[187] | 1 | \documentclass[11pt,a4paper,titlepage]{scrreprt} |
---|
| 2 | \documentstyle[Flow] |
---|
| 3 | \usepackage{graphics} |
---|
| 4 | \usepackage{german} |
---|
| 5 | \usepackage{chimuk} |
---|
| 6 | \usepackage{bibgerm} |
---|
| 7 | \usepackage{a4wide} |
---|
| 8 | \usepackage{amsmath} |
---|
| 9 | \usepackage{flafter} |
---|
| 10 | \usepackage[dvips]{epsfig} |
---|
| 11 | \usepackage{texdraw} |
---|
| 12 | \usepackage{supertabular} |
---|
| 13 | \usepackage{longtable} |
---|
| 14 | \usepackage{scrpage} |
---|
| 15 | \usepackage{fancyheadings} |
---|
| 16 | \usepackage{flow} |
---|
| 17 | \frenchspacing |
---|
| 18 | \sloppy |
---|
| 19 | \pagestyle{fancyplain} |
---|
| 20 | \addtolength{\headheight}{\baselineskip} |
---|
| 21 | \renewcommand{\chaptermark}[1]{\markboth{\thechapter~~#1}{}} |
---|
| 22 | \renewcommand{\sectionmark}[1]{\markright{\thesection\ #1}} |
---|
| 23 | \lhead{\fancyplain{}{\bfseries\leftmark}} |
---|
| 24 | \rhead{} |
---|
| 25 | %\begin{titlepage} |
---|
| 26 | %\author{Gerald Steinfeld} |
---|
| 27 | %\title{Prandtl layer parameterisation in PALM} |
---|
| 28 | %\end{titlepage} |
---|
| 29 | \begin{document} |
---|
| 30 | %\maketitle |
---|
| 31 | %\tableofcontents |
---|
| 32 | \pagebreak |
---|
| 33 | |
---|
| 34 | \chapter{Prandtl layer parameterisation in PALM} |
---|
| 35 | |
---|
| 36 | The friction velocity $u_{\ast}$ is a velocity scale that is defined by the relation |
---|
| 37 | \begin{equation} |
---|
| 38 | u_{\ast}=\left ( \left | \tau / \overline{\rho} \right | \right )^{\frac{1}{2}}, |
---|
| 39 | \end{equation} |
---|
| 40 | where $\tau$ is the Reynolds stress and $\rho$ is the air density. |
---|
| 41 | Using the surface kinematic momentum fluxes in the x and y directions |
---|
| 42 | $\left ( -\overline{u'w'}, -\overline{v'w'} \right )$ to represent |
---|
| 43 | surface stress, the friction velocity can be written as |
---|
| 44 | \begin{equation} |
---|
| 45 | u_{\ast}=\left ( (-\overline{u'w'})^2 + (-\overline{v'w'})^2 \right )^{\frac{1}{4}}. |
---|
| 46 | \end{equation} |
---|
| 47 | Based on the definition of the friction velocity $u_{\ast}$ the vertical turbulent |
---|
| 48 | momentum flux $\overline{u'w'}$ can be determined from |
---|
| 49 | \begin{equation} |
---|
| 50 | {u^2_{\ast}} \cos \left ( \alpha_0 \right ) = - \overline{u'w'}, |
---|
| 51 | \end{equation} |
---|
| 52 | while the vertical turbulent momentum flux $\overline{v'w'}$ can be determined |
---|
| 53 | from |
---|
| 54 | \begin{equation} |
---|
| 55 | {u^2_{\ast}} \sin \left ( \alpha_0 \right ) = - \overline{v'w'}. |
---|
| 56 | \end{equation} |
---|
| 57 | The angle $\alpha_0$, that is assumed to be constant in the Prandtl layer, is the |
---|
| 58 | angle between the x-direction and the direction of the mean horizontal wind and can |
---|
| 59 | be evaluated by |
---|
| 60 | \begin{equation} \label{win} |
---|
| 61 | \alpha_0 = \arctan \left ( \frac{\overline{v}(z_p)}{\overline{u}(z_p)} \right ). |
---|
| 62 | \end{equation} |
---|
| 63 | According to the similarity theory of Monin and Obukhov the following relationship for |
---|
| 64 | the profile of the mean horizontal wind is valid |
---|
| 65 | \begin{equation} \label{hmpr} |
---|
