[413] | 1 | \documentclass[11pt,a4paper]{scrartcl} |
---|
| 2 | \usepackage[latin9]{inputenc} |
---|
| 3 | \usepackage[T1]{fontenc} |
---|
| 4 | \usepackage[english]{babel} |
---|
| 5 | \usepackage[a4paper,top=3.cm,bottom=3.5cm,outer=3cm,inner=3.cm]{geometry} |
---|
| 6 | \usepackage{booktabs,longtable,tabularx} |
---|
| 7 | \usepackage{amsmath,amssymb,textcomp} |
---|
| 8 | \usepackage{scrpage2} |
---|
| 9 | \usepackage[bookmarks=true,bookmarksopen=false,bookmarksnumbered=true,colorlinks=false]{hyperref} |
---|
| 10 | \setlength{\parindent}{0pt} |
---|
| 11 | |
---|
| 12 | \pagestyle{scrheadings} |
---|
| 13 | \clearscrheadfoot |
---|
| 14 | \cfoot{{\small\sf \thepage}} |
---|
| 15 | |
---|
| 16 | %Adapting the references |
---|
| 17 | \newenvironment{bibliographie}[1] |
---|
| 18 | {\begin{thebibliography}{0000}{} |
---|
| 19 | \leftskip=5mm \setlength{\itemindent}{-5mm}#1} |
---|
| 20 | {\end{thebibliography}} |
---|
| 21 | \makeatletter |
---|
| 22 | \renewcommand\@biblabel[1]{\setlength\labelsep{0pt}} |
---|
| 23 | \renewcommand\@cite[2]{{#1\if@tempswa , #2\fi}} |
---|
| 24 | \makeatother |
---|
| 25 | |
---|
| 26 | |
---|
| 27 | \begin {document} |
---|
| 28 | |
---|
| 29 | \begin{center} |
---|
| 30 | {\LARGE\bf\textsf{Introduction to the cloud physics module of PALM}} |
---|
| 31 | \vspace{3.0mm} |
---|
| 32 | \linebreak |
---|
| 33 | {\Large\bf\textsf{\textendash Amendments to the dry version of PALM\textendash}} |
---|
| 34 | \linebreak |
---|
| 35 | \linebreak |
---|
| 36 | Michael Schr\"{o}ter |
---|
| 37 | \linebreak |
---|
| 38 | 13.3.2000 |
---|
| 39 | \linebreak |
---|
| 40 | translated and adapted by |
---|
| 41 | \linebreak |
---|
| 42 | Rieke Heinze |
---|
| 43 | \linebreak |
---|
| 44 | 14.12.2009 |
---|
| 45 | \end{center} |
---|
| 46 | |
---|
| 47 | \section{Introduction} |
---|
| 48 | The dry version of PALM does not contain any cloud physics. It has been extended |
---|
| 49 | to account for a nearly complete water cycle and radiation processes: |
---|
| 50 | \vspace{0.2cm} |
---|
| 51 | \newline |
---|
| 52 | {\bf\textsf{Water cycle}} |
---|
| 53 | \begin{itemize} |
---|
| 54 | \item evaporation/condensation |
---|
| 55 | \item precipitation |
---|
| 56 | \item transport of humidity and liquid water |
---|
| 57 | \end{itemize} |
---|
| 58 | {\bf\textsf{Radiation processes}} |
---|
| 59 | \begin{itemize} |
---|
| 60 | \item short-wave radiation |
---|
| 61 | \item long-wave radiation |
---|
| 62 | \end{itemize} |
---|
| 63 | The dynamical processes are covered by advection and diffusion and they are described by the implemented methods. For the consideration of the |
---|
| 64 | thermodynamical processes modifications are necessary in the thermodynamics of PALM . In doing so evaporation and condensation are treated as |
---|
| 65 | adiabatic processes whereas precipitation and radiation are treated as diabatic processes. In the dry version of PALM the thermodynamic variable |
---|
| 66 | is the potential temperature $\theta$. The first law of thermodynamics provides the prognostic equation |
---|
| 67 | for $\theta$. The system of thermodynamic variables has to be extended to deal with phase transitions: |
---|
| 68 | \begin{eqnarray*} |
---|
| 69 | q_{v} & = &\textnormal{specific humidity to deal with water vapour} \\ |
---|
| 70 | q_{l} & = &\textnormal{liquid water content to deal with the liquid phase} |
---|
| 71 | \end{eqnarray*} |
---|
| 72 | Additionally, dependencies between these variables have to be introduced to describe the changes of state (condensation scheme). |
