lay) |
---|
| 1166 | else |
---|
| 1167 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 1168 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 1169 | fac101 = fs1 * fac01(lay) |
---|
| 1170 | fac111 = fs1 * fac11(lay) |
---|
| 1171 | endif |
---|
| 1172 | |
---|
| 1173 | do ig = 1, ng5 |
---|
| 1174 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 1175 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 1176 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 1177 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 1178 | o3m1 = ka_mo3(jmo3,indm,ig) + fmo3 * & |
---|
| 1179 | (ka_mo3(jmo3+1,indm,ig)-ka_mo3(jmo3,indm,ig)) |
---|
| 1180 | o3m2 = ka_mo3(jmo3,indm+1,ig) + fmo3 * & |
---|
| 1181 | (ka_mo3(jmo3+1,indm+1,ig)-ka_mo3(jmo3,indm+1,ig)) |
---|
| 1182 | abso3 = o3m1 + minorfrac(lay)*(o3m2-o3m1) |
---|
| 1183 | |
---|
| 1184 | if (specparm .lt. 0.125_rb) then |
---|
| 1185 | tau_major = speccomb * & |
---|
| 1186 | (fac000 * absa(ind0,ig) + & |
---|
| 1187 | fac100 * absa(ind0+1,ig) + & |
---|
| 1188 | fac200 * absa(ind0+2,ig) + & |
---|
| 1189 | fac010 * absa(ind0+9,ig) + & |
---|
| 1190 | fac110 * absa(ind0+10,ig) + & |
---|
| 1191 | fac210 * absa(ind0+11,ig)) |
---|
| 1192 | else if (specparm .gt. 0.875_rb) then |
---|
| 1193 | tau_major = speccomb * & |
---|
| 1194 | (fac200 * absa(ind0-1,ig) + & |
---|
| 1195 | fac100 * absa(ind0,ig) + & |
---|
| 1196 | fac000 * absa(ind0+1,ig) + & |
---|
| 1197 | fac210 * absa(ind0+8,ig) + & |
---|
| 1198 | fac110 * absa(ind0+9,ig) + & |
---|
| 1199 | fac010 * absa(ind0+10,ig)) |
---|
| 1200 | else |
---|
| 1201 | tau_major = speccomb * & |
---|
| 1202 | (fac000 * absa(ind0,ig) + & |
---|
| 1203 | fac100 * absa(ind0+1,ig) + & |
---|
| 1204 | fac010 * absa(ind0+9,ig) + & |
---|
| 1205 | fac110 * absa(ind0+10,ig)) |
---|
| 1206 | endif |
---|
| 1207 | |
---|
| 1208 | if (specparm1 .lt. 0.125_rb) then |
---|
| 1209 | tau_major1 = speccomb1 * & |
---|
| 1210 | (fac001 * absa(ind1,ig) + & |
---|
| 1211 | fac101 * absa(ind1+1,ig) + & |
---|
| 1212 | fac201 * absa(ind1+2,ig) + & |
---|
| 1213 | fac011 * absa(ind1+9,ig) + & |
---|
| 1214 | fac111 * absa(ind1+10,ig) + & |
---|
| 1215 | fac211 * absa(ind1+11,ig)) |
---|
| 1216 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 1217 | tau_major1 = speccomb1 * & |
---|
| 1218 | (fac201 * absa(ind1-1,ig) + & |
---|
| 1219 | fac101 * absa(ind1,ig) + & |
---|
| 1220 | fac001 * absa(ind1+1,ig) + & |
---|
| 1221 | fac211 * absa(ind1+8,ig) + & |
---|
| 1222 | fac111 * absa(ind1+9,ig) + & |
---|
| 1223 | fac011 * absa(ind1+10,ig)) |
---|
| 1224 | else |
---|
| 1225 | tau_major1 = speccomb1 * & |
---|
| 1226 | (fac001 * absa(ind1,ig) + & |
---|
| 1227 | fac101 * absa(ind1+1,ig) + & |
---|
| 1228 | fac011 * absa(ind1+9,ig) + & |
---|
| 1229 | fac111 * absa(ind1+10,ig)) |
---|
| 1230 | endif |
---|
| 1231 | |
---|
| 1232 | taug(lay,ngs4+ig) = tau_major + tau_major1 & |
---|
| 1233 | + tauself + taufor & |
---|
| 1234 | + abso3*colo3(lay) & |
---|
| 1235 | + wx(1,lay) * ccl4(ig) |
---|
| 1236 | fracs(lay,ngs4+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 1237 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 1238 | enddo |
---|
| 1239 | enddo |
---|
| 1240 | |
---|
| 1241 | ! Upper atmosphere loop |
---|
| 1242 | do lay = laytrop+1, nlayers |
---|
| 1243 | |
---|
| 1244 | speccomb = colo3(lay) + rat_o3co2(lay)*colco2(lay) |
---|
| 1245 | specparm = colo3(lay)/speccomb |
---|
| 1246 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 1247 | specmult = 4._rb*(specparm) |
---|
| 1248 | js = 1 + int(specmult) |
---|
| 1249 | fs = mod(specmult,1.0_rb) |
---|
| 1250 | |
---|
| 1251 | speccomb1 = colo3(lay) + rat_o3co2_1(lay)*colco2(lay) |
---|
| 1252 | specparm1 = colo3(lay)/speccomb1 |
---|
| 1253 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 1254 | specmult1 = 4._rb*(specparm1) |
---|
| 1255 | js1 = 1 + int(specmult1) |
---|
| 1256 | fs1 = mod(specmult1,1.0_rb) |
---|
| 1257 | |
---|
| 1258 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 1259 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 1260 | fac100 = fs * fac00(lay) |
---|
| 1261 | fac110 = fs * fac10(lay) |
---|
| 1262 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 1263 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 1264 | fac101 = fs1 * fac01(lay) |
---|
| 1265 | fac111 = fs1 * fac11(lay) |
---|
| 1266 | |
---|
| 1267 | speccomb_planck = colo3(lay)+refrat_planck_b*colco2(lay) |
---|
| 1268 | specparm_planck = colo3(lay)/speccomb_planck |
---|
| 1269 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 1270 | specmult_planck = 4._rb*specparm_planck |
---|
| 1271 | jpl= 1 + int(specmult_planck) |
---|
| 1272 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 1273 | |
---|
| 1274 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(5) + js |
---|
| 1275 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(5) + js1 |
---|
| 1276 | |
---|
| 1277 | do ig = 1, ng5 |
---|
| 1278 | taug(lay,ngs4+ig) = speccomb * & |
---|
| 1279 | (fac000 * absb(ind0,ig) + & |
---|
| 1280 | fac100 * absb(ind0+1,ig) + & |
---|
| 1281 | fac010 * absb(ind0+5,ig) + & |
---|
| 1282 | fac110 * absb(ind0+6,ig)) & |
---|
| 1283 | + speccomb1 * & |
---|
| 1284 | (fac001 * absb(ind1,ig) + & |
---|
| 1285 | fac101 * absb(ind1+1,ig) + & |
---|
| 1286 | fac011 * absb(ind1+5,ig) + & |
---|
| 1287 | fac111 * absb(ind1+6,ig)) & |
---|
| 1288 | + wx(1,lay) * ccl4(ig) |
---|
| 1289 | fracs(lay,ngs4+ig) = fracrefb(ig,jpl) + fpl * & |
---|
| 1290 | (fracrefb(ig,jpl+1)-fracrefb(ig,jpl)) |
---|
| 1291 | enddo |
---|
| 1292 | enddo |
---|
| 1293 | |
---|
| 1294 | end subroutine taugb5 |
---|
| 1295 | |
---|
| 1296 | !---------------------------------------------------------------------------- |
---|
| 1297 | subroutine taugb6 |
---|
| 1298 | !---------------------------------------------------------------------------- |
---|
| 1299 | ! |
---|
| 1300 | ! band 6: 820-980 cm-1 (low key - h2o; low minor - co2) |
---|
| 1301 | ! (high key - nothing; high minor - cfc11, cfc12) |
---|
| 1302 | !---------------------------------------------------------------------------- |
---|
| 1303 | |
---|
| 1304 | ! ------- Modules ------- |
---|
| 1305 | |
---|
| 1306 | use parrrtm, only : ng6, ngs5 |
---|
| 1307 | use rrlw_ref, only : chi_mls |
---|
| 1308 | use rrlw_kg06, only : fracrefa, absa, ka, ka_mco2, & |
---|
| 1309 | selfref, forref, cfc11adj, cfc12 |
---|
| 1310 | |
---|
| 1311 | ! ------- Declarations ------- |
---|
| 1312 | |
---|
| 1313 | ! Local |
---|
| 1314 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 1315 | real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 |
---|
| 1316 | real(kind=rb) :: tauself, taufor, absco2 |
---|
| 1317 | |
---|
| 1318 | |
---|
| 1319 | ! Minor gas mapping level: |
---|
| 1320 | ! lower - co2, p = 706.2720 mb, t = 294.2 k |
---|
| 1321 | ! upper - cfc11, cfc12 |
---|
| 1322 | |
---|
| 1323 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 1324 | ! temperature. The water vapor self-continuum and foreign continuum |
---|
| 1325 | ! is interpolated (in temperature) separately. |
---|
| 1326 | |
---|
| 1327 | ! Lower atmosphere loop |
---|
| 1328 | do lay = 1, laytrop |
---|
| 1329 | |
---|
| 1330 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 1331 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 1332 | ! to obtain the proper contribution. |
---|
| 1333 | chi_co2 = colco2(lay)/(coldry(lay)) |
---|
| 1334 | ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) |
---|
| 1335 | if (ratco2 .gt. 3.0_rb) then |
---|
| 1336 | adjfac = 2.0_rb+(ratco2-2.0_rb)**0.77_rb |
---|
| 1337 | adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 1338 | else |
---|
| 1339 | adjcolco2 = colco2(lay) |
---|
| 1340 | endif |
---|
| 1341 | |
---|
| 1342 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(6) + 1 |
---|
| 1343 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(6) + 1 |
---|
| 1344 | inds = indself(lay) |
---|
| 1345 | indf = indfor(lay) |
---|
| 1346 | indm = indminor(lay) |
---|
| 1347 | |
---|
| 1348 | do ig = 1, ng6 |
---|
| 1349 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 1350 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 1351 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 1352 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 1353 | absco2 = (ka_mco2(indm,ig) + minorfrac(lay) * & |
---|
| 1354 | (ka_mco2(indm+1,ig) - ka_mco2(indm,ig))) |
---|
| 1355 | taug(lay,ngs5+ig) = colh2o(lay) * & |
---|
| 1356 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 1357 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 1358 | fac01(lay) * absa(ind1,ig) + & |
---|
| 1359 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 1360 | + tauself + taufor & |
---|
| 1361 | + adjcolco2 * absco2 & |
---|
| 1362 | + wx(2,lay) * cfc11adj(ig) & |
---|
| 1363 | + wx(3,lay) * cfc12(ig) |
---|
| 1364 | fracs(lay,ngs5+ig) = fracrefa(ig) |
---|
| 1365 | enddo |
---|
| 1366 | enddo |
---|
| 1367 | |
---|
| 1368 | ! Upper atmosphere loop |
---|
| 1369 | ! Nothing important goes on above laytrop in this band. |
---|
| 1370 | do lay = laytrop+1, nlayers |
---|
| 1371 | |
---|
| 1372 | do ig = 1, ng6 |
---|
| 1373 | taug(lay,ngs5+ig) = 0.0_rb & |
---|
| 1374 | + wx(2,lay) * cfc11adj(ig) & |
---|
| 1375 | + wx(3,lay) * cfc12(ig) |
---|
| 1376 | fracs(lay,ngs5+ig) = fracrefa(ig) |
---|
| 1377 | enddo |
---|
| 1378 | enddo |
---|
| 1379 | |
---|
| 1380 | end subroutine taugb6 |
---|
| 1381 | |
---|
| 1382 | !---------------------------------------------------------------------------- |
---|
| 1383 | subroutine taugb7 |
---|
| 1384 | !---------------------------------------------------------------------------- |
---|
| 1385 | ! |
---|
| 1386 | ! band 7: 980-1080 cm-1 (low key - h2o,o3; low minor - co2) |
---|
| 1387 | ! (high key - o3; high minor - co2) |
---|
| 1388 | !---------------------------------------------------------------------------- |
---|
| 1389 | |
---|
| 1390 | ! ------- Modules ------- |
---|
| 1391 | |
---|
| 1392 | use parrrtm, only : ng7, ngs6 |
---|
| 1393 | use rrlw_ref, only : chi_mls |
---|
| 1394 | use rrlw_kg07, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 1395 | ka_mco2, kb_mco2, selfref, forref |
---|
| 1396 | |
---|
| 1397 | ! ------- Declarations ------- |
---|
| 1398 | |
---|
| 1399 | ! Local |
---|
| 1400 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 1401 | integer(kind=im) :: js, js1, jmco2, jpl |
---|
| 1402 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 1403 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 1404 | real(kind=rb) :: speccomb_mco2, specparm_mco2, specmult_mco2, fmco2 |
---|
| 1405 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 1406 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 1407 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 1408 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 1409 | real(kind=rb) :: tauself, taufor, co2m1, co2m2, absco2 |
---|