| 66 | \begin{split} |
---|
| 67 | \frac{\partial \left | \overline{\vec{v}} \right |}{\partial z} &= \frac{u_{\ast}}{\kappa z} \phi_m \left ( \frac{z}{L} \right ) \\ |
---|
| 68 | &= u_{\ast} \frac{1}{\kappa z} \phi_m \left ( \frac{z}{L} \right ). |
---|
| 69 | \end{split} |
---|
| 70 | \end{equation} |
---|
| 71 | In equation \ref{hmpr} $L$ denotes the Monin Obukhov length and $\kappa$ denotes the von Karman constant, while $\phi_m$ denotes the profile |
---|
| 72 | or Dyer-Businger functions for momentum: |
---|
| 73 | \begin{equation} |
---|
| 74 | \phi_m = |
---|
| 75 | \begin{cases} |
---|
| 76 | 1+5 \text{Rif} & \text{if $\text{Rif} > 0$}, \\ |
---|
| 77 | 1 & \text{if $\text{Rif} = 0$}, \\ |
---|
| 78 | \left ( 1 - 16 \text{Rif} \right )^{-\frac{1}{4}} & \text{if $\text{Rif} < 0$}. |
---|
| 79 | \end{cases} |
---|
| 80 | \end{equation} |
---|
| 81 | Rif denotes the dimensionless Richardson flux number. |
---|
| 82 | |
---|
| 83 | By integrating equation \ref{hmpr} over $z$ from $z_0$ to a height $z$ the following relationship for the friction velocity can be deduced: |
---|
| 84 | \begin{equation} \label{usb} |
---|
| 85 | u_{\ast} = |
---|
| 86 | \begin{cases} |
---|
| 87 | \frac{\left | \overline{\vec{v}} \right | \kappa}{\left ( \ln \left ( \frac{z}{z_0} \right ) + 5 \text{Rif} \left ( \frac{z-z_0}{z} \right ) \right )} & \text{if $\text{Rif} \ge 0$}, \\ |
---|
| 88 | %\frac{\left | \overline{\vec{v}} \right | \kappa}{\left ( ln \left ( \frac{1+B}{1-B} \frac{1-A}{1+A} \right ) + 2 \left ( arctan(B) - arctan(A) \right ) \right )} & \text{if $Rif<0$} |
---|
| 89 | \frac{\left | \overline{\vec{v}} \right | \kappa}{\ln \left ( \frac{z}{z_0} \right ) - \ln \left ( \frac{ \left ( 1+A \right )^2 \left ( 1+A^2 \right ) }{ \left ( 1+B \right )^2 \left ( 1+B^2 \right ) }\right ) + 2 \left ( \arctan(A) - \arctan(B) \right )} & \text{if $\text{Rif}<0$} |
---|
| 90 | \end{cases} |
---|
| 91 | \end{equation} |
---|
| 92 | with |
---|
| 93 | \begin{equation} |
---|
| 94 | %A=\left ( 1 - 16 Rif \right )^{-\frac{1}{4}} |
---|
| 95 | A=\left ( 1 - 16 \text{Rif} \right )^{\frac{1}{4}} |
---|
| 96 | \end{equation} |
---|
| 97 | and |
---|
| 98 | \begin{equation} |
---|
| 99 | %B=\left ( 1 - 16 Rif \frac{z_0}{z} \right )^{-\frac{1}{4}}. |
---|
| 100 | B=\left ( 1 - 16 \text{Rif} \frac{z_0}{z} \right )^{\frac{1}{4}}. |
---|
| 101 | \end{equation} |
---|
| 102 | In fact, equation \ref{usb} is used in PALM to determine the friction velocity $u_{\ast}$. |
---|
| 103 | |
---|
| 104 | The following paragraph is a short digression dealing with the integration of equation \ref{hmpr} that finally leads to equation \ref{usb}. The integration |
---|
| 105 | is only shown for the profile function for unstable stratification. According to PAULSON (1970) the general result of an integration of $\phi=\frac{\kappa z'}{u_{\ast}} |
---|
| 106 | \frac{\partial \overline{u}}{\partial z'}$ over $z'$ from $z_0$ to $z$ is |
---|
| 107 | \begin{equation} |
---|
| 108 | \overline{u}(z) = \frac{u_{\ast}}{\kappa} \left [ \ln \left ( \frac{z}{z_0} \right ) - \Psi \right ] |
---|
| 109 | \end{equation} |
---|
| 110 | with |
---|
| 111 | \begin{equation} |
---|