---|
| 73 | \newline |
---|
| 74 | In introducing the two variables liquid water potential temperature $\theta_{l}$ and total liquid water content $q$ the treatment of the |
---|
| 75 | thermodynamics is simplified. The liquid water potential temperature $\theta_{l}$ is defined by \cite{betts73} and represents the potential |
---|
| 76 | temperature attained by evaporating all the liquid water in an air parcel through reversible wet adiabatic descent. In a linearized version |
---|
| 77 | it is defined as |
---|
| 78 | \begin{eqnarray} |
---|
| 79 | \theta_{l} & = & \theta -\frac{L_{v}}{c_{p}}\left(\frac{\theta}{T}\right)q_{l}. |
---|
| 80 | \label{eq:theta_l} |
---|
| 81 | \end{eqnarray} |
---|
| 82 | For the total water content it is valid: |
---|
| 83 | \begin{eqnarray} |
---|
| 84 | q & = & q_{v}+q_{l}. |
---|
| 85 | \label{eq:q} |
---|
| 86 | \end{eqnarray} |
---|
| 87 | The usage of $\theta_{l}$ and $q$ as thermodynamic variables is based on the work of \cite{ogura63} and \cite{orville65}. The advantages of the |
---|
| 88 | $\theta_l$-$q$ system are discussed by \cite{deardorff76}: |
---|
| 89 | \begin{itemize} |
---|
| 90 | \item Without precipitation, radiation and freezing processes $\theta_{l}$ and $q$ are conservative quantities (for the whole system). |
---|
| 91 | \item Therewith, the treatment of grid volumes in which only a fraction is saturated is simplified (sub-grid scale condensation scheme). |
---|
| 92 | \item Parameterizations of the sub-grid scale fluxes are retained. |
---|
| 93 | \item The liquid water content is not a separate variable (storage space is saved). |
---|
| 94 | \item For dry convection $\theta_{l}$ matches the potential temperature and $q$ matches the specific humidity when condensation is disabled. |
---|
| 95 | \item Phase transitions do not have to be described as additional terms in the prognostic equations. |
---|
| 96 | \end{itemize} |
---|
| 97 | |
---|
| 98 | \section{Model equations} |
---|
| 99 | In combining the prognostic equations for dry convection with the processes for cloud physics the following set of prognostic and diagnostic |
---|
| 100 | model equations is gained: |
---|
| 101 | \newline |
---|
| 102 | \newline |
---|
| 103 | Equation of continuity |
---|
| 104 | \begin{eqnarray} |
---|
| 105 | \frac{\partial\overline u_{j}}{\partial x_{j}} & = & 0 |
---|
| 106 | \label{eq:conti} |
---|
| 107 | \end{eqnarray} |
---|
| 108 | Equations of motion |
---|
| 109 | \begin{eqnarray} |
---|
| 110 | \frac{\partial\overline u_{i}}{\partial t} & = & |
---|
| 111 | -\frac{\partial \left(\overline u_{j} \overline u_{i}\right)}{\partial x_{j}} |
---|
| 112 | -\frac{1}{\rho_{0}}\frac{\partial \overline \pi^{\ast}}{\partial x_{i}} |
---|
| 113 | - \varepsilon_{ijk}f_{j}\overline u_{k} - \varepsilon_{i3k}f_{3}u_{\mathrm{g}_{k}} |
---|
| 114 | + g\frac{\overline\theta_{v}-\langle\overline\theta_{v}\rangle}{\theta_{0}}\delta_{i3} |
---|
| 115 | -\frac{\partial\,\tau_{ij}}{\partial x_{j}} |
---|
| 116 | \label{eq:motion} |
---|
| 117 | \end{eqnarray} |
---|
| 118 | with |
---|
| 119 | \begin{eqnarray} |
---|
| 120 | \label{eq:pres} |
---|
| 121 | \overline \pi^{\ast} & = & \overline p^{\ast} + \frac{2}{3}\rho_{0}\,\overline e \\ |
---|
| 122 | \label{eq:tau} |
---|
| 123 | \tau_{ij} & = & \overline{u_{j}^{'}u_{i}^{'}} - \frac{2}{3}\overline e\,\delta_{ij} |
---|
| 124 | \end{eqnarray} |
---|
| 125 | First law of thermodynamics |