| 1410 | real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 |
---|
| 1411 | real(kind=rb) :: refrat_planck_a, refrat_m_a |
---|
| 1412 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 1413 | |
---|
| 1414 | |
---|
| 1415 | ! Minor gas mapping level : |
---|
| 1416 | ! lower - co2, p = 706.2620 mbar, t= 278.94 k |
---|
| 1417 | ! upper - co2, p = 12.9350 mbar, t = 234.01 k |
---|
| 1418 | |
---|
| 1419 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 1420 | ! fraction in lower atmosphere. |
---|
| 1421 | |
---|
| 1422 | ! P = 706.2620 mb |
---|
| 1423 | refrat_planck_a = chi_mls(1,3)/chi_mls(3,3) |
---|
| 1424 | |
---|
| 1425 | ! P = 706.2720 mb |
---|
| 1426 | refrat_m_a = chi_mls(1,3)/chi_mls(3,3) |
---|
| 1427 | |
---|
| 1428 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 1429 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 1430 | ! vapor self-continuum and foreign continuum is interpolated |
---|
| 1431 | ! (in temperature) separately. |
---|
| 1432 | |
---|
| 1433 | ! Lower atmosphere loop |
---|
| 1434 | do lay = 1, laytrop |
---|
| 1435 | |
---|
| 1436 | speccomb = colh2o(lay) + rat_h2oo3(lay)*colo3(lay) |
---|
| 1437 | specparm = colh2o(lay)/speccomb |
---|
| 1438 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 1439 | specmult = 8._rb*(specparm) |
---|
| 1440 | js = 1 + int(specmult) |
---|
| 1441 | fs = mod(specmult,1.0_rb) |
---|
| 1442 | |
---|
| 1443 | speccomb1 = colh2o(lay) + rat_h2oo3_1(lay)*colo3(lay) |
---|
| 1444 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 1445 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 1446 | specmult1 = 8._rb*(specparm1) |
---|
| 1447 | js1 = 1 + int(specmult1) |
---|
| 1448 | fs1 = mod(specmult1,1.0_rb) |
---|
| 1449 | |
---|
| 1450 | speccomb_mco2 = colh2o(lay) + refrat_m_a*colo3(lay) |
---|
| 1451 | specparm_mco2 = colh2o(lay)/speccomb_mco2 |
---|
| 1452 | if (specparm_mco2 .ge. oneminus) specparm_mco2 = oneminus |
---|
| 1453 | specmult_mco2 = 8._rb*specparm_mco2 |
---|
| 1454 | |
---|
| 1455 | jmco2 = 1 + int(specmult_mco2) |
---|
| 1456 | fmco2 = mod(specmult_mco2,1.0_rb) |
---|
| 1457 | |
---|
| 1458 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 1459 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 1460 | ! to obtain the proper contribution. |
---|
| 1461 | chi_co2 = colco2(lay)/(coldry(lay)) |
---|
| 1462 | ratco2 = 1.e20*chi_co2/chi_mls(2,jp(lay)+1) |
---|
| 1463 | if (ratco2 .gt. 3.0_rb) then |
---|
| 1464 | adjfac = 3.0_rb+(ratco2-3.0_rb)**0.79_rb |
---|
| 1465 | adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 1466 | else |
---|
| 1467 | adjcolco2 = colco2(lay) |
---|
| 1468 | endif |
---|
| 1469 | |
---|
| 1470 | speccomb_planck = colh2o(lay)+refrat_planck_a*colo3(lay) |
---|
| 1471 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 1472 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 1473 | specmult_planck = 8._rb*specparm_planck |
---|
| 1474 | jpl= 1 + int(specmult_planck) |
---|
| 1475 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 1476 | |
---|
| 1477 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(7) + js |
---|
| 1478 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(7) + js1 |
---|
| 1479 | inds = indself(lay) |
---|
| 1480 | indf = indfor(lay) |
---|
| 1481 | indm = indminor(lay) |
---|
| 1482 | |
---|
| 1483 | if (specparm .lt. 0.125_rb) then |
---|
| 1484 | p = fs - 1 |
---|
| 1485 | p4 = p**4 |
---|
| 1486 | fk0 = p4 |
---|
| 1487 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1488 | fk2 = p + p4 |
---|
| 1489 | fac000 = fk0*fac00(lay) |
---|
| 1490 | fac100 = fk1*fac00(lay) |
---|
| 1491 | fac200 = fk2*fac00(lay) |
---|
| 1492 | fac010 = fk0*fac10(lay) |
---|
| 1493 | fac110 = fk1*fac10(lay) |
---|
| 1494 | fac210 = fk2*fac10(lay) |
---|
| 1495 | else if (specparm .gt. 0.875_rb) then |
---|
| 1496 | p = -fs |
---|
| 1497 | p4 = p**4 |
---|
| 1498 | fk0 = p4 |
---|
| 1499 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1500 | fk2 = p + p4 |
---|
| 1501 | fac000 = fk0*fac00(lay) |
---|
| 1502 | fac100 = fk1*fac00(lay) |
---|
| 1503 | fac200 = fk2*fac00(lay) |
---|
| 1504 | fac010 = fk0*fac10(lay) |
---|
| 1505 | fac110 = fk1*fac10(lay) |
---|
| 1506 | fac210 = fk2*fac10(lay) |
---|
| 1507 | else |
---|
| 1508 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 1509 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 1510 | fac100 = fs * fac00(lay) |
---|
| 1511 | fac110 = fs * fac10(lay) |
---|
| 1512 | endif |
---|
| 1513 | if (specparm1 .lt. 0.125_rb) then |
---|
| 1514 | p = fs1 - 1 |
---|
| 1515 | p4 = p**4 |
---|
| 1516 | fk0 = p4 |
---|
| 1517 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1518 | fk2 = p + p4 |
---|
| 1519 | fac001 = fk0*fac01(lay) |
---|
| 1520 | fac101 = fk1*fac01(lay) |
---|
| 1521 | fac201 = fk2*fac01(lay) |
---|
| 1522 | fac011 = fk0*fac11(lay) |
---|
| 1523 | fac111 = fk1*fac11(lay) |
---|
| 1524 | fac211 = fk2*fac11(lay) |
---|
| 1525 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 1526 | p = -fs1 |
---|
| 1527 | p4 = p**4 |
---|
| 1528 | fk0 = p4 |
---|
| 1529 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1530 | fk2 = p + p4 |
---|
| 1531 | fac001 = fk0*fac01(lay) |
---|
| 1532 | fac101 = fk1*fac01(lay) |
---|
| 1533 | fac201 = fk2*fac01(lay) |
---|
| 1534 | fac011 = fk0*fac11(lay) |
---|
| 1535 | fac111 = fk1*fac11(lay) |
---|
| 1536 | fac211 = fk2*fac11(lay) |
---|
| 1537 | else |
---|
| 1538 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 1539 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 1540 | fac101 = fs1 * fac01(lay) |
---|
| 1541 | fac111 = fs1 * fac11(lay) |
---|
| 1542 | endif |
---|
| 1543 | |
---|
| 1544 | do ig = 1, ng7 |
---|
| 1545 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 1546 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 1547 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 1548 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 1549 | co2m1 = ka_mco2(jmco2,indm,ig) + fmco2 * & |
---|
| 1550 | (ka_mco2(jmco2+1,indm,ig) - ka_mco2(jmco2,indm,ig)) |
---|
| 1551 | co2m2 = ka_mco2(jmco2,indm+1,ig) + fmco2 * & |
---|
| 1552 | (ka_mco2(jmco2+1,indm+1,ig) - ka_mco2(jmco2,indm+1,ig)) |
---|
| 1553 | absco2 = co2m1 + minorfrac(lay) * (co2m2 - co2m1) |
---|
| 1554 | |
---|
| 1555 | if (specparm .lt. 0.125_rb) then |
---|
| 1556 | tau_major = speccomb * & |
---|
| 1557 | (fac000 * absa(ind0,ig) + & |
---|
| 1558 | fac100 * absa(ind0+1,ig) + & |
---|
| 1559 | fac200 * absa(ind0+2,ig) + & |
---|
| 1560 | fac010 * absa(ind0+9,ig) + & |
---|
| 1561 | fac110 * absa(ind0+10,ig) + & |
---|
| 1562 | fac210 * absa(ind0+11,ig)) |
---|
| 1563 | else if (specparm .gt. 0.875_rb) then |
---|
| 1564 | tau_major = speccomb * & |
---|
| 1565 | (fac200 * absa(ind0-1,ig) + & |
---|
| 1566 | fac100 * absa(ind0,ig) + & |
---|
| 1567 | fac000 * absa(ind0+1,ig) + & |
---|
| 1568 | fac210 * absa(ind0+8,ig) + & |
---|
| 1569 | fac110 * absa(ind0+9,ig) + & |
---|
| 1570 | fac010 * absa(ind0+10,ig)) |
---|
| 1571 | else |
---|
| 1572 | tau_major = speccomb * & |
---|
| 1573 | (fac000 * absa(ind0,ig) + & |
---|
| 1574 | fac100 * absa(ind0+1,ig) + & |
---|
| 1575 | fac010 * absa(ind0+9,ig) + & |
---|
| 1576 | fac110 * absa(ind0+10,ig)) |
---|
| 1577 | endif |
---|
| 1578 | |
---|
| 1579 | if (specparm1 .lt. 0.125_rb) then |
---|
| 1580 | tau_major1 = speccomb1 * & |
---|
| 1581 | (fac001 * absa(ind1,ig) + & |
---|
| 1582 | fac101 * absa(ind1+1,ig) + & |
---|
| 1583 | fac201 * absa(ind1+2,ig) + & |
---|
| 1584 | fac011 * absa(ind1+9,ig) + & |
---|
| 1585 | fac111 * absa(ind1+10,ig) + & |
---|
| 1586 | fac211 * absa(ind1+11,ig)) |
---|
| 1587 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 1588 | tau_major1 = speccomb1 * & |
---|
| 1589 | (fac201 * absa(ind1-1,ig) + & |
---|
| 1590 | fac101 * absa(ind1,ig) + & |
---|
| 1591 | fac001 * absa(ind1+1,ig) + & |
---|
| 1592 | fac211 * absa(ind1+8,ig) + & |
---|
| 1593 | fac111 * absa(ind1+9,ig) + & |
---|
| 1594 | fac011 * absa(ind1+10,ig)) |
---|
| 1595 | else |
---|
| 1596 | tau_major1 = speccomb1 * & |
---|
| 1597 | (fac001 * absa(ind1,ig) + & |
---|
| 1598 | fac101 * absa(ind1+1,ig) + & |
---|
| 1599 | fac011 * absa(ind1+9,ig) + & |
---|
| 1600 | fac111 * absa(ind1+10,ig)) |
---|
| 1601 | endif |
---|
| 1602 | |
---|
| 1603 | taug(lay,ngs6+ig) = tau_major + tau_major1 & |
---|
| 1604 | + tauself + taufor & |
---|
| 1605 | + adjcolco2*absco2 |
---|
| 1606 | fracs(lay,ngs6+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 1607 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 1608 | enddo |
---|
| 1609 | enddo |
---|
| 1610 | |
---|
| 1611 | ! Upper atmosphere loop |
---|
| 1612 | do lay = laytrop+1, nlayers |
---|
| 1613 | |
---|
| 1614 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 1615 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 1616 | ! to obtain the proper contribution. |
---|
| 1617 | chi_co2 = colco2(lay)/(coldry(lay)) |
---|
| 1618 | ratco2 = 1.e20*chi_co2/chi_mls(2,jp(lay)+1) |
---|
| 1619 | if (ratco2 .gt. 3.0_rb) then |
---|
| 1620 | adjfac = 2.0_rb+(ratco2-2.0_rb)**0.79_rb |
---|
| 1621 | adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 1622 | else |
---|
| 1623 | adjcolco2 = colco2(lay) |
---|
| 1624 | endif |
---|
| 1625 | |
---|
| 1626 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(7) + 1 |
---|
| 1627 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(7) + 1 |
---|
| 1628 | indm = indminor(lay) |
---|
| 1629 | |
---|
| 1630 | do ig = 1, ng7 |
---|
| 1631 | absco2 = kb_mco2(indm,ig) + minorfrac(lay) * & |
---|
| 1632 | (kb_mco2(indm+1,ig) - kb_mco2(indm,ig)) |
---|
| 1633 | taug(lay,ngs6+ig) = colo3(lay) * & |
---|
| 1634 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 1635 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 1636 | fac01(lay) * absb(ind1,ig) + & |
---|
| 1637 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 1638 | + adjcolco2 * absco2 |
---|
| 1639 | fracs(lay,ngs6+ig) = fracrefb(ig) |
---|
| 1640 | enddo |
---|
| 1641 | |
---|
| 1642 | ! Empirical modification to code to improve stratospheric cooling rates |
---|
| 1643 | ! for o3. Revised to apply weighting for g-point reduction in this band. |
---|
| 1644 | |
---|
| 1645 | taug(lay,ngs6+6)=taug(lay,ngs6+6)*0.92_rb |
---|
| 1646 | taug(lay,ngs6+7)=taug(lay,ngs6+7)*0.88_rb |
---|
| 1647 | taug(lay,ngs6+8)=taug(lay,ngs6+8)*1.07_rb |
---|
| 1648 | taug(lay,ngs6+9)=taug(lay,ngs6+9)*1.1_rb |
---|
| 1649 | taug(lay,ngs6+10)=taug(lay,ngs6+10)*0.99_rb |
---|
| 1650 | taug(lay,ngs6+11)=taug(lay,ngs6+11)*0.855_rb |
---|
| 1651 | |
---|
| 1652 | enddo |
---|
| 1653 | |
---|
| 1654 | end subroutine taugb7 |
---|
| 1655 | |
---|
| 1656 | !---------------------------------------------------------------------------- |
---|
| 1657 | subroutine taugb8 |
---|
| 1658 | !---------------------------------------------------------------------------- |
---|
| 1659 | ! |
---|
| 1660 | ! band 8: 1080-1180 cm-1 (low key - h2o; low minor - co2,o3,n2o) |