| 112 | \Psi = \int_{\frac{z_0}{L}}^{\frac{z}{L}}d \left ( \frac{z'}{L} \right ) \frac{1-\phi \left ( \frac{z'}{L} \right )}{\frac{z'}{L}}. |
---|
| 113 | \end{equation} |
---|
| 114 | Applying the profile function for unstable stratification, $\phi=\left ( 1 - 16 \frac{z}{L} \right )^{-\frac{1}{4}}$, $\Psi$ can be determined as follows: |
---|
| 115 | \begin{equation} |
---|
| 116 | \begin{split} |
---|
| 117 | \Psi &= \int_{\frac{z_0}{L}}^{\frac{z}{L}}d \left ( \frac{z'}{L} \right ) \frac{1- \left ( 1 - 16 \frac{z'}{L} \right )^{-\frac{1}{4}} }{\frac{z'}{L}} \text{ | substitution: } x=\frac{1}{\phi \left ( \frac{z'}{L} \right ) } \\ |
---|
| 118 | &= \int_{\left ( 1-16\frac{z_0}{L} \right )^{\frac{1}{4}}}^{\left ( 1-16\frac{z}{L} \right )^{\frac{1}{4}}} dx \left ( 4 \frac{x^2 - x^3}{1 - x^4} \right ) \\ |
---|
| 119 | &= \int_{\left ( 1-16\frac{z_0}{L} \right )^{\frac{1}{4}}}^{\left ( 1-16\frac{z}{L} \right )^{\frac{1}{4}}} dx \left ( 2 \left ( \frac{1}{1+x} + \frac{x}{1+x^2} - \frac{1}{1+x^2} \right ) \right ) \\ |
---|
| 120 | &= \left [ 2 \ln \left ( \frac{1+x}{2} \right ) + \ln \left ( \frac{1+x^2}{2} \right ) -2 \arctan(x) \right ]_{\left ( 1-16\frac{z_0}{L} \right )^{\frac{1}{4}}=B}^{\left ( 1-16\frac{z}{L} \right )^{\frac{1}{4}}=A} \\ |
---|
| 121 | &= \ln \left ( \frac{\left ( 1 + A \right )^2}{\left ( 1 + B \right )^2} \frac{1+A^2}{1+B^2} \right ) - 2 \left ( \arctan(A) - \arctan(B) \right ) |
---|
| 122 | \end{split} |
---|
| 123 | \end{equation} |
---|
| 124 | |
---|
| 125 | Making use of equation \ref{win} and \ref{hmpr}, it is also possible to deduce a relationship for the profile of the mean u-component of the wind velocity |
---|
| 126 | \begin{equation} \label{upr} |
---|
| 127 | \begin{split} |
---|
| 128 | \frac{\partial \overline{u} }{\partial z} &= \frac{\partial \left | \overline{\vec{v}} \right |}{\partial z} \cos \left ( \alpha_0 \right ) \\ |
---|
| 129 | &= \frac{u_{\ast}}{\kappa z} \phi_m \left ( \frac{z}{L} \right ) \cos \left ( \alpha_0 \right ) \\ |
---|
| 130 | &= \frac{1}{u_{\ast}} {u^2_{\ast}} \cos \left ( \alpha_0 \right ) \frac{1}{\kappa z} \phi_m \left ( \frac{z}{L} \right ) \\ |
---|
| 131 | &= \frac{-\overline{u'w'}}{u_{\ast}} \frac{1}{\kappa z} \phi_m \left ( \frac{z}{L} \right ) |
---|
| 132 | \end{split} |
---|
| 133 | \end{equation} |
---|
| 134 | and accordingly a relationship for the profile of the mean v-component of the wind velocity |
---|
| 135 | \begin{equation} \label{vpr} |
---|
| 136 | \begin{split} |
---|
| 137 | \frac{\partial \overline{v} }{\partial z} &= \frac{\partial \left | \overline{\vec{v}} \right |}{\partial z} \sin \left ( \alpha_0 \right ) \\ |
---|
| 138 | &= \frac{u_{\ast}}{\kappa z} \phi_m \left ( \frac{z}{L} \right ) \sin \left ( \alpha_0 \right ) \\ |
---|
| 139 | &= \frac{1}{u_{\ast}} {u^2_{\ast}} \sin \left ( \alpha_0 \right ) \frac{1}{\kappa z} \phi_m \left ( \frac{z}{L} \right ) \\ |
---|
| 140 | &= \frac{-\overline{v'w'}}{u_{\ast}} \frac{1}{\kappa z} \phi_m \left ( \frac{z}{L} \right ). |
---|
| 141 | \end{split} |
---|
| 142 | \end{equation} |
---|
| 143 | As the right-hand sides of equation \ref{upr} and \ref{vpr} differ only by prefactors that are (assumed to be) constant within the Prandtl layer from the |
---|