---|
| 126 | \begin{eqnarray} |
---|
| 127 | \frac{\partial\overline \theta_{l}}{\partial t} & = & |
---|
| 128 | -\frac{\partial \left(\overline u_{j} \overline \theta_{l}\right)}{\partial x_{j}} |
---|
| 129 | -\frac{\partial\, \overline{u_{j}^{'}\theta_{l}^{'}}}{\partial x_{j}} |
---|
| 130 | +\left(\frac{\partial \overline\theta_{l}}{\partial t}\right)_{\mathrm{RAD}} |
---|
| 131 | +\left(\frac{\partial \overline\theta_{l}}{\partial t}\right)_{\mathrm{PREC}} |
---|
| 132 | \label{eq:theta} |
---|
| 133 | \end{eqnarray} |
---|
| 134 | Conservation equation for the total water content |
---|
| 135 | \begin{eqnarray} |
---|
| 136 | \frac{\partial\overline q}{\partial t} & = & |
---|
| 137 | -\frac{\partial \left(\overline u_{j} \overline q\right)}{\partial x_{j}} |
---|
| 138 | -\frac{\partial\, \overline{u_{j}^{'} q^{'}}}{\partial x_{j}} |
---|
| 139 | +\left(\frac{\partial \overline q}{\partial t}\right)_{\mathrm{RAD}} |
---|
| 140 | \label{eq:total_water} |
---|
| 141 | \end{eqnarray} |
---|
| 142 | Conservation equation for the sub-grid scale turbulent kinetic energy $\overline{e}=\frac{1}{2}\overline{u_{i}^{'2}}$ |
---|
| 143 | \begin{eqnarray} |
---|
| 144 | \frac{\partial \overline e}{\partial t} & = & |
---|
| 145 | -\frac{\partial \left(\overline u_{j}\overline e\right)}{\partial x_{j}} |
---|
| 146 | -\overline{u_{j}^{'} u_{i}^{'}} \frac{\partial\overline u_{i}}{\partial x_{j}} |
---|
| 147 | + \frac{g}{\theta_{0}}\overline{u^{'}_{3}\theta_{v}^{'}} |
---|
| 148 | -\frac{\partial}{\partial x_{j}}\left\{\overline{u^{'}_{j}\left(e^{'} + \frac{p^{'}}{\rho_{0}}\right)} \right\}- \epsilon |
---|
| 149 | \label{eq:sgsTKE} |
---|
| 150 | \end{eqnarray} |
---|
| 151 | The virtual potential temperature is needed in equation (\ref{eq:motion}) to calculate the buoyancy term. It is defined by |
---|
| 152 | e.g. \cite{sommeria77} as |
---|
| 153 | \begin{eqnarray} |
---|
| 154 | \overline \theta_{v} &=& |
---|
| 155 | \left(\overline \theta_{l} + \frac{L_{v}}{c_{p}}\left(\frac{\theta}{T}\right)\overline q_{l}\right) |
---|
| 156 | \left(1 + 0.61\,\overline q - 1.61\,\overline q_{l}\right). |
---|
| 157 | \label{eq:theta_v} |
---|
| 158 | \end{eqnarray} |
---|
| 159 | Therewith, the influence of changing in density due to condensation is considered in the buoyancy term. |
---|
| 160 | \newline |
---|
| 161 | The closure of the model equations is based on the approaches of \cite{deardorff80}: |
---|
| 162 | \begin{eqnarray} |
---|
| 163 | \label{eq:ujui} |
---|
| 164 | \overline{u_{j}^{'}u_{i}^{'}} & = & |
---|
| 165 | -K_{m}\left(\frac{\partial \overline u_{i}}{\partial x_{j}} |
---|
| 166 | + \frac{\partial \overline u_{j}}{\partial x_{i}} \right) |
---|
| 167 | + \frac{2}{3}\overline e \,\delta_{ij} \\ |
---|
| 168 | \label{eq:ujtheta} |
---|
| 169 | \overline{u_{j}^{'}\theta_{l}^{'}} & = & |
---|
| 170 | -K_{h}\left(\frac{\partial \overline \theta_{l}}{\partial x_{j}}\right) \\ |
---|
| 171 | \label{eq:ujq} |
---|
| 172 | \overline{u_{j}^{'} q{'}} & = & |
---|
| 173 | -K_{h}\left(\frac{\partial \overline q}{\partial x_{j}}\right) \\ |
---|
| 174 | \label{eq:ujp} |
---|
| 175 | \overline{u^{'}_{j}\left(e^{'} + \frac{p^{'}}{\rho_{0}}\right)} & = & |
---|
| 176 | -2K_{m}\frac{\partial \overline e}{\partial x_{j}} \\ |
---|
| 177 | \label{eq:u3theta_v} |
---|
| 178 | \overline{u_{3}^{'}\theta_{v}^{'}} & = & |
---|
| 179 | K_{1} \,\overline{u_{3}^{'}\theta_{l}^{'}} |
---|
| 180 | + K_{2} \,\overline{u_{3}^{'} q^{'}} \\ |
---|
| 181 | \label{eq:km} |