---|
| 1661 | ! (high key - o3; high minor - co2, n2o) |
---|
| 1662 | !---------------------------------------------------------------------------- |
---|
| 1663 | |
---|
| 1664 | ! ------- Modules ------- |
---|
| 1665 | |
---|
| 1666 | use parrrtm, only : ng8, ngs7 |
---|
| 1667 | use rrlw_ref, only : chi_mls |
---|
| 1668 | use rrlw_kg08, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 1669 | ka_mco2, ka_mn2o, ka_mo3, kb_mco2, kb_mn2o, & |
---|
| 1670 | selfref, forref, cfc12, cfc22adj |
---|
| 1671 | |
---|
| 1672 | ! ------- Declarations ------- |
---|
| 1673 | |
---|
| 1674 | ! Local |
---|
| 1675 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 1676 | real(kind=rb) :: tauself, taufor, absco2, abso3, absn2o |
---|
| 1677 | real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 |
---|
| 1678 | |
---|
| 1679 | |
---|
| 1680 | ! Minor gas mapping level: |
---|
| 1681 | ! lower - co2, p = 1053.63 mb, t = 294.2 k |
---|
| 1682 | ! lower - o3, p = 317.348 mb, t = 240.77 k |
---|
| 1683 | ! lower - n2o, p = 706.2720 mb, t= 278.94 k |
---|
| 1684 | ! lower - cfc12,cfc11 |
---|
| 1685 | ! upper - co2, p = 35.1632 mb, t = 223.28 k |
---|
| 1686 | ! upper - n2o, p = 8.716e-2 mb, t = 226.03 k |
---|
| 1687 | |
---|
| 1688 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 1689 | ! temperature, and appropriate species. Below laytrop, the water vapor |
---|
| 1690 | ! self-continuum and foreign continuum is interpolated (in temperature) |
---|
| 1691 | ! separately. |
---|
| 1692 | |
---|
| 1693 | ! Lower atmosphere loop |
---|
| 1694 | do lay = 1, laytrop |
---|
| 1695 | |
---|
| 1696 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 1697 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 1698 | ! to obtain the proper contribution. |
---|
| 1699 | chi_co2 = colco2(lay)/(coldry(lay)) |
---|
| 1700 | ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) |
---|
| 1701 | if (ratco2 .gt. 3.0_rb) then |
---|
| 1702 | adjfac = 2.0_rb+(ratco2-2.0_rb)**0.65_rb |
---|
| 1703 | adjcolco2 = adjfac*chi_mls(2,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 1704 | else |
---|
| 1705 | adjcolco2 = colco2(lay) |
---|
| 1706 | endif |
---|
| 1707 | |
---|
| 1708 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(8) + 1 |
---|
| 1709 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(8) + 1 |
---|
| 1710 | inds = indself(lay) |
---|
| 1711 | indf = indfor(lay) |
---|
| 1712 | indm = indminor(lay) |
---|
| 1713 | |
---|
| 1714 | do ig = 1, ng8 |
---|
| 1715 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 1716 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 1717 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 1718 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 1719 | absco2 = (ka_mco2(indm,ig) + minorfrac(lay) * & |
---|
| 1720 | (ka_mco2(indm+1,ig) - ka_mco2(indm,ig))) |
---|
| 1721 | abso3 = (ka_mo3(indm,ig) + minorfrac(lay) * & |
---|
| 1722 | (ka_mo3(indm+1,ig) - ka_mo3(indm,ig))) |
---|
| 1723 | absn2o = (ka_mn2o(indm,ig) + minorfrac(lay) * & |
---|
| 1724 | (ka_mn2o(indm+1,ig) - ka_mn2o(indm,ig))) |
---|
| 1725 | taug(lay,ngs7+ig) = colh2o(lay) * & |
---|
| 1726 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 1727 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 1728 | fac01(lay) * absa(ind1,ig) + & |
---|
| 1729 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 1730 | + tauself + taufor & |
---|
| 1731 | + adjcolco2*absco2 & |
---|
| 1732 | + colo3(lay) * abso3 & |
---|
| 1733 | + coln2o(lay) * absn2o & |
---|
| 1734 | + wx(3,lay) * cfc12(ig) & |
---|
| 1735 | + wx(4,lay) * cfc22adj(ig) |
---|
| 1736 | fracs(lay,ngs7+ig) = fracrefa(ig) |
---|
| 1737 | enddo |
---|
| 1738 | enddo |
---|
| 1739 | |
---|
| 1740 | ! Upper atmosphere loop |
---|
| 1741 | do lay = laytrop+1, nlayers |
---|
| 1742 | |
---|
| 1743 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 1744 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 1745 | ! to obtain the proper contribution. |
---|
| 1746 | chi_co2 = colco2(lay)/coldry(lay) |
---|
| 1747 | ratco2 = 1.e20_rb*chi_co2/chi_mls(2,jp(lay)+1) |
---|
| 1748 | if (ratco2 .gt. 3.0_rb) then |
---|
| 1749 | adjfac = 2.0_rb+(ratco2-2.0_rb)**0.65_rb |
---|
| 1750 | adjcolco2 = adjfac*chi_mls(2,jp(lay)+1) * coldry(lay)*1.e-20_rb |
---|
| 1751 | else |
---|
| 1752 | adjcolco2 = colco2(lay) |
---|
| 1753 | endif |
---|
| 1754 | |
---|
| 1755 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(8) + 1 |
---|
| 1756 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(8) + 1 |
---|
| 1757 | indm = indminor(lay) |
---|
| 1758 | |
---|
| 1759 | do ig = 1, ng8 |
---|
| 1760 | absco2 = (kb_mco2(indm,ig) + minorfrac(lay) * & |
---|
| 1761 | (kb_mco2(indm+1,ig) - kb_mco2(indm,ig))) |
---|
| 1762 | absn2o = (kb_mn2o(indm,ig) + minorfrac(lay) * & |
---|
| 1763 | (kb_mn2o(indm+1,ig) - kb_mn2o(indm,ig))) |
---|
| 1764 | taug(lay,ngs7+ig) = colo3(lay) * & |
---|
| 1765 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 1766 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 1767 | fac01(lay) * absb(ind1,ig) + & |
---|
| 1768 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 1769 | + adjcolco2*absco2 & |
---|
| 1770 | + coln2o(lay)*absn2o & |
---|
| 1771 | + wx(3,lay) * cfc12(ig) & |
---|
| 1772 | + wx(4,lay) * cfc22adj(ig) |
---|
| 1773 | fracs(lay,ngs7+ig) = fracrefb(ig) |
---|
| 1774 | enddo |
---|
| 1775 | enddo |
---|
| 1776 | |
---|
| 1777 | end subroutine taugb8 |
---|
| 1778 | |
---|
| 1779 | !---------------------------------------------------------------------------- |
---|
| 1780 | subroutine taugb9 |
---|
| 1781 | !---------------------------------------------------------------------------- |
---|
| 1782 | ! |
---|
| 1783 | ! band 9: 1180-1390 cm-1 (low key - h2o,ch4; low minor - n2o) |
---|
| 1784 | ! (high key - ch4; high minor - n2o) |
---|
| 1785 | !---------------------------------------------------------------------------- |
---|
| 1786 | |
---|
| 1787 | ! ------- Modules ------- |
---|
| 1788 | |
---|
| 1789 | use parrrtm, only : ng9, ngs8 |
---|
| 1790 | use rrlw_ref, only : chi_mls |
---|
| 1791 | use rrlw_kg09, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 1792 | ka_mn2o, kb_mn2o, selfref, forref |
---|
| 1793 | |
---|
| 1794 | ! ------- Declarations ------- |
---|
| 1795 | |
---|
| 1796 | ! Local |
---|
| 1797 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 1798 | integer(kind=im) :: js, js1, jmn2o, jpl |
---|
| 1799 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 1800 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 1801 | real(kind=rb) :: speccomb_mn2o, specparm_mn2o, specmult_mn2o, fmn2o |
---|
| 1802 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 1803 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 1804 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 1805 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 1806 | real(kind=rb) :: tauself, taufor, n2om1, n2om2, absn2o |
---|
| 1807 | real(kind=rb) :: chi_n2o, ratn2o, adjfac, adjcoln2o |
---|
| 1808 | real(kind=rb) :: refrat_planck_a, refrat_m_a |
---|
| 1809 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 1810 | |
---|
| 1811 | |
---|
| 1812 | ! Minor gas mapping level : |
---|
| 1813 | ! lower - n2o, p = 706.272 mbar, t = 278.94 k |
---|
| 1814 | ! upper - n2o, p = 95.58 mbar, t = 215.7 k |
---|
| 1815 | |
---|
| 1816 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 1817 | ! fraction in lower/upper atmosphere. |
---|
| 1818 | |
---|
| 1819 | ! P = 212 mb |
---|
| 1820 | refrat_planck_a = chi_mls(1,9)/chi_mls(6,9) |
---|
| 1821 | |
---|
| 1822 | ! P = 706.272 mb |
---|
| 1823 | refrat_m_a = chi_mls(1,3)/chi_mls(6,3) |
---|
| 1824 | |
---|
| 1825 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 1826 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 1827 | ! vapor self-continuum and foreign continuum is interpolated |
---|
| 1828 | ! (in temperature) separately. |
---|
| 1829 | |
---|
| 1830 | ! Lower atmosphere loop |
---|
| 1831 | do lay = 1, laytrop |
---|
| 1832 | |
---|
| 1833 | speccomb = colh2o(lay) + rat_h2och4(lay)*colch4(lay) |
---|
| 1834 | specparm = colh2o(lay)/speccomb |
---|
| 1835 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 1836 | specmult = 8._rb*(specparm) |
---|
| 1837 | js = 1 + int(specmult) |
---|
| 1838 | fs = mod(specmult,1.0_rb) |
---|
| 1839 | |
---|
| 1840 | speccomb1 = colh2o(lay) + rat_h2och4_1(lay)*colch4(lay) |
---|
| 1841 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 1842 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 1843 | specmult1 = 8._rb*(specparm1) |
---|
| 1844 | js1 = 1 + int(specmult1) |
---|
| 1845 | fs1 = mod(specmult1,1.0_rb) |
---|
| 1846 | |
---|
| 1847 | speccomb_mn2o = colh2o(lay) + refrat_m_a*colch4(lay) |
---|
| 1848 | specparm_mn2o = colh2o(lay)/speccomb_mn2o |
---|
| 1849 | if (specparm_mn2o .ge. oneminus) specparm_mn2o = oneminus |
---|
| 1850 | specmult_mn2o = 8._rb*specparm_mn2o |
---|
| 1851 | jmn2o = 1 + int(specmult_mn2o) |
---|
| 1852 | fmn2o = mod(specmult_mn2o,1.0_rb) |
---|
| 1853 | |
---|
| 1854 | ! In atmospheres where the amount of N2O is too great to be considered |
---|
| 1855 | ! a minor species, adjust the column amount of N2O by an empirical factor |
---|
| 1856 | ! to obtain the proper contribution. |
---|
| 1857 | chi_n2o = coln2o(lay)/(coldry(lay)) |
---|
| 1858 | ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) |
---|
| 1859 | if (ratn2o .gt. 1.5_rb) then |
---|
| 1860 | adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb |
---|
| 1861 | adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 1862 | else |
---|
| 1863 | adjcoln2o = coln2o(lay) |
---|
| 1864 | endif |
---|
| 1865 | |
---|
| 1866 | speccomb_planck = colh2o(lay)+refrat_planck_a*colch4(lay) |
---|
| 1867 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 1868 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 1869 | specmult_planck = 8._rb*specparm_planck |
---|
| 1870 | jpl= 1 + int(specmult_planck) |
---|
| 1871 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 1872 | |
---|
| 1873 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(9) + js |
---|
| 1874 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(9) + js1 |
---|
| 1875 | inds = indself(lay) |
---|
| 1876 | indf = indfor(lay) |
---|
| 1877 | indm = indminor(lay) |
---|
| 1878 | |
---|
| 1879 | if (specparm .lt. 0.125_rb) then |
---|
| 1880 | p = fs - 1 |
---|
| 1881 | p4 = p**4 |
---|
| 1882 | fk0 = p4 |
---|
| 1883 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1884 | fk2 = p + p4 |
---|
| 1885 | fac000 = fk0*fac00(lay) |
---|
| 1886 | fac100 = fk1*fac00(lay) |
---|
| 1887 | fac200 = fk2*fac00(lay) |
---|
| 1888 | fac010 = fk0*fac10(lay) |
---|
| 1889 | fac110 = fk1*fac10(lay) |
---|
| 1890 | fac210 = fk2*fac10(lay) |
---|
| 1891 | else if (specparm .gt. 0.875_rb) then |
---|
| 1892 | p = -fs |
---|
| 1893 | p4 = p**4 |
---|
| 1894 | fk0 = p4 |
---|