| 144 | right-hand side of equation \ref{hmpr}, we can directly make use of the integration that led to equation \ref{usb} in order to obtain |
---|
| 145 | \begin{equation} \label{uswsb} |
---|
| 146 | C=\frac{-\overline{u'w'}}{u_{\ast}} = |
---|
| 147 | \begin{cases} |
---|
| 148 | \frac{\overline{u} \kappa}{\left ( \ln \left ( \frac{z}{z_0} \right ) + 5 \text{Rif} \left ( \frac{z-z_0}{z} \right ) \right )} & \text{if $\text{Rif} \ge 0$}, \\ |
---|
| 149 | %\frac{\overline{u} \kappa}{\left ( ln \left ( \frac{1+B}{1-B} \frac{1-A}{1+A} \right ) + 2 \left ( arctan(B) - arctan(A) \right ) \right )} & \text{if $Rif<0$}. |
---|
| 150 | \frac{ \overline{u} \kappa}{\ln \left ( \frac{z}{z_0} \right ) - \ln \left ( \frac{ \left ( 1+A \right )^2 \left ( 1+A^2 \right ) }{ \left ( 1+B \right )^2 \left ( 1+B^2 \right ) }\right ) + 2 \left ( \arctan(A) - \arctan(B) \right )} & \text{if $\text{Rif}<0$}. |
---|
| 151 | |
---|
| 152 | \end{cases} |
---|
| 153 | \end{equation} |
---|
| 154 | and |
---|
| 155 | \begin{equation} \label{vswsb} |
---|
| 156 | D=\frac{-\overline{v'w'}}{u_{\ast}} = |
---|
| 157 | \begin{cases} |
---|
| 158 | \frac{\overline{v} \kappa}{\left ( \ln \left ( \frac{z}{z_0} \right ) + 5 \text{Rif} \left ( \frac{z-z_0}{z} \right ) \right )} & \text{if $\text{Rif} \ge 0$}, \\ |
---|
| 159 | %\frac{\overline{v} \kappa}{\left ( ln \left ( \frac{1+B}{1-B} \frac{1-A}{1+A} \right ) + 2 \left ( arctan(B) - arctan(A) \right ) \right )} & \text{if $Rif<0$}. |
---|
| 160 | \frac{\overline{v} \kappa}{\ln \left ( \frac{z}{z_0} \right ) - \ln \left ( \frac{ \left ( 1+A \right )^2 \left ( 1+A^2 \right ) }{ \left ( 1+B \right )^2 \left ( 1+B^2 \right ) }\right ) + 2 \left ( \arctan(A) - \arctan(B) \right )} & \text{if $\text{Rif}<0$}. |
---|
| 161 | |
---|
| 162 | \end{cases} |
---|
| 163 | \end{equation} |
---|
| 164 | Both equations, \ref{uswsb} and \ref{vswsb}, are used in PALM. In order to get an information on the turbulent vertical momentum fluxes within the Prandtl layer, |
---|
| 165 | equation \ref{uswsb} and equation \ref{vswsb} need only to be multiplied by $-1$ and the friction velocity $u_{\ast}$, so that finally the followings two steps |
---|
| 166 | have to be executed in PALM: |
---|
| 167 | \begin{equation} |
---|
| 168 | \overline{u'w'} = -C u_{\ast} |
---|
| 169 | \end{equation} |
---|
| 170 | and |
---|
| 171 | \begin{equation} |
---|
| 172 | \overline{v'w'} = -D u_{\ast}. |
---|
| 173 | \end{equation} |
---|
| 174 | |
---|
| 175 | In case that no near-surface heat flux has been prescribed by the user of PALM, the near-surface heat flux $\overline{w'\Theta'}_0$ is evaluated from |
---|
| 176 | \begin{equation} \label{hfe} |
---|
| 177 | \overline{w'\Theta'} = - u_{\ast} \theta_{\ast}. |
---|
| 178 | \end{equation} |
---|
| 179 | Here, $\theta_{\ast}$ is the so-called characteristic temperature for the Prandtl layer. In case of no preset near-surface heat flux the characteristic |
---|
| 180 | temperature $\theta_{\ast}$ is determined in PALM from the integrated version of the profile function for the potential temperature. According to the |
---|
| 181 | similarity theory of Monin and Obukhov the following relationship for the vertical gradient of the potential temperature is valid: |