---|
| 182 | K_{m} & = & 0.1\,l\,\sqrt{\overline e} \\ |
---|
| 183 | \label{eq:kh} |
---|
| 184 | K_{h} & = & \left(1+2\frac{l}{\Delta}\right)K_{m} \\ |
---|
| 185 | \label{eq:epsilon} |
---|
| 186 | \epsilon & = & \left(0.19 + 0.74\,\frac{l}{\Delta}\right)\,\frac{\overline e^{\frac{3}{2}}}{l} |
---|
| 187 | \end{eqnarray} |
---|
| 188 | with |
---|
| 189 | \begin{eqnarray} |
---|
| 190 | l = \begin{cases} |
---|
| 191 | \min\left(\Delta,\, 0.7\,d,\, 0.76\, \sqrt{\overline e}\,\left(\frac{g}{\theta_{0}}\frac{\partial \overline\theta_{v}} |
---|
| 192 | {\partial z}\right)^{-\frac{1}{2}}\right) & , \quad \frac{\partial \overline\theta_{v}}{\partial z} > 0\\ |
---|
| 193 | \min\left(\Delta,\, 0.7\, d\right) & , \quad \frac{\partial \overline\theta_{v}}{\partial z} \leq 0 |
---|
| 194 | \end{cases} |
---|
| 195 | \label{eq:l} |
---|
| 196 | \end{eqnarray} |
---|
| 197 | and |
---|
| 198 | \begin{eqnarray} |
---|
| 199 | \Delta & = & \left(\Delta x \Delta y \Delta z\right)^{1/3} |
---|
| 200 | \label{eq:delta} |
---|
| 201 | \end{eqnarray} |
---|
| 202 | At the lower boundary Monin-Obukhov similarity theory is valid ( $\overline{w^{'}q^{'}}=u_{\ast}q_{\ast}$). |
---|
| 203 | \newline |
---|
| 204 | \cite{cuijpers93} for example define the coefficients $K_{1}$ and $K_{2}$ as follows:\newline |
---|
| 205 | {\bf\textsf{in unsaturated air:}} |
---|
| 206 | \begin{eqnarray} |
---|
| 207 | \label{eq:K_1} |
---|
| 208 | K_{1} & = & 1.0 + 0.61\, \overline q \\ |
---|
| 209 | \label{eq:K_2} |
---|
| 210 | K_{2} & = & 0.61\, \overline{\theta} |
---|
| 211 | \end{eqnarray} |
---|
| 212 | {\bf\textsf{in saturated air:}} |
---|
| 213 | \begin{eqnarray} |
---|
| 214 | \label{eq:K_1_sat} |
---|
| 215 | K_{1} & = & \frac{1.0-\overline q + 1.61\,\overline q_{s}\left(1.0 + 0.622\frac{L_{v}}{RT}\right)} |
---|
| 216 | {1.0 + 0.622\frac{L_{v}}{RT}\,\frac{L_{v}}{c_{p}T}\overline q_{s}} \\ |
---|
| 217 | \label{eq:K_2_sat} |
---|
| 218 | K_{2} & = & \overline{\theta}\left(\left(\frac{L_{v}}{c_{p}T}\right)K_{1}-1.0\right) |
---|
| 219 | \end{eqnarray} |
---|
| 220 | The saturation value of the specific humidity comes from the truncated Taylor expansion of $q_{s}(T)$: |
---|
| 221 | \begin{eqnarray} |
---|
| 222 | q_{s}(T) = q_{s} = q_{s}\left(T_{l}\right) |
---|
| 223 | + \left(\frac{\partial q_{s}}{\partial T}\right)_{T=T_{l}} (T-T_{l}). |
---|
| 224 | \label{eq:qs1} |
---|
| 225 | \end{eqnarray} |
---|
| 226 | Using the Clausius-Clapeyron equation |
---|
| 227 | \begin{eqnarray} |
---|
| 228 | \left(\frac{\partial q_{s}}{\partial T}\right)_{T=T_{l}} & = & |
---|
| 229 | 0.622\frac{L_{v}q_{s}(T_{l})}{R\,T_{l}^{2}} |
---|
| 230 | \label{eq:clausius} |
---|
| 231 | \end{eqnarray} |
---|
| 232 | with |
---|
| 233 | \begin{eqnarray} |
---|
| 234 | T = T_{l} + \frac{L_{v}}{c_{p}}q_{l} \qquad \textnormal{respectively} \qquad q_{l} = q - q_{s} |
---|
| 235 | \label{eq:T} |
---|
| 236 | \end{eqnarray} |
---|
| 237 | gives |
---|
| 238 | \begin{eqnarray} |
---|
| 239 | \overline q_{s} = \overline q_{s}(\overline T_{l})\frac{\left(1.0+\beta\,\overline q\right)} |
---|
| 240 | {1.0 + \beta\, \overline q_{s}(\overline{T_{l}})}. |
---|
| 241 | \label{eq:qs2} |
---|
| 242 | \end{eqnarray} |
---|
| 243 | Whereas |
---|
| 244 | \begin{eqnarray} |
---|
| 245 | \overline q_{s}(\overline T_{l}) = 0.622\frac{\overline e_{s}(\overline T_{l})} |
---|
| 246 | {p_{0}(z)-0.377\,\overline e_{s}(\overline T_{l})} |
---|
| 247 | \label{eq:qs3} |
---|
| 248 | \end{eqnarray} |
---|