| 1895 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1896 | fk2 = p + p4 |
---|
| 1897 | fac000 = fk0*fac00(lay) |
---|
| 1898 | fac100 = fk1*fac00(lay) |
---|
| 1899 | fac200 = fk2*fac00(lay) |
---|
| 1900 | fac010 = fk0*fac10(lay) |
---|
| 1901 | fac110 = fk1*fac10(lay) |
---|
| 1902 | fac210 = fk2*fac10(lay) |
---|
| 1903 | else |
---|
| 1904 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 1905 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 1906 | fac100 = fs * fac00(lay) |
---|
| 1907 | fac110 = fs * fac10(lay) |
---|
| 1908 | endif |
---|
| 1909 | |
---|
| 1910 | if (specparm1 .lt. 0.125_rb) then |
---|
| 1911 | p = fs1 - 1 |
---|
| 1912 | p4 = p**4 |
---|
| 1913 | fk0 = p4 |
---|
| 1914 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1915 | fk2 = p + p4 |
---|
| 1916 | fac001 = fk0*fac01(lay) |
---|
| 1917 | fac101 = fk1*fac01(lay) |
---|
| 1918 | fac201 = fk2*fac01(lay) |
---|
| 1919 | fac011 = fk0*fac11(lay) |
---|
| 1920 | fac111 = fk1*fac11(lay) |
---|
| 1921 | fac211 = fk2*fac11(lay) |
---|
| 1922 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 1923 | p = -fs1 |
---|
| 1924 | p4 = p**4 |
---|
| 1925 | fk0 = p4 |
---|
| 1926 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 1927 | fk2 = p + p4 |
---|
| 1928 | fac001 = fk0*fac01(lay) |
---|
| 1929 | fac101 = fk1*fac01(lay) |
---|
| 1930 | fac201 = fk2*fac01(lay) |
---|
| 1931 | fac011 = fk0*fac11(lay) |
---|
| 1932 | fac111 = fk1*fac11(lay) |
---|
| 1933 | fac211 = fk2*fac11(lay) |
---|
| 1934 | else |
---|
| 1935 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 1936 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 1937 | fac101 = fs1 * fac01(lay) |
---|
| 1938 | fac111 = fs1 * fac11(lay) |
---|
| 1939 | endif |
---|
| 1940 | |
---|
| 1941 | do ig = 1, ng9 |
---|
| 1942 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 1943 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 1944 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 1945 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 1946 | n2om1 = ka_mn2o(jmn2o,indm,ig) + fmn2o * & |
---|
| 1947 | (ka_mn2o(jmn2o+1,indm,ig) - ka_mn2o(jmn2o,indm,ig)) |
---|
| 1948 | n2om2 = ka_mn2o(jmn2o,indm+1,ig) + fmn2o * & |
---|
| 1949 | (ka_mn2o(jmn2o+1,indm+1,ig) - ka_mn2o(jmn2o,indm+1,ig)) |
---|
| 1950 | absn2o = n2om1 + minorfrac(lay) * (n2om2 - n2om1) |
---|
| 1951 | |
---|
| 1952 | if (specparm .lt. 0.125_rb) then |
---|
| 1953 | tau_major = speccomb * & |
---|
| 1954 | (fac000 * absa(ind0,ig) + & |
---|
| 1955 | fac100 * absa(ind0+1,ig) + & |
---|
| 1956 | fac200 * absa(ind0+2,ig) + & |
---|
| 1957 | fac010 * absa(ind0+9,ig) + & |
---|
| 1958 | fac110 * absa(ind0+10,ig) + & |
---|
| 1959 | fac210 * absa(ind0+11,ig)) |
---|
| 1960 | else if (specparm .gt. 0.875_rb) then |
---|
| 1961 | tau_major = speccomb * & |
---|
| 1962 | (fac200 * absa(ind0-1,ig) + & |
---|
| 1963 | fac100 * absa(ind0,ig) + & |
---|
| 1964 | fac000 * absa(ind0+1,ig) + & |
---|
| 1965 | fac210 * absa(ind0+8,ig) + & |
---|
| 1966 | fac110 * absa(ind0+9,ig) + & |
---|
| 1967 | fac010 * absa(ind0+10,ig)) |
---|
| 1968 | else |
---|
| 1969 | tau_major = speccomb * & |
---|
| 1970 | (fac000 * absa(ind0,ig) + & |
---|
| 1971 | fac100 * absa(ind0+1,ig) + & |
---|
| 1972 | fac010 * absa(ind0+9,ig) + & |
---|
| 1973 | fac110 * absa(ind0+10,ig)) |
---|
| 1974 | endif |
---|
| 1975 | |
---|
| 1976 | if (specparm1 .lt. 0.125_rb) then |
---|
| 1977 | tau_major1 = speccomb1 * & |
---|
| 1978 | (fac001 * absa(ind1,ig) + & |
---|
| 1979 | fac101 * absa(ind1+1,ig) + & |
---|
| 1980 | fac201 * absa(ind1+2,ig) + & |
---|
| 1981 | fac011 * absa(ind1+9,ig) + & |
---|
| 1982 | fac111 * absa(ind1+10,ig) + & |
---|
| 1983 | fac211 * absa(ind1+11,ig)) |
---|
| 1984 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 1985 | tau_major1 = speccomb1 * & |
---|
| 1986 | (fac201 * absa(ind1-1,ig) + & |
---|
| 1987 | fac101 * absa(ind1,ig) + & |
---|
| 1988 | fac001 * absa(ind1+1,ig) + & |
---|
| 1989 | fac211 * absa(ind1+8,ig) + & |
---|
| 1990 | fac111 * absa(ind1+9,ig) + & |
---|
| 1991 | fac011 * absa(ind1+10,ig)) |
---|
| 1992 | else |
---|
| 1993 | tau_major1 = speccomb1 * & |
---|
| 1994 | (fac001 * absa(ind1,ig) + & |
---|
| 1995 | fac101 * absa(ind1+1,ig) + & |
---|
| 1996 | fac011 * absa(ind1+9,ig) + & |
---|
| 1997 | fac111 * absa(ind1+10,ig)) |
---|
| 1998 | endif |
---|
| 1999 | |
---|
| 2000 | taug(lay,ngs8+ig) = tau_major + tau_major1 & |
---|
| 2001 | + tauself + taufor & |
---|
| 2002 | + adjcoln2o*absn2o |
---|
| 2003 | fracs(lay,ngs8+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 2004 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 2005 | enddo |
---|
| 2006 | enddo |
---|
| 2007 | |
---|
| 2008 | ! Upper atmosphere loop |
---|
| 2009 | do lay = laytrop+1, nlayers |
---|
| 2010 | |
---|
| 2011 | ! In atmospheres where the amount of N2O is too great to be considered |
---|
| 2012 | ! a minor species, adjust the column amount of N2O by an empirical factor |
---|
| 2013 | ! to obtain the proper contribution. |
---|
| 2014 | chi_n2o = coln2o(lay)/(coldry(lay)) |
---|
| 2015 | ratn2o = 1.e20_rb*chi_n2o/chi_mls(4,jp(lay)+1) |
---|
| 2016 | if (ratn2o .gt. 1.5_rb) then |
---|
| 2017 | adjfac = 0.5_rb+(ratn2o-0.5_rb)**0.65_rb |
---|
| 2018 | adjcoln2o = adjfac*chi_mls(4,jp(lay)+1)*coldry(lay)*1.e-20_rb |
---|
| 2019 | else |
---|
| 2020 | adjcoln2o = coln2o(lay) |
---|
| 2021 | endif |
---|
| 2022 | |
---|
| 2023 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(9) + 1 |
---|
| 2024 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(9) + 1 |
---|
| 2025 | indm = indminor(lay) |
---|
| 2026 | |
---|
| 2027 | do ig = 1, ng9 |
---|
| 2028 | absn2o = kb_mn2o(indm,ig) + minorfrac(lay) * & |
---|
| 2029 | (kb_mn2o(indm+1,ig) - kb_mn2o(indm,ig)) |
---|
| 2030 | taug(lay,ngs8+ig) = colch4(lay) * & |
---|
| 2031 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 2032 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 2033 | fac01(lay) * absb(ind1,ig) + & |
---|
| 2034 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 2035 | + adjcoln2o*absn2o |
---|
| 2036 | fracs(lay,ngs8+ig) = fracrefb(ig) |
---|
| 2037 | enddo |
---|
| 2038 | enddo |
---|
| 2039 | |
---|
| 2040 | end subroutine taugb9 |
---|
| 2041 | |
---|
| 2042 | !---------------------------------------------------------------------------- |
---|
| 2043 | subroutine taugb10 |
---|
| 2044 | !---------------------------------------------------------------------------- |
---|
| 2045 | ! |
---|
| 2046 | ! band 10: 1390-1480 cm-1 (low key - h2o; high key - h2o) |
---|
| 2047 | !---------------------------------------------------------------------------- |
---|
| 2048 | |
---|
| 2049 | ! ------- Modules ------- |
---|
| 2050 | |
---|
| 2051 | use parrrtm, only : ng10, ngs9 |
---|
| 2052 | use rrlw_kg10, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 2053 | selfref, forref |
---|
| 2054 | |
---|
| 2055 | ! ------- Declarations ------- |
---|
| 2056 | |
---|
| 2057 | ! Local |
---|
| 2058 | integer(kind=im) :: lay, ind0, ind1, inds, indf, ig |
---|
| 2059 | real(kind=rb) :: tauself, taufor |
---|
| 2060 | |
---|
| 2061 | |
---|
| 2062 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 2063 | ! temperature. Below laytrop, the water vapor self-continuum and |
---|
| 2064 | ! foreign continuum is interpolated (in temperature) separately. |
---|
| 2065 | |
---|
| 2066 | ! Lower atmosphere loop |
---|
| 2067 | do lay = 1, laytrop |
---|
| 2068 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(10) + 1 |
---|
| 2069 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(10) + 1 |
---|
| 2070 | inds = indself(lay) |
---|
| 2071 | indf = indfor(lay) |
---|
| 2072 | |
---|
| 2073 | do ig = 1, ng10 |
---|
| 2074 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 2075 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 2076 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2077 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2078 | taug(lay,ngs9+ig) = colh2o(lay) * & |
---|
| 2079 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 2080 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 2081 | fac01(lay) * absa(ind1,ig) + & |
---|
| 2082 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 2083 | + tauself + taufor |
---|
| 2084 | fracs(lay,ngs9+ig) = fracrefa(ig) |
---|
| 2085 | enddo |
---|
| 2086 | enddo |
---|
| 2087 | |
---|
| 2088 | ! Upper atmosphere loop |
---|
| 2089 | do lay = laytrop+1, nlayers |
---|
| 2090 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(10) + 1 |
---|
| 2091 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(10) + 1 |
---|
| 2092 | indf = indfor(lay) |
---|
| 2093 | |
---|
| 2094 | do ig = 1, ng10 |
---|
| 2095 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2096 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2097 | taug(lay,ngs9+ig) = colh2o(lay) * & |
---|
| 2098 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 2099 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 2100 | fac01(lay) * absb(ind1,ig) + & |
---|
| 2101 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 2102 | + taufor |
---|
| 2103 | fracs(lay,ngs9+ig) = fracrefb(ig) |
---|
| 2104 | enddo |
---|
| 2105 | enddo |
---|
| 2106 | |
---|
| 2107 | end subroutine taugb10 |
---|
| 2108 | |
---|
| 2109 | !---------------------------------------------------------------------------- |
---|
| 2110 | subroutine taugb11 |
---|
| 2111 | !---------------------------------------------------------------------------- |
---|
| 2112 | ! |
---|
| 2113 | ! band 11: 1480-1800 cm-1 (low - h2o; low minor - o2) |
---|
| 2114 | ! (high key - h2o; high minor - o2) |
---|
| 2115 | !---------------------------------------------------------------------------- |
---|
| 2116 | |
---|
| 2117 | ! ------- Modules ------- |
---|
| 2118 | |
---|
| 2119 | use parrrtm, only : ng11, ngs10 |
---|
| 2120 | use rrlw_kg11, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 2121 | ka_mo2, kb_mo2, selfref, forref |
---|
| 2122 | |
---|
| 2123 | ! ------- Declarations ------- |
---|
| 2124 | |
---|
| 2125 | ! Local |
---|
| 2126 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 2127 | real(kind=rb) :: scaleo2, tauself, taufor, tauo2 |
---|
| 2128 | |
---|
| 2129 | |
---|
| 2130 | ! Minor gas mapping level : |
---|
| 2131 | ! lower - o2, p = 706.2720 mbar, t = 278.94 k |
---|
| 2132 | ! upper - o2, p = 4.758820 mbarm t = 250.85 k |
---|
| 2133 | |
---|
| 2134 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 2135 | ! temperature. Below laytrop, the water vapor self-continuum and |
---|
| 2136 | ! foreign continuum is interpolated (in temperature) separately. |
---|
| 2137 | |
---|
| 2138 | ! Lower atmosphere loop |
---|
| 2139 | do lay = 1, laytrop |
---|
| 2140 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(11) + 1 |
---|
| 2141 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(11) + 1 |
---|
| 2142 | inds = indself(lay) |
---|
| 2143 | indf = indfor(lay) |
---|