---|
| 182 | \begin{equation} \label{hmpt} |
---|
| 183 | \frac{\partial \overline{\Theta}}{\partial z} = \frac{\theta_{\ast}}{\kappa z} \phi_h. |
---|
| 184 | \end{equation} |
---|
| 185 | In equation \ref{hmpt} $\phi_h$ denotes the profile or Dyer-Businger functions for temperature: |
---|
| 186 | \begin{equation} |
---|
| 187 | \phi_h = |
---|
| 188 | \begin{cases} |
---|
| 189 | 1+5 \text{Rif} & \text{if $\text{Rif} > 0$}, \\ |
---|
| 190 | 1 & \text{if $\text{Rif} = 0$}, \\ |
---|
| 191 | \left ( 1 - 16 \text{Rif} \right )^{-\frac{1}{2}} & \text{if $\text{Rif} < 0$}. |
---|
| 192 | \end{cases} |
---|
| 193 | \end{equation} |
---|
| 194 | By integrating equation \ref{hmpt} over $z$ from $z_0$ to a height $z$ the following relationship for the characteristic temperature in the Prandtl |
---|
| 195 | layer can be deduced: |
---|
| 196 | \begin{equation} \label{tsb} |
---|
| 197 | \theta_{\ast} = |
---|
| 198 | \begin{cases} |
---|
| 199 | \frac{\kappa \left ( \overline{\Theta}(z) - \overline{\Theta}(z_0) \right )}{\ln \left ( \frac{z}{z_0} \right ) + 5 \text{Rif} \left ( \frac{z-z_0}{z} \right )} & \text{if $\text{Rif} \ge 0$}, \\ |
---|
| 200 | \frac{\kappa \left ( \overline{\Theta}(z) - \overline{\Theta}(z_0) \right )}{\ln \left ( \frac{z}{z_0} - 2 \ln \left ( \frac{1+A}{1+B} \right )\right )} & \text{if $\text{Rif}<0$} |
---|
| 201 | \end{cases} |
---|
| 202 | \end{equation} |
---|
| 203 | with |
---|
| 204 | \begin{equation} |
---|
| 205 | %A=\left ( 1 - 16 \text{Rif} \right )^{-\frac{1}{4}} |
---|
| 206 | A=\sqrt{1 - 16 \text{Rif}} |
---|
| 207 | \end{equation} |
---|
| 208 | and |
---|
| 209 | \begin{equation} |
---|
| 210 | %B=\left ( 1 - 16 \text{Rif} \frac{z_0}{z} \right )^{-\frac{1}{4}}. |
---|
| 211 | B=\sqrt{1 - 16 \text{Rif} \frac{z_0}{z}}. |
---|
| 212 | \end{equation} |
---|
| 213 | Note, that the temperature at the height of the roughness length that is required for the evaluation of $\theta_{\ast}$ in equation \ref{tsb} is saved |
---|
| 214 | in PALM at the first vertical grid level of the temperature with index k=0. The height that is assigned to this vertical grid level is -0.5$\Delta z$, |
---|
| 215 | where $\Delta z$ is the grid length in the vertical direction. |
---|
| 216 | In case of a near-surface heat flux $\overline{w'\Theta'}_0$ that has been prescribed by the user, the evaluation of $\theta_{\ast}$ is not needed for |
---|
| 217 | the integration of the model. Instead $\theta_{\ast}$ is only determined for the evaluation of statistics of the turbulent flow. In that case it is |
---|
| 218 | simply derived by a transformation of equation \ref{hfe} into |
---|
| 219 | \begin{equation} |
---|
| 220 | \theta_{\ast} = - \frac{\overline{w'\Theta'}_0}{u_{\ast}}. |
---|
| 221 | \end{equation} |
---|
| 222 | In case that PALM is run in its moist version, the evaluation of the characteristic humidity for the Prandtl layer is evaluated in a way correspondent to |
---|
| 223 | that of the determination of the characteristic temperature. |
---|
| 224 | |
---|
| 225 | |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | |
---|
| 243 | |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | |
---|
| 248 | |
---|
| 249 | \end{document} |
---|