| 249 | and |
---|
| 250 | \begin{eqnarray} |
---|
| 251 | \beta = 0.622\left(\frac{L_{v}}{R\,\overline T_{l}}\right) \left(\frac{L_{v}}{c_{p}\,\overline T_{l}}\right). |
---|
| 252 | \label{eq:beta} |
---|
| 253 | \end{eqnarray} |
---|
| 254 | The actual liquid water temperature is defined as |
---|
| 255 | \begin{eqnarray} |
---|
| 256 | \overline T_{l} = \left(\frac{p_{0}(z)}{p_{0}(z=0)}\right)^{\kappa} \overline\theta_{l} |
---|
| 257 | \label{eq:T_l} |
---|
| 258 | \end{eqnarray} |
---|
| 259 | with $p_{0}(z=0) = 1000$\,hPa. The value of the saturation vapour pressure at the temperature $\overline T_{l}$ is |
---|
| 260 | calculated in the same way as in \cite{bougeault82}: |
---|
| 261 | \begin{eqnarray} |
---|
| 262 | \overline e_{s}(\overline T_{l}) = 610.78 \exp\left( |
---|
| 263 | 17.269\frac{\overline T_{l}-273.16}{\overline T_{l}-35.86}\right). |
---|
| 264 | \label{eq:es} |
---|
| 265 | \end{eqnarray} |
---|
| 266 | The hydrostatic pressure $p_{0}(z)$ is given by \cite{cuijpers93}: |
---|
| 267 | \begin{eqnarray} |
---|
| 268 | p_{0}(z) = p_{0}(z=0)\frac{T_{\mathrm{ref}}(z)^{c_{p}/R}}{T_{0}} |
---|
| 269 | \label{eq:p_0} |
---|
| 270 | \end{eqnarray} |
---|
| 271 | with |
---|
| 272 | \begin{eqnarray} |
---|
| 273 | T_{\mathrm{ref}}(z) = T_{0} - \frac{g}{c_{p}} z. |
---|
| 274 | \label{eq:T_ref} |
---|
| 275 | \end{eqnarray} |
---|
| 276 | The pressure is calculated once at the beginning of a simulation and remains unchanged. For the reference temperature at the earth surface $T_{0}$ |
---|
| 277 | the initial surface temperature is applied. The ratio of the potential and the actual temperature is given by: |
---|
| 278 | \begin{eqnarray} |
---|
| 279 | \frac{\theta}{T} = \left(\frac{p_{0}(z=0)}{p_{0}(z)}\right)^{\kappa}. |
---|
| 280 | \label{eq:ratio} |
---|
| 281 | \end{eqnarray} |
---|
| 282 | The liquid water content $q_{l}$ is needed for the calculation of the virtual potential temperature (eq. (\ref{eq:theta_v})). It is |
---|
| 283 | calculated from the difference of the total water content at a single grid point and the saturation value at this grid point: |
---|
| 284 | \begin{eqnarray} |
---|
| 285 | \overline q_{l} = |
---|
| 286 | \begin{cases} |
---|
| 287 | \overline q - \overline q_{s}(\overline T_{l}) & |
---|
| 288 | \textnormal{if} \quad \overline q > \overline q_{s}(\overline T_{l}) \\ |
---|
| 289 | 0 & \textnormal{else} |
---|
| 290 | \end{cases} |
---|
| 291 | \label{eq:q_l} |
---|
| 292 | \end{eqnarray} |
---|
| 293 | With this approach a grid volume is either completely saturated or completely unsaturated. The values of the cloud cover of a grid volume |
---|
| 294 | can only become 0 or 1 (\textsl{0\%-or100\% scheme}). |
---|
| 295 | |
---|
| 296 | \section{Parameterization of the source terms in the conservation equations} |
---|
| 297 | \subsection{Radiation model} |
---|
| 298 | The source term for radiation processes is parameterized via the scheme of effective emissivity which is based on \cite{cox76}: |
---|
| 299 | \begin{eqnarray} |
---|
| 300 | \left(\frac{\partial \overline\theta_{l}}{\partial t}\right)_{\mathrm{RAD}} & = & |
---|
| 301 | -\frac{\theta}{T}\frac{1}{\rho \,c_{p}\,\Delta z}\left[\Delta F(z^{+})-\Delta F(z^{-})\right] |
---|
| 302 | \label{eq:radiation_term} |
---|
| 303 | \end{eqnarray} |
---|
| 304 | $\Delta F$ describes the difference between upward and downward irradiance at the grid point above ($z^{+}$) and below ($z^{-}$) |
---|
| 305 | the level in which $\theta_{l}$ is defined. |