| 2144 | indm = indminor(lay) |
---|
| 2145 | scaleo2 = colo2(lay)*scaleminor(lay) |
---|
| 2146 | do ig = 1, ng11 |
---|
| 2147 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 2148 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 2149 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2150 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2151 | tauo2 = scaleo2 * (ka_mo2(indm,ig) + minorfrac(lay) * & |
---|
| 2152 | (ka_mo2(indm+1,ig) - ka_mo2(indm,ig))) |
---|
| 2153 | taug(lay,ngs10+ig) = colh2o(lay) * & |
---|
| 2154 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 2155 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 2156 | fac01(lay) * absa(ind1,ig) + & |
---|
| 2157 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 2158 | + tauself + taufor & |
---|
| 2159 | + tauo2 |
---|
| 2160 | fracs(lay,ngs10+ig) = fracrefa(ig) |
---|
| 2161 | enddo |
---|
| 2162 | enddo |
---|
| 2163 | |
---|
| 2164 | ! Upper atmosphere loop |
---|
| 2165 | do lay = laytrop+1, nlayers |
---|
| 2166 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(11) + 1 |
---|
| 2167 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(11) + 1 |
---|
| 2168 | indf = indfor(lay) |
---|
| 2169 | indm = indminor(lay) |
---|
| 2170 | scaleo2 = colo2(lay)*scaleminor(lay) |
---|
| 2171 | do ig = 1, ng11 |
---|
| 2172 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2173 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2174 | tauo2 = scaleo2 * (kb_mo2(indm,ig) + minorfrac(lay) * & |
---|
| 2175 | (kb_mo2(indm+1,ig) - kb_mo2(indm,ig))) |
---|
| 2176 | taug(lay,ngs10+ig) = colh2o(lay) * & |
---|
| 2177 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 2178 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 2179 | fac01(lay) * absb(ind1,ig) + & |
---|
| 2180 | fac11(lay) * absb(ind1+1,ig)) & |
---|
| 2181 | + taufor & |
---|
| 2182 | + tauo2 |
---|
| 2183 | fracs(lay,ngs10+ig) = fracrefb(ig) |
---|
| 2184 | enddo |
---|
| 2185 | enddo |
---|
| 2186 | |
---|
| 2187 | end subroutine taugb11 |
---|
| 2188 | |
---|
| 2189 | !---------------------------------------------------------------------------- |
---|
| 2190 | subroutine taugb12 |
---|
| 2191 | !---------------------------------------------------------------------------- |
---|
| 2192 | ! |
---|
| 2193 | ! band 12: 1800-2080 cm-1 (low - h2o,co2; high - nothing) |
---|
| 2194 | !---------------------------------------------------------------------------- |
---|
| 2195 | |
---|
| 2196 | ! ------- Modules ------- |
---|
| 2197 | |
---|
| 2198 | use parrrtm, only : ng12, ngs11 |
---|
| 2199 | use rrlw_ref, only : chi_mls |
---|
| 2200 | use rrlw_kg12, only : fracrefa, absa, ka, & |
---|
| 2201 | selfref, forref |
---|
| 2202 | |
---|
| 2203 | ! ------- Declarations ------- |
---|
| 2204 | |
---|
| 2205 | ! Local |
---|
| 2206 | integer(kind=im) :: lay, ind0, ind1, inds, indf, ig |
---|
| 2207 | integer(kind=im) :: js, js1, jpl |
---|
| 2208 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 2209 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 2210 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 2211 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 2212 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 2213 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 2214 | real(kind=rb) :: tauself, taufor |
---|
| 2215 | real(kind=rb) :: refrat_planck_a |
---|
| 2216 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 2217 | |
---|
| 2218 | |
---|
| 2219 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 2220 | ! fraction in lower/upper atmosphere. |
---|
| 2221 | |
---|
| 2222 | ! P = 174.164 mb |
---|
| 2223 | refrat_planck_a = chi_mls(1,10)/chi_mls(2,10) |
---|
| 2224 | |
---|
| 2225 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 2226 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 2227 | ! vapor self-continuum adn foreign continuum is interpolated |
---|
| 2228 | ! (in temperature) separately. |
---|
| 2229 | |
---|
| 2230 | ! Lower atmosphere loop |
---|
| 2231 | do lay = 1, laytrop |
---|
| 2232 | |
---|
| 2233 | speccomb = colh2o(lay) + rat_h2oco2(lay)*colco2(lay) |
---|
| 2234 | specparm = colh2o(lay)/speccomb |
---|
| 2235 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 2236 | specmult = 8._rb*(specparm) |
---|
| 2237 | js = 1 + int(specmult) |
---|
| 2238 | fs = mod(specmult,1.0_rb) |
---|
| 2239 | |
---|
| 2240 | speccomb1 = colh2o(lay) + rat_h2oco2_1(lay)*colco2(lay) |
---|
| 2241 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 2242 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 2243 | specmult1 = 8._rb*(specparm1) |
---|
| 2244 | js1 = 1 + int(specmult1) |
---|
| 2245 | fs1 = mod(specmult1,1.0_rb) |
---|
| 2246 | |
---|
| 2247 | speccomb_planck = colh2o(lay)+refrat_planck_a*colco2(lay) |
---|
| 2248 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 2249 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 2250 | specmult_planck = 8._rb*specparm_planck |
---|
| 2251 | jpl= 1 + int(specmult_planck) |
---|
| 2252 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 2253 | |
---|
| 2254 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(12) + js |
---|
| 2255 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(12) + js1 |
---|
| 2256 | inds = indself(lay) |
---|
| 2257 | indf = indfor(lay) |
---|
| 2258 | |
---|
| 2259 | if (specparm .lt. 0.125_rb) then |
---|
| 2260 | p = fs - 1 |
---|
| 2261 | p4 = p**4 |
---|
| 2262 | fk0 = p4 |
---|
| 2263 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2264 | fk2 = p + p4 |
---|
| 2265 | fac000 = fk0*fac00(lay) |
---|
| 2266 | fac100 = fk1*fac00(lay) |
---|
| 2267 | fac200 = fk2*fac00(lay) |
---|
| 2268 | fac010 = fk0*fac10(lay) |
---|
| 2269 | fac110 = fk1*fac10(lay) |
---|
| 2270 | fac210 = fk2*fac10(lay) |
---|
| 2271 | else if (specparm .gt. 0.875_rb) then |
---|
| 2272 | p = -fs |
---|
| 2273 | p4 = p**4 |
---|
| 2274 | fk0 = p4 |
---|
| 2275 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2276 | fk2 = p + p4 |
---|
| 2277 | fac000 = fk0*fac00(lay) |
---|
| 2278 | fac100 = fk1*fac00(lay) |
---|
| 2279 | fac200 = fk2*fac00(lay) |
---|
| 2280 | fac010 = fk0*fac10(lay) |
---|
| 2281 | fac110 = fk1*fac10(lay) |
---|
| 2282 | fac210 = fk2*fac10(lay) |
---|
| 2283 | else |
---|
| 2284 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 2285 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 2286 | fac100 = fs * fac00(lay) |
---|
| 2287 | fac110 = fs * fac10(lay) |
---|
| 2288 | endif |
---|
| 2289 | |
---|
| 2290 | if (specparm1 .lt. 0.125_rb) then |
---|
| 2291 | p = fs1 - 1 |
---|
| 2292 | p4 = p**4 |
---|
| 2293 | fk0 = p4 |
---|
| 2294 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2295 | fk2 = p + p4 |
---|
| 2296 | fac001 = fk0*fac01(lay) |
---|
| 2297 | fac101 = fk1*fac01(lay) |
---|
| 2298 | fac201 = fk2*fac01(lay) |
---|
| 2299 | fac011 = fk0*fac11(lay) |
---|
| 2300 | fac111 = fk1*fac11(lay) |
---|
| 2301 | fac211 = fk2*fac11(lay) |
---|
| 2302 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 2303 | p = -fs1 |
---|
| 2304 | p4 = p**4 |
---|
| 2305 | fk0 = p4 |
---|
| 2306 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2307 | fk2 = p + p4 |
---|
| 2308 | fac001 = fk0*fac01(lay) |
---|
| 2309 | fac101 = fk1*fac01(lay) |
---|
| 2310 | fac201 = fk2*fac01(lay) |
---|
| 2311 | fac011 = fk0*fac11(lay) |
---|
| 2312 | fac111 = fk1*fac11(lay) |
---|
| 2313 | fac211 = fk2*fac11(lay) |
---|
| 2314 | else |
---|
| 2315 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 2316 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 2317 | fac101 = fs1 * fac01(lay) |
---|
| 2318 | fac111 = fs1 * fac11(lay) |
---|
| 2319 | endif |
---|
| 2320 | |
---|
| 2321 | do ig = 1, ng12 |
---|
| 2322 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 2323 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 2324 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2325 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2326 | |
---|
| 2327 | if (specparm .lt. 0.125_rb) then |
---|
| 2328 | tau_major = speccomb * & |
---|
| 2329 | (fac000 * absa(ind0,ig) + & |
---|
| 2330 | fac100 * absa(ind0+1,ig) + & |
---|
| 2331 | fac200 * absa(ind0+2,ig) + & |
---|
| 2332 | fac010 * absa(ind0+9,ig) + & |
---|
| 2333 | fac110 * absa(ind0+10,ig) + & |
---|
| 2334 | fac210 * absa(ind0+11,ig)) |
---|
| 2335 | else if (specparm .gt. 0.875_rb) then |
---|
| 2336 | tau_major = speccomb * & |
---|
| 2337 | (fac200 * absa(ind0-1,ig) + & |
---|
| 2338 | fac100 * absa(ind0,ig) + & |
---|
| 2339 | fac000 * absa(ind0+1,ig) + & |
---|
| 2340 | fac210 * absa(ind0+8,ig) + & |
---|
| 2341 | fac110 * absa(ind0+9,ig) + & |
---|
| 2342 | fac010 * absa(ind0+10,ig)) |
---|
| 2343 | else |
---|
| 2344 | tau_major = speccomb * & |
---|
| 2345 | (fac000 * absa(ind0,ig) + & |
---|
| 2346 | fac100 * absa(ind0+1,ig) + & |
---|
| 2347 | fac010 * absa(ind0+9,ig) + & |
---|
| 2348 | fac110 * absa(ind0+10,ig)) |
---|
| 2349 | endif |
---|
| 2350 | |
---|
| 2351 | if (specparm1 .lt. 0.125_rb) then |
---|
| 2352 | tau_major1 = speccomb1 * & |
---|
| 2353 | (fac001 * absa(ind1,ig) + & |
---|
| 2354 | fac101 * absa(ind1+1,ig) + & |
---|
| 2355 | fac201 * absa(ind1+2,ig) + & |
---|
| 2356 | fac011 * absa(ind1+9,ig) + & |
---|
| 2357 | fac111 * absa(ind1+10,ig) + & |
---|
| 2358 | fac211 * absa(ind1+11,ig)) |
---|
| 2359 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 2360 | tau_major1 = speccomb1 * & |
---|
| 2361 | (fac201 * absa(ind1-1,ig) + & |
---|
| 2362 | fac101 * absa(ind1,ig) + & |
---|
| 2363 | fac001 * absa(ind1+1,ig) + & |
---|
| 2364 | fac211 * absa(ind1+8,ig) + & |
---|
| 2365 | fac111 * absa(ind1+9,ig) + & |
---|
| 2366 | fac011 * absa(ind1+10,ig)) |
---|
| 2367 | else |
---|
| 2368 | tau_major1 = speccomb1 * & |
---|
| 2369 | (fac001 * absa(ind1,ig) + & |
---|
| 2370 | fac101 * absa(ind1+1,ig) + & |
---|
| 2371 | fac011 * absa(ind1+9,ig) + & |
---|
| 2372 | fac111 * absa(ind1+10,ig)) |
---|
| 2373 | endif |
---|
| 2374 | |
---|
| 2375 | taug(lay,ngs11+ig) = tau_major + tau_major1 & |
---|
| 2376 | + tauself + taufor |
---|
| 2377 | fracs(lay,ngs11+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 2378 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 2379 | enddo |
---|
| 2380 | enddo |
---|
| 2381 | |
---|
| 2382 | ! Upper atmosphere loop |
---|
| 2383 | do lay = laytrop+1, nlayers |
---|
| 2384 | do ig = 1, ng12 |
---|
| 2385 | taug(lay,ngs11+ig) = 0.0_rb |
---|
| 2386 | fracs(lay,ngs11+ig) = 0.0_rb |
---|
| 2387 | enddo |
---|
| 2388 | enddo |
---|
| 2389 | |
---|
| 2390 | end subroutine taugb12 |
---|
| 2391 | |
---|
| 2392 | !---------------------------------------------------------------------------- |
---|
| 2393 | subroutine taugb13 |
---|
| 2394 | !---------------------------------------------------------------------------- |
---|
| 2395 | ! |
---|
| 2396 | ! band 13: 2080-2250 cm-1 (low key - h2o,n2o; high minor - o3 minor) |
---|
| 2397 | !---------------------------------------------------------------------------- |