---|
| 306 | \newline |
---|
| 307 | The upward and downward irradiance $F\textnormal{\textuparrow}$ and $F\textnormal{\textdownarrow}$ are defined as follows: |
---|
| 308 | \begin{eqnarray} |
---|
| 309 | \label{eq:F_up} |
---|
| 310 | F\textnormal{\textuparrow}(z) & = & |
---|
| 311 | B(0) + \varepsilon\textnormal{\textuparrow}(z,0)\left(B(z)-B(0)\right) \\ |
---|
| 312 | \label{eq:F_down} |
---|
| 313 | F\textnormal{\textdownarrow}(z) & = & |
---|
| 314 | F\textnormal{\textdownarrow}(z_{\mathrm{top}}) |
---|
| 315 | + \varepsilon\textnormal{\textdownarrow}(z,z_{\mathrm{top}})\left(B(z)-F\textnormal{\textdownarrow}(z_{\mathrm{top}})\right) |
---|
| 316 | \end{eqnarray} |
---|
| 317 | $F\textnormal{\textdownarrow}(z_{\mathrm{top}})$ describes the impinging irradiance at the upper boundary of the model domain which has to be |
---|
| 318 | prescribed. $B(0)$ and $B(z)$ represent the black body emission at the ground and the height $z$ respectively. |
---|
| 319 | $\varepsilon\textnormal{\textuparrow}(z,0)$ and $\varepsilon\textnormal{\textdownarrow}(z,z_{\mathrm{top}})$ stand for the effective |
---|
| 320 | cloud emissivity of the liquid water between the ground and the level $z$ and between $z$ and the upper boundary of the model domain |
---|
| 321 | $z_{\mathrm{top}}$ respectively. They are defined as |
---|
| 322 | \begin{eqnarray} |
---|
| 323 | \label{eq:epsilon_up} |
---|
| 324 | \varepsilon\textnormal{\textuparrow}(z,0) & = & |
---|
| 325 | 1- \exp\left(-a\cdot LWP(0,z)\right)\\ |
---|
| 326 | \label{eq:epsilon_down} |
---|
| 327 | \varepsilon\textnormal{\textdownarrow}(z,z_{\mathrm{top}}) & = & |
---|
| 328 | 1- \exp\left(-b\cdot LWP(z,z_{\mathrm{top}})\right) |
---|
| 329 | \end{eqnarray} |
---|
| 330 | $LWP(z_{1},z_{2})$ describes the liquid water path which is the vertically added content of liquid water above each grid column: |
---|
| 331 | \begin{eqnarray} |
---|
| 332 | LWP(z_{1},z_{2}) & = & \int_{z_{1}}^{z_{2}}\mathrm{dz}\,\rho\cdot\overline q_{l}. |
---|
| 333 | \label{eq:LWP} |
---|
| 334 | \end{eqnarray} |
---|
| 335 | $a$ and $b$ are called mass absorption coefficients. Their empirical values are based on \linebreak |
---|
| 336 | \cite{stephans78} with $a=130\,\mathrm{m^{2}kg^{-1}}$ and $b=158\,\mathrm{m^{2}kg^{-1}}$. |
---|
| 337 | \newline |
---|
| 338 | The assumptions for the validity of this parameterization are: |
---|
| 339 | \begin{itemize} |
---|
| 340 | \item Horizontal divergences in radiation are neglected. |
---|
| 341 | \item Only absorption and emission of long-wave radiation due to water vapour and cloud droplets is considered. |
---|
| 342 | \item The atmosphere is assumed to have constant in-situ temperature above and below the regarded level except for the earth surface. |
---|
| 343 | \end{itemize} |
---|
| 344 | |
---|
| 345 | \subsection{Precipitation model} |
---|
| 346 | The source term for precipitation processes is parameterized via a simplified scheme of \cite{kessler69}: |
---|
| 347 | \begin{eqnarray} |
---|
| 348 | \left(\frac{\partial \overline q}{\partial t}\right)_{\mathrm{PREC}} & = & |
---|
| 349 | \begin{cases} |
---|
| 350 | \left(\overline q_{l}-\overline q_{l_{\mathrm{crit}}}\right)\cdot \tau & |
---|
| 351 | \quad\overline q_{l} > \overline q_{l_{\mathrm{crit}}} \\ |
---|
| 352 | 0 & \quad\overline q_{l} \leq \overline q_{l_{\mathrm{crit}}} |
---|
| 353 | \end{cases} |
---|
| 354 | \label{precip_term_q} |
---|
| 355 | \end{eqnarray} |
---|