---|
| 2398 | |
---|
| 2399 | ! ------- Modules ------- |
---|
| 2400 | |
---|
| 2401 | use parrrtm, only : ng13, ngs12 |
---|
| 2402 | use rrlw_ref, only : chi_mls |
---|
| 2403 | use rrlw_kg13, only : fracrefa, fracrefb, absa, ka, & |
---|
| 2404 | ka_mco2, ka_mco, kb_mo3, selfref, forref |
---|
| 2405 | |
---|
| 2406 | ! ------- Declarations ------- |
---|
| 2407 | |
---|
| 2408 | ! Local |
---|
| 2409 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 2410 | integer(kind=im) :: js, js1, jmco2, jmco, jpl |
---|
| 2411 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 2412 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 2413 | real(kind=rb) :: speccomb_mco2, specparm_mco2, specmult_mco2, fmco2 |
---|
| 2414 | real(kind=rb) :: speccomb_mco, specparm_mco, specmult_mco, fmco |
---|
| 2415 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 2416 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 2417 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 2418 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 2419 | real(kind=rb) :: tauself, taufor, co2m1, co2m2, absco2 |
---|
| 2420 | real(kind=rb) :: com1, com2, absco, abso3 |
---|
| 2421 | real(kind=rb) :: chi_co2, ratco2, adjfac, adjcolco2 |
---|
| 2422 | real(kind=rb) :: refrat_planck_a, refrat_m_a, refrat_m_a3 |
---|
| 2423 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 2424 | |
---|
| 2425 | |
---|
| 2426 | ! Minor gas mapping levels : |
---|
| 2427 | ! lower - co2, p = 1053.63 mb, t = 294.2 k |
---|
| 2428 | ! lower - co, p = 706 mb, t = 278.94 k |
---|
| 2429 | ! upper - o3, p = 95.5835 mb, t = 215.7 k |
---|
| 2430 | |
---|
| 2431 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 2432 | ! fraction in lower/upper atmosphere. |
---|
| 2433 | |
---|
| 2434 | ! P = 473.420 mb (Level 5) |
---|
| 2435 | refrat_planck_a = chi_mls(1,5)/chi_mls(4,5) |
---|
| 2436 | |
---|
| 2437 | ! P = 1053. (Level 1) |
---|
| 2438 | refrat_m_a = chi_mls(1,1)/chi_mls(4,1) |
---|
| 2439 | |
---|
| 2440 | ! P = 706. (Level 3) |
---|
| 2441 | refrat_m_a3 = chi_mls(1,3)/chi_mls(4,3) |
---|
| 2442 | |
---|
| 2443 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 2444 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 2445 | ! vapor self-continuum and foreign continuum is interpolated |
---|
| 2446 | ! (in temperature) separately. |
---|
| 2447 | |
---|
| 2448 | ! Lower atmosphere loop |
---|
| 2449 | do lay = 1, laytrop |
---|
| 2450 | |
---|
| 2451 | speccomb = colh2o(lay) + rat_h2on2o(lay)*coln2o(lay) |
---|
| 2452 | specparm = colh2o(lay)/speccomb |
---|
| 2453 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 2454 | specmult = 8._rb*(specparm) |
---|
| 2455 | js = 1 + int(specmult) |
---|
| 2456 | fs = mod(specmult,1.0_rb) |
---|
| 2457 | |
---|
| 2458 | speccomb1 = colh2o(lay) + rat_h2on2o_1(lay)*coln2o(lay) |
---|
| 2459 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 2460 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 2461 | specmult1 = 8._rb*(specparm1) |
---|
| 2462 | js1 = 1 + int(specmult1) |
---|
| 2463 | fs1 = mod(specmult1,1.0_rb) |
---|
| 2464 | |
---|
| 2465 | speccomb_mco2 = colh2o(lay) + refrat_m_a*coln2o(lay) |
---|
| 2466 | specparm_mco2 = colh2o(lay)/speccomb_mco2 |
---|
| 2467 | if (specparm_mco2 .ge. oneminus) specparm_mco2 = oneminus |
---|
| 2468 | specmult_mco2 = 8._rb*specparm_mco2 |
---|
| 2469 | jmco2 = 1 + int(specmult_mco2) |
---|
| 2470 | fmco2 = mod(specmult_mco2,1.0_rb) |
---|
| 2471 | |
---|
| 2472 | ! In atmospheres where the amount of CO2 is too great to be considered |
---|
| 2473 | ! a minor species, adjust the column amount of CO2 by an empirical factor |
---|
| 2474 | ! to obtain the proper contribution. |
---|
| 2475 | chi_co2 = colco2(lay)/(coldry(lay)) |
---|
| 2476 | ratco2 = 1.e20_rb*chi_co2/3.55e-4_rb |
---|
| 2477 | if (ratco2 .gt. 3.0_rb) then |
---|
| 2478 | adjfac = 2.0_rb+(ratco2-2.0_rb)**0.68_rb |
---|
| 2479 | adjcolco2 = adjfac*3.55e-4*coldry(lay)*1.e-20_rb |
---|
| 2480 | else |
---|
| 2481 | adjcolco2 = colco2(lay) |
---|
| 2482 | endif |
---|
| 2483 | |
---|
| 2484 | speccomb_mco = colh2o(lay) + refrat_m_a3*coln2o(lay) |
---|
| 2485 | specparm_mco = colh2o(lay)/speccomb_mco |
---|
| 2486 | if (specparm_mco .ge. oneminus) specparm_mco = oneminus |
---|
| 2487 | specmult_mco = 8._rb*specparm_mco |
---|
| 2488 | jmco = 1 + int(specmult_mco) |
---|
| 2489 | fmco = mod(specmult_mco,1.0_rb) |
---|
| 2490 | |
---|
| 2491 | speccomb_planck = colh2o(lay)+refrat_planck_a*coln2o(lay) |
---|
| 2492 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 2493 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 2494 | specmult_planck = 8._rb*specparm_planck |
---|
| 2495 | jpl= 1 + int(specmult_planck) |
---|
| 2496 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 2497 | |
---|
| 2498 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(13) + js |
---|
| 2499 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(13) + js1 |
---|
| 2500 | inds = indself(lay) |
---|
| 2501 | indf = indfor(lay) |
---|
| 2502 | indm = indminor(lay) |
---|
| 2503 | |
---|
| 2504 | if (specparm .lt. 0.125_rb) then |
---|
| 2505 | p = fs - 1 |
---|
| 2506 | p4 = p**4 |
---|
| 2507 | fk0 = p4 |
---|
| 2508 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2509 | fk2 = p + p4 |
---|
| 2510 | fac000 = fk0*fac00(lay) |
---|
| 2511 | fac100 = fk1*fac00(lay) |
---|
| 2512 | fac200 = fk2*fac00(lay) |
---|
| 2513 | fac010 = fk0*fac10(lay) |
---|
| 2514 | fac110 = fk1*fac10(lay) |
---|
| 2515 | fac210 = fk2*fac10(lay) |
---|
| 2516 | else if (specparm .gt. 0.875_rb) then |
---|
| 2517 | p = -fs |
---|
| 2518 | p4 = p**4 |
---|
| 2519 | fk0 = p4 |
---|
| 2520 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2521 | fk2 = p + p4 |
---|
| 2522 | fac000 = fk0*fac00(lay) |
---|
| 2523 | fac100 = fk1*fac00(lay) |
---|
| 2524 | fac200 = fk2*fac00(lay) |
---|
| 2525 | fac010 = fk0*fac10(lay) |
---|
| 2526 | fac110 = fk1*fac10(lay) |
---|
| 2527 | fac210 = fk2*fac10(lay) |
---|
| 2528 | else |
---|
| 2529 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 2530 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 2531 | fac100 = fs * fac00(lay) |
---|
| 2532 | fac110 = fs * fac10(lay) |
---|
| 2533 | endif |
---|
| 2534 | |
---|
| 2535 | if (specparm1 .lt. 0.125_rb) then |
---|
| 2536 | p = fs1 - 1 |
---|
| 2537 | p4 = p**4 |
---|
| 2538 | fk0 = p4 |
---|
| 2539 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2540 | fk2 = p + p4 |
---|
| 2541 | fac001 = fk0*fac01(lay) |
---|
| 2542 | fac101 = fk1*fac01(lay) |
---|
| 2543 | fac201 = fk2*fac01(lay) |
---|
| 2544 | fac011 = fk0*fac11(lay) |
---|
| 2545 | fac111 = fk1*fac11(lay) |
---|
| 2546 | fac211 = fk2*fac11(lay) |
---|
| 2547 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 2548 | p = -fs1 |
---|
| 2549 | p4 = p**4 |
---|
| 2550 | fk0 = p4 |
---|
| 2551 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2552 | fk2 = p + p4 |
---|
| 2553 | fac001 = fk0*fac01(lay) |
---|
| 2554 | fac101 = fk1*fac01(lay) |
---|
| 2555 | fac201 = fk2*fac01(lay) |
---|
| 2556 | fac011 = fk0*fac11(lay) |
---|
| 2557 | fac111 = fk1*fac11(lay) |
---|
| 2558 | fac211 = fk2*fac11(lay) |
---|
| 2559 | else |
---|
| 2560 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 2561 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 2562 | fac101 = fs1 * fac01(lay) |
---|
| 2563 | fac111 = fs1 * fac11(lay) |
---|
| 2564 | endif |
---|
| 2565 | |
---|
| 2566 | do ig = 1, ng13 |
---|
| 2567 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 2568 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 2569 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2570 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2571 | co2m1 = ka_mco2(jmco2,indm,ig) + fmco2 * & |
---|
| 2572 | (ka_mco2(jmco2+1,indm,ig) - ka_mco2(jmco2,indm,ig)) |
---|
| 2573 | co2m2 = ka_mco2(jmco2,indm+1,ig) + fmco2 * & |
---|
| 2574 | (ka_mco2(jmco2+1,indm+1,ig) - ka_mco2(jmco2,indm+1,ig)) |
---|
| 2575 | absco2 = co2m1 + minorfrac(lay) * (co2m2 - co2m1) |
---|
| 2576 | com1 = ka_mco(jmco,indm,ig) + fmco * & |
---|
| 2577 | (ka_mco(jmco+1,indm,ig) - ka_mco(jmco,indm,ig)) |
---|
| 2578 | com2 = ka_mco(jmco,indm+1,ig) + fmco * & |
---|
| 2579 | (ka_mco(jmco+1,indm+1,ig) - ka_mco(jmco,indm+1,ig)) |
---|
| 2580 | absco = com1 + minorfrac(lay) * (com2 - com1) |
---|
| 2581 | |
---|
| 2582 | if (specparm .lt. 0.125_rb) then |
---|
| 2583 | tau_major = speccomb * & |
---|
| 2584 | (fac000 * absa(ind0,ig) + & |
---|
| 2585 | fac100 * absa(ind0+1,ig) + & |
---|
| 2586 | fac200 * absa(ind0+2,ig) + & |
---|
| 2587 | fac010 * absa(ind0+9,ig) + & |
---|
| 2588 | fac110 * absa(ind0+10,ig) + & |
---|
| 2589 | fac210 * absa(ind0+11,ig)) |
---|
| 2590 | else if (specparm .gt. 0.875_rb) then |
---|
| 2591 | tau_major = speccomb * & |
---|
| 2592 | (fac200 * absa(ind0-1,ig) + & |
---|
| 2593 | fac100 * absa(ind0,ig) + & |
---|
| 2594 | fac000 * absa(ind0+1,ig) + & |
---|
| 2595 | fac210 * absa(ind0+8,ig) + & |
---|
| 2596 | fac110 * absa(ind0+9,ig) + & |
---|
| 2597 | fac010 * absa(ind0+10,ig)) |
---|
| 2598 | else |
---|
| 2599 | tau_major = speccomb * & |
---|
| 2600 | (fac000 * absa(ind0,ig) + & |
---|
| 2601 | fac100 * absa(ind0+1,ig) + & |
---|
| 2602 | fac010 * absa(ind0+9,ig) + & |
---|
| 2603 | fac110 * absa(ind0+10,ig)) |
---|
| 2604 | endif |
---|
| 2605 | |
---|
| 2606 | if (specparm1 .lt. 0.125_rb) then |
---|
| 2607 | tau_major1 = speccomb1 * & |
---|
| 2608 | (fac001 * absa(ind1,ig) + & |
---|
| 2609 | fac101 * absa(ind1+1,ig) + & |
---|
| 2610 | fac201 * absa(ind1+2,ig) + & |
---|
| 2611 | fac011 * absa(ind1+9,ig) + & |
---|
| 2612 | fac111 * absa(ind1+10,ig) + & |
---|
| 2613 | fac211 * absa(ind1+11,ig)) |
---|
| 2614 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 2615 | tau_major1 = speccomb1 * & |
---|
| 2616 | (fac201 * absa(ind1-1,ig) + & |
---|
| 2617 | fac101 * absa(ind1,ig) + & |
---|
| 2618 | fac001 * absa(ind1+1,ig) + & |
---|
| 2619 | fac211 * absa(ind1+8,ig) + & |
---|
| 2620 | fac111 * absa(ind1+9,ig) + & |
---|
| 2621 | fac011 * absa(ind1+10,ig)) |
---|
| 2622 | else |
---|
| 2623 | tau_major1 = speccomb1 * & |
---|
| 2624 | (fac001 * absa(ind1,ig) + & |
---|
| 2625 | fac101 * absa(ind1+1,ig) + & |
---|
| 2626 | fac011 * absa(ind1+9,ig) + & |
---|
| 2627 | fac111 * absa(ind1+10,ig)) |
---|
| 2628 | endif |
---|
| 2629 | |
---|
| 2630 | taug(lay,ngs12+ig) = tau_major + tau_major1 & |
---|
| 2631 | + tauself + taufor & |
---|
| 2632 | + adjcolco2*absco2 & |
---|
| 2633 | + colco(lay)*absco |
---|
| 2634 | fracs(lay,ngs12+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 2635 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 2636 | enddo |
---|
| 2637 | enddo |
---|
| 2638 | |
---|
| 2639 | ! Upper atmosphere loop |
---|
| 2640 | do lay = laytrop+1, nlayers |
---|
| 2641 | indm = indminor(lay) |
---|
| 2642 | do ig = 1, ng13 |
---|
| 2643 | abso3 = kb_mo3(indm,ig) + minorfrac(lay) * & |
---|