| 356 | The precipitation leaves the grid volume immediately if the threshold of the liquid water content |
---|
| 357 | $\overline q_{l_{\mathrm{crit}}}=0.5\,\mathrm{g/kg}$ is exceeded. Hence, evaporation of the rain drops does not occur. |
---|
| 358 | $\tau$ is a time scale with a value of 0.001\,s. |
---|
| 359 | \newline |
---|
| 360 | The influence of the precipitation on the temperature is as follows: |
---|
| 361 | \begin{eqnarray} |
---|
| 362 | \left(\frac{\partial \overline\theta_{l}}{\partial t}\right)_{\mathrm{PREC}} & = & |
---|
| 363 | -\frac{L_{v}}{c_{p}}\left(\frac{\theta}{T}\right)\left(\frac{\partial \overline q}{\partial t}\right)_{\mathrm{PREC}} |
---|
| 364 | \label{precip_term_pt} |
---|
| 365 | \end{eqnarray} |
---|
| 366 | |
---|
| 367 | \section*{List of symbols} |
---|
| 368 | \setlength{\extrarowheight}{0.8mm} |
---|
| 369 | \begin{longtable}{p{2.5cm} p{9.0cm} p{2.5cm}} |
---|
| 370 | \toprule |
---|
| 371 | \addlinespace |
---|
| 372 | \textbf{Variable} & \textbf{Description} &\textbf{Value} \\ |
---|
| 373 | \midrule |
---|
| 374 | $B$ & black body radiation & \\ |
---|
| 375 | $c_{p}$ & heat capacity for dry air with p=const & $1005\,\mathrm{J\,K^{-1}kg^{-1}}$ \\ |
---|
| 376 | $d$ & normal distance to the nearest solid surface & \\ |
---|
| 377 | $\overline e$ & sub-grid scale turbulent kinetic energy & \\ |
---|
| 378 | $e_{s}$ & saturation vapour pressure & \\ |
---|
| 379 | $f_{i}$ & Coriolis parameter $i\in\{1,2,3\}$ & \\ |
---|
| 380 | $F\textnormal{\textuparrow}$ & upward irradiance & \\ |
---|
| 381 | $F\textnormal{\textdownarrow}$ & downward irradiance & \\ |
---|
| 382 | $i$, $j$, $k$ & integer indices & \\ |
---|
| 383 | $K_{h}$ & turbulent diffusion coefficient for momentum & \\ |
---|
| 384 | $K_{m}$ & turbulent diffusion coefficient for heat & \\ |
---|
| 385 | $K_{1}$ & coefficient & \\ |
---|
| 386 | $K_{2}$ & coefficient & \\ |
---|
| 387 | $l$ & mixing length & \\ |
---|
| 388 | $L_{v}$ & heat of evaporation & $2.5\cdot 10^{6}\,\mathrm{J\,kg^{-1}}$ \\ |
---|
| 389 | $LWP$ & liquid water path & \\ |
---|
| 390 | $R$ & gas constant for dry air & $287\,\mathrm{J\,K^{-1}kg^{-1}}$\\ |
---|
| 391 | $T$ & actual temperature & \\ |
---|
| 392 | $T_{l}$ & actual liquid water temperature & \\ |
---|
| 393 | $u$, $v$, $w$, $u_{i}$ & velocity components, $i\in\{1,2,3\}$ & \\ |
---|
| 394 | $p_{0}$ & hydrostatic pressure & \\ |
---|
| 395 | $q$ & total water content & \\ |
---|
| 396 | $q_{l}$ & liquid water content & \\ |
---|
| 397 | $q_{l_{\mathrm{crit}}}$ & threshold for the formation of precipitation & \\ |
---|
| 398 | $q_{s}$ & specific humidity in case of saturation & \\ |
---|
| 399 | $q_{v}$ & specific humidity & \\ |
---|
| 400 | $x$, $y$, $z$, $x_{i}$ & Cartesian coordinates, $i\in\{1,2,3\}$ & \\ |
---|
| 401 | $\Delta$ & characteristic grid length & \\ |
---|
| 402 | $\epsilon$ & dissipation of sub-grid scale turbulent kinetic energy & \\ |
---|
| 403 | $\varepsilon\textnormal{\textuparrow}$ & upward effective cloud emissivity & \\ |
---|
| 404 | $\varepsilon\textnormal{\textdownarrow}$ & downward effective cloud emissivity & \\ |
---|
| 405 | $\kappa$ &$R/c_{p}$ & 0.286 \\ |
---|
| 406 | $\rho$ & air density & \\ |
---|
| 407 | $\tau$ & time scale for the Kessler scheme & \\ |
---|
| 408 | $\theta$ & potential temperature & \\ |
---|
| 409 | $\theta_{l}$ & liquid water potential temperature & \\ |
---|
| 410 | $\theta_{v}$ & virtual potential temperature & \\ |
---|