| 2644 | (kb_mo3(indm+1,ig) - kb_mo3(indm,ig)) |
---|
| 2645 | taug(lay,ngs12+ig) = colo3(lay)*abso3 |
---|
| 2646 | fracs(lay,ngs12+ig) = fracrefb(ig) |
---|
| 2647 | enddo |
---|
| 2648 | enddo |
---|
| 2649 | |
---|
| 2650 | end subroutine taugb13 |
---|
| 2651 | |
---|
| 2652 | !---------------------------------------------------------------------------- |
---|
| 2653 | subroutine taugb14 |
---|
| 2654 | !---------------------------------------------------------------------------- |
---|
| 2655 | ! |
---|
| 2656 | ! band 14: 2250-2380 cm-1 (low - co2; high - co2) |
---|
| 2657 | !---------------------------------------------------------------------------- |
---|
| 2658 | |
---|
| 2659 | ! ------- Modules ------- |
---|
| 2660 | |
---|
| 2661 | use parrrtm, only : ng14, ngs13 |
---|
| 2662 | use rrlw_kg14, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 2663 | selfref, forref |
---|
| 2664 | |
---|
| 2665 | ! ------- Declarations ------- |
---|
| 2666 | |
---|
| 2667 | ! Local |
---|
| 2668 | integer(kind=im) :: lay, ind0, ind1, inds, indf, ig |
---|
| 2669 | real(kind=rb) :: tauself, taufor |
---|
| 2670 | |
---|
| 2671 | |
---|
| 2672 | ! Compute the optical depth by interpolating in ln(pressure) and |
---|
| 2673 | ! temperature. Below laytrop, the water vapor self-continuum |
---|
| 2674 | ! and foreign continuum is interpolated (in temperature) separately. |
---|
| 2675 | |
---|
| 2676 | ! Lower atmosphere loop |
---|
| 2677 | do lay = 1, laytrop |
---|
| 2678 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(14) + 1 |
---|
| 2679 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(14) + 1 |
---|
| 2680 | inds = indself(lay) |
---|
| 2681 | indf = indfor(lay) |
---|
| 2682 | do ig = 1, ng14 |
---|
| 2683 | tauself = selffac(lay) * (selfref(inds,ig) + selffrac(lay) * & |
---|
| 2684 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 2685 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2686 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2687 | taug(lay,ngs13+ig) = colco2(lay) * & |
---|
| 2688 | (fac00(lay) * absa(ind0,ig) + & |
---|
| 2689 | fac10(lay) * absa(ind0+1,ig) + & |
---|
| 2690 | fac01(lay) * absa(ind1,ig) + & |
---|
| 2691 | fac11(lay) * absa(ind1+1,ig)) & |
---|
| 2692 | + tauself + taufor |
---|
| 2693 | fracs(lay,ngs13+ig) = fracrefa(ig) |
---|
| 2694 | enddo |
---|
| 2695 | enddo |
---|
| 2696 | |
---|
| 2697 | ! Upper atmosphere loop |
---|
| 2698 | do lay = laytrop+1, nlayers |
---|
| 2699 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(14) + 1 |
---|
| 2700 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(14) + 1 |
---|
| 2701 | do ig = 1, ng14 |
---|
| 2702 | taug(lay,ngs13+ig) = colco2(lay) * & |
---|
| 2703 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 2704 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 2705 | fac01(lay) * absb(ind1,ig) + & |
---|
| 2706 | fac11(lay) * absb(ind1+1,ig)) |
---|
| 2707 | fracs(lay,ngs13+ig) = fracrefb(ig) |
---|
| 2708 | enddo |
---|
| 2709 | enddo |
---|
| 2710 | |
---|
| 2711 | end subroutine taugb14 |
---|
| 2712 | |
---|
| 2713 | !---------------------------------------------------------------------------- |
---|
| 2714 | subroutine taugb15 |
---|
| 2715 | !---------------------------------------------------------------------------- |
---|
| 2716 | ! |
---|
| 2717 | ! band 15: 2380-2600 cm-1 (low - n2o,co2; low minor - n2) |
---|
| 2718 | ! (high - nothing) |
---|
| 2719 | !---------------------------------------------------------------------------- |
---|
| 2720 | |
---|
| 2721 | ! ------- Modules ------- |
---|
| 2722 | |
---|
| 2723 | use parrrtm, only : ng15, ngs14 |
---|
| 2724 | use rrlw_ref, only : chi_mls |
---|
| 2725 | use rrlw_kg15, only : fracrefa, absa, ka, & |
---|
| 2726 | ka_mn2, selfref, forref |
---|
| 2727 | |
---|
| 2728 | ! ------- Declarations ------- |
---|
| 2729 | |
---|
| 2730 | ! Local |
---|
| 2731 | integer(kind=im) :: lay, ind0, ind1, inds, indf, indm, ig |
---|
| 2732 | integer(kind=im) :: js, js1, jmn2, jpl |
---|
| 2733 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 2734 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 2735 | real(kind=rb) :: speccomb_mn2, specparm_mn2, specmult_mn2, fmn2 |
---|
| 2736 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 2737 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 2738 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 2739 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 2740 | real(kind=rb) :: scalen2, tauself, taufor, n2m1, n2m2, taun2 |
---|
| 2741 | real(kind=rb) :: refrat_planck_a, refrat_m_a |
---|
| 2742 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 2743 | |
---|
| 2744 | |
---|
| 2745 | ! Minor gas mapping level : |
---|
| 2746 | ! Lower - Nitrogen Continuum, P = 1053., T = 294. |
---|
| 2747 | |
---|
| 2748 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 2749 | ! fraction in lower atmosphere. |
---|
| 2750 | ! P = 1053. mb (Level 1) |
---|
| 2751 | refrat_planck_a = chi_mls(4,1)/chi_mls(2,1) |
---|
| 2752 | |
---|
| 2753 | ! P = 1053. |
---|
| 2754 | refrat_m_a = chi_mls(4,1)/chi_mls(2,1) |
---|
| 2755 | |
---|
| 2756 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 2757 | ! temperature, and appropriate species. Below laytrop, the water |
---|
| 2758 | ! vapor self-continuum and foreign continuum is interpolated |
---|
| 2759 | ! (in temperature) separately. |
---|
| 2760 | |
---|
| 2761 | ! Lower atmosphere loop |
---|
| 2762 | do lay = 1, laytrop |
---|
| 2763 | |
---|
| 2764 | speccomb = coln2o(lay) + rat_n2oco2(lay)*colco2(lay) |
---|
| 2765 | specparm = coln2o(lay)/speccomb |
---|
| 2766 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 2767 | specmult = 8._rb*(specparm) |
---|
| 2768 | js = 1 + int(specmult) |
---|
| 2769 | fs = mod(specmult,1.0_rb) |
---|
| 2770 | |
---|
| 2771 | speccomb1 = coln2o(lay) + rat_n2oco2_1(lay)*colco2(lay) |
---|
| 2772 | specparm1 = coln2o(lay)/speccomb1 |
---|
| 2773 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 2774 | specmult1 = 8._rb*(specparm1) |
---|
| 2775 | js1 = 1 + int(specmult1) |
---|
| 2776 | fs1 = mod(specmult1,1.0_rb) |
---|
| 2777 | |
---|
| 2778 | speccomb_mn2 = coln2o(lay) + refrat_m_a*colco2(lay) |
---|
| 2779 | specparm_mn2 = coln2o(lay)/speccomb_mn2 |
---|
| 2780 | if (specparm_mn2 .ge. oneminus) specparm_mn2 = oneminus |
---|
| 2781 | specmult_mn2 = 8._rb*specparm_mn2 |
---|
| 2782 | jmn2 = 1 + int(specmult_mn2) |
---|
| 2783 | fmn2 = mod(specmult_mn2,1.0_rb) |
---|
| 2784 | |
---|
| 2785 | speccomb_planck = coln2o(lay)+refrat_planck_a*colco2(lay) |
---|
| 2786 | specparm_planck = coln2o(lay)/speccomb_planck |
---|
| 2787 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 2788 | specmult_planck = 8._rb*specparm_planck |
---|
| 2789 | jpl= 1 + int(specmult_planck) |
---|
| 2790 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 2791 | |
---|
| 2792 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(15) + js |
---|
| 2793 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(15) + js1 |
---|
| 2794 | inds = indself(lay) |
---|
| 2795 | indf = indfor(lay) |
---|
| 2796 | indm = indminor(lay) |
---|
| 2797 | |
---|
| 2798 | scalen2 = colbrd(lay)*scaleminor(lay) |
---|
| 2799 | |
---|
| 2800 | if (specparm .lt. 0.125_rb) then |
---|
| 2801 | p = fs - 1 |
---|
| 2802 | p4 = p**4 |
---|
| 2803 | fk0 = p4 |
---|
| 2804 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2805 | fk2 = p + p4 |
---|
| 2806 | fac000 = fk0*fac00(lay) |
---|
| 2807 | fac100 = fk1*fac00(lay) |
---|
| 2808 | fac200 = fk2*fac00(lay) |
---|
| 2809 | fac010 = fk0*fac10(lay) |
---|
| 2810 | fac110 = fk1*fac10(lay) |
---|
| 2811 | fac210 = fk2*fac10(lay) |
---|
| 2812 | else if (specparm .gt. 0.875_rb) then |
---|
| 2813 | p = -fs |
---|
| 2814 | p4 = p**4 |
---|
| 2815 | fk0 = p4 |
---|
| 2816 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2817 | fk2 = p + p4 |
---|
| 2818 | fac000 = fk0*fac00(lay) |
---|
| 2819 | fac100 = fk1*fac00(lay) |
---|
| 2820 | fac200 = fk2*fac00(lay) |
---|
| 2821 | fac010 = fk0*fac10(lay) |
---|
| 2822 | fac110 = fk1*fac10(lay) |
---|
| 2823 | fac210 = fk2*fac10(lay) |
---|
| 2824 | else |
---|
| 2825 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 2826 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 2827 | fac100 = fs * fac00(lay) |
---|
| 2828 | fac110 = fs * fac10(lay) |
---|
| 2829 | endif |
---|
| 2830 | if (specparm1 .lt. 0.125_rb) then |
---|
| 2831 | p = fs1 - 1 |
---|
| 2832 | p4 = p**4 |
---|
| 2833 | fk0 = p4 |
---|
| 2834 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2835 | fk2 = p + p4 |
---|
| 2836 | fac001 = fk0*fac01(lay) |
---|
| 2837 | fac101 = fk1*fac01(lay) |
---|
| 2838 | fac201 = fk2*fac01(lay) |
---|
| 2839 | fac011 = fk0*fac11(lay) |
---|
| 2840 | fac111 = fk1*fac11(lay) |
---|
| 2841 | fac211 = fk2*fac11(lay) |
---|
| 2842 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 2843 | p = -fs1 |
---|
| 2844 | p4 = p**4 |
---|
| 2845 | fk0 = p4 |
---|
| 2846 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 2847 | fk2 = p + p4 |
---|
| 2848 | fac001 = fk0*fac01(lay) |
---|
| 2849 | fac101 = fk1*fac01(lay) |
---|
| 2850 | fac201 = fk2*fac01(lay) |
---|
| 2851 | fac011 = fk0*fac11(lay) |
---|
| 2852 | fac111 = fk1*fac11(lay) |
---|
| 2853 | fac211 = fk2*fac11(lay) |
---|
| 2854 | else |
---|
| 2855 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 2856 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 2857 | fac101 = fs1 * fac01(lay) |
---|
| 2858 | fac111 = fs1 * fac11(lay) |
---|
| 2859 | endif |
---|
| 2860 | |
---|
| 2861 | do ig = 1, ng15 |
---|
| 2862 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 2863 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 2864 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 2865 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 2866 | n2m1 = ka_mn2(jmn2,indm,ig) + fmn2 * & |
---|
| 2867 | (ka_mn2(jmn2+1,indm,ig) - ka_mn2(jmn2,indm,ig)) |
---|
| 2868 | n2m2 = ka_mn2(jmn2,indm+1,ig) + fmn2 * & |
---|
| 2869 | (ka_mn2(jmn2+1,indm+1,ig) - ka_mn2(jmn2,indm+1,ig)) |
---|
| 2870 | taun2 = scalen2 * (n2m1 + minorfrac(lay) * (n2m2 - n2m1)) |
---|
| 2871 | |
---|
| 2872 | if (specparm .lt. 0.125_rb) then |
---|
| 2873 | tau_major = speccomb * & |
---|
| 2874 | (fac000 * absa(ind0,ig) + & |
---|
| 2875 | fac100 * absa(ind0+1,ig) + & |
---|
| 2876 | fac200 * absa(ind0+2,ig) + & |
---|
| 2877 | fac010 * absa(ind0+9,ig) + & |
---|
| 2878 | fac110 * absa(ind0+10,ig) + & |
---|
| 2879 | fac210 * absa(ind0+11,ig)) |
---|
| 2880 | else if (specparm .gt. 0.875_rb) then |
---|
| 2881 | tau_major = speccomb * & |
---|
| 2882 | (fac200 * absa(ind0-1,ig) + & |
---|
| 2883 | fac100 * absa(ind0,ig) + & |
---|
| 2884 | fac000 * absa(ind0+1,ig) + & |
---|
| 2885 | fac210 * absa(ind0+8,ig) + & |
---|
| 2886 | fac110 * absa(ind0+9,ig) + & |
---|
| 2887 | fac010 * absa(ind0+10,ig)) |
---|
| 2888 | else |
---|
| 2889 | tau_major = speccomb * & |
---|
| 2890 | (fac000 * absa(ind0,ig) + & |
---|
| 2891 | fac100 * absa(ind0+1,ig) + & |
---|
| 2892 | fac010 * absa(ind0+9,ig) + & |
---|
| 2893 | fac110 * absa(ind0+10,ig)) |
---|
| 2894 | endif |
---|
| 2895 | |
---|
| 2896 | if (specparm1 .lt. 0.125_rb) then |
---|
| 2897 | tau_major1 = speccomb1 * & |
---|
| 2898 | (fac001 * absa(ind1,ig) + & |
---|
| 2899 | fac101 * absa(ind1+1,ig) + & |
---|
| 2900 | fac201 * absa(ind1+2,ig) + & |
---|
| 2901 | fac011 * absa(ind1+9,ig) + & |
---|
| 2902 | fac111 * absa(ind1+10,ig) + & |
---|
| 2903 | fac211 * absa(ind1+11,ig)) |
---|
| 2904 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 2905 | tau_major1 = speccomb1 * & |
---|
| 2906 | (fac201 * absa(ind1-1,ig) + & |
---|
| 2907 | fac101 * absa(ind1,ig) + & |
---|
| 2908 | fac001 * absa(ind1+1,ig) + & |
---|
| 2909 | fac211 * absa(ind1+8,ig) + & |
---|
| 2910 | fac111 * absa(ind1+9,ig) + & |
---|
| 2911 | fac011 * absa(ind1+10,ig)) |
---|
| 2912 | else |
---|
| 2913 | tau_major1 = speccomb1 * & |
---|
| 2914 | (fac001 * absa(ind1,ig) + & |
---|
| 2915 | fac101 * absa(ind1+1,ig) + & |
---|
| 2916 | fac011 * absa(ind1+9,ig) + & |
---|
| 2917 | fac111 * absa(ind1+10,ig)) |
---|
| 2918 | endif |
---|
| 2919 | |
---|
| 2920 | taug(lay,ngs14+ig) = tau_major + tau_major1 & |
---|
| 2921 | + tauself + taufor & |
---|
| 2922 | + taun2 |
---|
| 2923 | fracs(lay,ngs14+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 2924 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 2925 | enddo |
---|
| 2926 | enddo |
---|
| 2927 | |
---|
| 2928 | ! Upper atmosphere loop |
---|
| 2929 | do lay = laytrop+1, nlayers |
---|
| 2930 | do ig = 1, ng15 |
---|
| 2931 | taug(lay,ngs14+ig) = 0.0_rb |
---|
| 2932 | fracs(lay,ngs14+ig) = 0.0_rb |
---|
| 2933 | enddo |
---|
| 2934 | enddo |
---|
| 2935 | |
---|
| 2936 | end subroutine taugb15 |
---|
| 2937 | |
---|
| 2938 | !---------------------------------------------------------------------------- |
---|
| 2939 | subroutine taugb16 |
---|
| 2940 | !---------------------------------------------------------------------------- |
---|
| 2941 | ! |
---|
| 2942 | ! band 16: 2600-3250 cm-1 (low key- h2o,ch4; high key - ch4) |
---|
| 2943 | !---------------------------------------------------------------------------- |
---|
| 2944 | |
---|
| 2945 | ! ------- Modules ------- |
---|
| 2946 | |
---|
| 2947 | use parrrtm, only : ng16, ngs15 |
---|
| 2948 | use rrlw_ref, only : chi_mls |
---|
| 2949 | use rrlw_kg16, only : fracrefa, fracrefb, absa, ka, absb, kb, & |
---|
| 2950 | selfref, forref |
---|
| 2951 | |
---|
| 2952 | ! ------- Declarations ------- |
---|
| 2953 | |
---|
| 2954 | ! Local |
---|
| 2955 | integer(kind=im) :: lay, ind0, ind1, inds, indf, ig |
---|
| 2956 | integer(kind=im) :: js, js1, jpl |
---|
| 2957 | real(kind=rb) :: speccomb, specparm, specmult, fs |
---|
| 2958 | real(kind=rb) :: speccomb1, specparm1, specmult1, fs1 |
---|
| 2959 | real(kind=rb) :: speccomb_planck, specparm_planck, specmult_planck, fpl |
---|
| 2960 | real(kind=rb) :: p, p4, fk0, fk1, fk2 |
---|
| 2961 | real(kind=rb) :: fac000, fac100, fac200, fac010, fac110, fac210 |
---|
| 2962 | real(kind=rb) :: fac001, fac101, fac201, fac011, fac111, fac211 |
---|
| 2963 | real(kind=rb) :: tauself, taufor |
---|
| 2964 | real(kind=rb) :: refrat_planck_a |
---|
| 2965 | real(kind=rb) :: tau_major, tau_major1 |
---|
| 2966 | |
---|
| 2967 | |
---|
| 2968 | ! Calculate reference ratio to be used in calculation of Planck |
---|
| 2969 | ! fraction in lower atmosphere. |
---|
| 2970 | |
---|
| 2971 | ! P = 387. mb (Level 6) |
---|
| 2972 | refrat_planck_a = chi_mls(1,6)/chi_mls(6,6) |
---|
| 2973 | |
---|
| 2974 | ! Compute the optical depth by interpolating in ln(pressure), |
---|
| 2975 | ! temperature,and appropriate species. Below laytrop, the water |
---|
| 2976 | ! vapor self-continuum and foreign continuum is interpolated |
---|
| 2977 | ! (in temperature) separately. |
---|
| 2978 | |
---|
| 2979 | ! Lower atmosphere loop |
---|
| 2980 | do lay = 1, laytrop |
---|
| 2981 | |
---|
| 2982 | speccomb = colh2o(lay) + rat_h2och4(lay)*colch4(lay) |
---|
| 2983 | specparm = colh2o(lay)/speccomb |
---|
| 2984 | if (specparm .ge. oneminus) specparm = oneminus |
---|
| 2985 | specmult = 8._rb*(specparm) |
---|
| 2986 | js = 1 + int(specmult) |
---|
| 2987 | fs = mod(specmult,1.0_rb) |
---|
| 2988 | |
---|
| 2989 | speccomb1 = colh2o(lay) + rat_h2och4_1(lay)*colch4(lay) |
---|
| 2990 | specparm1 = colh2o(lay)/speccomb1 |
---|
| 2991 | if (specparm1 .ge. oneminus) specparm1 = oneminus |
---|
| 2992 | specmult1 = 8._rb*(specparm1) |
---|
| 2993 | js1 = 1 + int(specmult1) |
---|
| 2994 | fs1 = mod(specmult1,1.0_rb) |
---|
| 2995 | |
---|
| 2996 | speccomb_planck = colh2o(lay)+refrat_planck_a*colch4(lay) |
---|
| 2997 | specparm_planck = colh2o(lay)/speccomb_planck |
---|
| 2998 | if (specparm_planck .ge. oneminus) specparm_planck=oneminus |
---|
| 2999 | specmult_planck = 8._rb*specparm_planck |
---|
| 3000 | jpl= 1 + int(specmult_planck) |
---|
| 3001 | fpl = mod(specmult_planck,1.0_rb) |
---|
| 3002 | |
---|
| 3003 | ind0 = ((jp(lay)-1)*5+(jt(lay)-1))*nspa(16) + js |
---|
| 3004 | ind1 = (jp(lay)*5+(jt1(lay)-1))*nspa(16) + js1 |
---|
| 3005 | inds = indself(lay) |
---|
| 3006 | indf = indfor(lay) |
---|
| 3007 | |
---|
| 3008 | if (specparm .lt. 0.125_rb) then |
---|
| 3009 | p = fs - 1 |
---|
| 3010 | p4 = p**4 |
---|
| 3011 | fk0 = p4 |
---|
| 3012 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 3013 | fk2 = p + p4 |
---|
| 3014 | fac000 = fk0*fac00(lay) |
---|
| 3015 | fac100 = fk1*fac00(lay) |
---|
| 3016 | fac200 = fk2*fac00(lay) |
---|
| 3017 | fac010 = fk0*fac10(lay) |
---|
| 3018 | fac110 = fk1*fac10(lay) |
---|
| 3019 | fac210 = fk2*fac10(lay) |
---|
| 3020 | else if (specparm .gt. 0.875_rb) then |
---|
| 3021 | p = -fs |
---|
| 3022 | p4 = p**4 |
---|
| 3023 | fk0 = p4 |
---|
| 3024 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 3025 | fk2 = p + p4 |
---|
| 3026 | fac000 = fk0*fac00(lay) |
---|
| 3027 | fac100 = fk1*fac00(lay) |
---|
| 3028 | fac200 = fk2*fac00(lay) |
---|
| 3029 | fac010 = fk0*fac10(lay) |
---|
| 3030 | fac110 = fk1*fac10(lay) |
---|
| 3031 | fac210 = fk2*fac10(lay) |
---|
| 3032 | else |
---|
| 3033 | fac000 = (1._rb - fs) * fac00(lay) |
---|
| 3034 | fac010 = (1._rb - fs) * fac10(lay) |
---|
| 3035 | fac100 = fs * fac00(lay) |
---|
| 3036 | fac110 = fs * fac10(lay) |
---|
| 3037 | endif |
---|
| 3038 | |
---|
| 3039 | if (specparm1 .lt. 0.125_rb) then |
---|
| 3040 | p = fs1 - 1 |
---|
| 3041 | p4 = p**4 |
---|
| 3042 | fk0 = p4 |
---|
| 3043 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 3044 | fk2 = p + p4 |
---|
| 3045 | fac001 = fk0*fac01(lay) |
---|
| 3046 | fac101 = fk1*fac01(lay) |
---|
| 3047 | fac201 = fk2*fac01(lay) |
---|
| 3048 | fac011 = fk0*fac11(lay) |
---|
| 3049 | fac111 = fk1*fac11(lay) |
---|
| 3050 | fac211 = fk2*fac11(lay) |
---|
| 3051 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 3052 | p = -fs1 |
---|
| 3053 | p4 = p**4 |
---|
| 3054 | fk0 = p4 |
---|
| 3055 | fk1 = 1 - p - 2.0_rb*p4 |
---|
| 3056 | fk2 = p + p4 |
---|
| 3057 | fac001 = fk0*fac01(lay) |
---|
| 3058 | fac101 = fk1*fac01(lay) |
---|
| 3059 | fac201 = fk2*fac01(lay) |
---|
| 3060 | fac011 = fk0*fac11(lay) |
---|
| 3061 | fac111 = fk1*fac11(lay) |
---|
| 3062 | fac211 = fk2*fac11(lay) |
---|
| 3063 | else |
---|
| 3064 | fac001 = (1._rb - fs1) * fac01(lay) |
---|
| 3065 | fac011 = (1._rb - fs1) * fac11(lay) |
---|
| 3066 | fac101 = fs1 * fac01(lay) |
---|
| 3067 | fac111 = fs1 * fac11(lay) |
---|
| 3068 | endif |
---|
| 3069 | |
---|
| 3070 | do ig = 1, ng16 |
---|
| 3071 | tauself = selffac(lay)* (selfref(inds,ig) + selffrac(lay) * & |
---|
| 3072 | (selfref(inds+1,ig) - selfref(inds,ig))) |
---|
| 3073 | taufor = forfac(lay) * (forref(indf,ig) + forfrac(lay) * & |
---|
| 3074 | (forref(indf+1,ig) - forref(indf,ig))) |
---|
| 3075 | |
---|
| 3076 | if (specparm .lt. 0.125_rb) then |
---|
| 3077 | tau_major = speccomb * & |
---|
| 3078 | (fac000 * absa(ind0,ig) + & |
---|
| 3079 | fac100 * absa(ind0+1,ig) + & |
---|
| 3080 | fac200 * absa(ind0+2,ig) + & |
---|
| 3081 | fac010 * absa(ind0+9,ig) + & |
---|
| 3082 | fac110 * absa(ind0+10,ig) + & |
---|
| 3083 | fac210 * absa(ind0+11,ig)) |
---|
| 3084 | else if (specparm .gt. 0.875_rb) then |
---|
| 3085 | tau_major = speccomb * & |
---|
| 3086 | (fac200 * absa(ind0-1,ig) + & |
---|
| 3087 | fac100 * absa(ind0,ig) + & |
---|
| 3088 | fac000 * absa(ind0+1,ig) + & |
---|
| 3089 | fac210 * absa(ind0+8,ig) + & |
---|
| 3090 | fac110 * absa(ind0+9,ig) + & |
---|
| 3091 | fac010 * absa(ind0+10,ig)) |
---|
| 3092 | else |
---|
| 3093 | tau_major = speccomb * & |
---|
| 3094 | (fac000 * absa(ind0,ig) + & |
---|
| 3095 | fac100 * absa(ind0+1,ig) + & |
---|
| 3096 | fac010 * absa(ind0+9,ig) + & |
---|
| 3097 | fac110 * absa(ind0+10,ig)) |
---|
| 3098 | endif |
---|
| 3099 | |
---|
| 3100 | if (specparm1 .lt. 0.125_rb) then |
---|
| 3101 | tau_major1 = speccomb1 * & |
---|
| 3102 | (fac001 * absa(ind1,ig) + & |
---|
| 3103 | fac101 * absa(ind1+1,ig) + & |
---|
| 3104 | fac201 * absa(ind1+2,ig) + & |
---|
| 3105 | fac011 * absa(ind1+9,ig) + & |
---|
| 3106 | fac111 * absa(ind1+10,ig) + & |
---|
| 3107 | fac211 * absa(ind1+11,ig)) |
---|
| 3108 | else if (specparm1 .gt. 0.875_rb) then |
---|
| 3109 | tau_major1 = speccomb1 * & |
---|
| 3110 | (fac201 * absa(ind1-1,ig) + & |
---|
| 3111 | fac101 * absa(ind1,ig) + & |
---|
| 3112 | fac001 * absa(ind1+1,ig) + & |
---|
| 3113 | fac211 * absa(ind1+8,ig) + & |
---|
| 3114 | fac111 * absa(ind1+9,ig) + & |
---|
| 3115 | fac011 * absa(ind1+10,ig)) |
---|
| 3116 | else |
---|
| 3117 | tau_major1 = speccomb1 * & |
---|
| 3118 | (fac001 * absa(ind1,ig) + & |
---|
| 3119 | fac101 * absa(ind1+1,ig) + & |
---|
| 3120 | fac011 * absa(ind1+9,ig) + & |
---|
| 3121 | fac111 * absa(ind1+10,ig)) |
---|
| 3122 | endif |
---|
| 3123 | |
---|
| 3124 | taug(lay,ngs15+ig) = tau_major + tau_major1 & |
---|
| 3125 | + tauself + taufor |
---|
| 3126 | fracs(lay,ngs15+ig) = fracrefa(ig,jpl) + fpl * & |
---|
| 3127 | (fracrefa(ig,jpl+1)-fracrefa(ig,jpl)) |
---|
| 3128 | enddo |
---|
| 3129 | enddo |
---|
| 3130 | |
---|
| 3131 | ! Upper atmosphere loop |
---|
| 3132 | do lay = laytrop+1, nlayers |
---|
| 3133 | ind0 = ((jp(lay)-13)*5+(jt(lay)-1))*nspb(16) + 1 |
---|
| 3134 | ind1 = ((jp(lay)-12)*5+(jt1(lay)-1))*nspb(16) + 1 |
---|
| 3135 | do ig = 1, ng16 |
---|
| 3136 | taug(lay,ngs15+ig) = colch4(lay) * & |
---|
| 3137 | (fac00(lay) * absb(ind0,ig) + & |
---|
| 3138 | fac10(lay) * absb(ind0+1,ig) + & |
---|
| 3139 | fac01(lay) * absb(ind1,ig) + & |
---|
| 3140 | fac11(lay) * absb(ind1+1,ig)) |
---|
| 3141 | fracs(lay,ngs15+ig) = fracrefb(ig) |
---|
| 3142 | enddo |
---|
| 3143 | enddo |
---|
| 3144 | |
---|
| 3145 | end subroutine taugb16 |
---|
| 3146 | |
---|
| 3147 | end subroutine taumol |
---|
| 3148 | |
---|
| 3149 | end module rrtmg_lw_taumol |
---|
| 3150 | |
---|