| 411 | $\theta_{0}$ & reference value for the potential temperature & \\ |
---|
| 412 | $\overline\psi$ & resolved scale variable & \\ |
---|
| 413 | $\psi^{'}$ & sub-grid scale variable & \\ |
---|
| 414 | $\psi^{\ast}$ & departure from the basic state (Boussinesq approximation) & \\ |
---|
| 415 | $\langle\psi\rangle$ & horizontal mean \\ |
---|
| 416 | \addlinespace |
---|
| 417 | \bottomrule |
---|
| 418 | \end{longtable} |
---|
| 419 | |
---|
| 420 | \setlength\labelsep{0pt} |
---|
| 421 | \begin{bibliographie}{} |
---|
| 422 | \bibitem[Betts (1973)]{betts73} |
---|
| 423 | \textbf{Betts, A. K., 1973:} Non-precipitating cumulus convection and its parameterization. |
---|
| 424 | \textit{Quart. J. R. Meteorol. Soc.}, \textbf{99}, 178-196. |
---|
| 425 | \bibitem[Bougeault (1982)]{bougeault82} |
---|
| 426 | \textbf{Bougeault, P., 1982:} Modeling the trade-wind cumulus boundary layer. Part I: Testing the ensemble cloud relations |
---|
| 427 | against numerical data. \textit{J. Atmos. Sci.}, \textbf{38}, 2414-2428. |
---|
| 428 | \bibitem[Cox (1976)]{cox76} |
---|
| 429 | \textbf{Cox, S. K., 1976:} Observations of cloud infrared emissivity. |
---|
| 430 | \textit{J. Atmos. Sci.}, \textbf{33}, 287-289. |
---|
| 431 | \bibitem[Cuijpers and Duynkerke (1993)]{cuijpers93} |
---|
| 432 | \textbf{Cuijpers, J. W. M. and P. G. Duynkerke, 1993:} Large eddy simulation of trade wind cumulus clouds. |
---|
| 433 | \textit{J. Atmos. Sci.}, \textbf{50}, 3894-3908. |
---|
| 434 | \bibitem[Deardorff (1976)]{deardorff76} |
---|
| 435 | \textbf{Deardorff, J. W., 1976:} Usefulness of liquid-water potential temperature in a shallow-cloud model. |
---|
| 436 | \textit{J. Appl. Meteor.}, \textbf{15}, 98-102. |
---|
| 437 | \bibitem[Deardorff (1980)]{deardorff80} |
---|
| 438 | \textbf{Deardorff, J. W., 1980:} Stratocumulus-capped mixed layers derived from a three-dimensional model. |
---|
| 439 | \textit{Boundary-Layer Meteorol.}, \textbf{18}, 495-527. |
---|
| 440 | \bibitem[Kessler (1969)]{kessler69} |
---|
| 441 | \textbf{Kessler, E., 1969:} On the distribution and continuity of water substance in atmospheric circulations. |
---|
| 442 | \textit{Met. Monogr.}, \textbf{32}, 84 pp. |
---|
| 443 | \bibitem[M\"{u}ller and Chlond (1996)]{chlond96} |
---|
| 444 | \textbf{M\"{u}ller, G. A. and A. Chlond, 1996:} Three-dimensional numerical study of cell broadening during cold-air outbreaks. |
---|
| 445 | \textit{Boundary-Layer Meteorol.}, \textbf{81}, 289-323. |
---|
| 446 | \bibitem[Ogura (1963)]{ogura63} |
---|
| 447 | \textbf{Ogura, Y., 1963:} The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: |
---|
| 448 | A numerical calculation. \textit{J. Atmos. Sci.}, \textbf{20}, 407-424. |
---|
| 449 | \bibitem[Orville (1965)]{orville65} |
---|
| 450 | \textbf{Orville, J. D., 1965:} A numerical study of the initiation of cumulus clouds over mountainous terrain. |
---|
| 451 | \textit{J. Atmos. Sci.}, \textbf{22}, 684-699. |
---|
| 452 | \bibitem[Sommeria and Deardorff (1977)]{sommeria77} |
---|
| 453 | \textbf{Sommeria, G. and J. W. Deardorff, 1977:} Subgrid-scale condensation in models of nonprecipitating clouds. |
---|
| 454 | \textit{J. Atmos. Sci.}, \textbf{34}, 344-355. |
---|
| 455 | \bibitem[Stephans (1978)]{stephans78} |
---|
| 456 | \textbf{Stephans, G. L., 1978:} Radiation profiles in extended water clouds. II: Parameterization schemes. |
---|
| 457 | \textit{J. Atmos. Sci.}, \textbf{35}, 2123-2132. |
---|
| 458 | \end{bibliographie} |
---|
| 459 | |
---|
| 460 | \end {document} |
---|