source: palm/trunk/DOC/app/chapter_4.1.html @ 354

Last change on this file since 354 was 354, checked in by maronga, 16 years ago

xy cross section output of sensible and latent heatflux is now available

  • Property svn:keywords set to Id
File size: 228.2 KB
Line 
1<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html><head>
3
4
5
6
7
8
9
10 
11 
12 
13 
14 
15 
16  <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
17
18
19
20
21
22
23 
24 
25 
26 
27 
28 
29  <title>PALM chapter 4.1</title></head>
30<body>
31
32
33
34
35
36
37<h3><a name="chapter4.1"></a>4.1
38Initialization parameters</h3>
39
40
41
42
43
44
45
46<br>
47
48
49
50
51
52
53<table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2">
54
55
56
57
58
59
60 <tbody>
61
62
63
64
65
66
67
68    <tr>
69
70
71
72
73
74
75 <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td>
76
77
78
79
80
81
82
83      <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td>
84
85
86
87
88
89
90
91      <td style="vertical-align: top;"> 
92     
93     
94     
95     
96     
97     
98      <p><b><font size="4">Default</font></b> <br>
99
100
101
102
103
104
105 <b><font size="4">value</font></b></p>
106
107
108
109
110
111
112 </td>
113
114
115
116
117
118
119
120      <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td>
121
122
123
124
125
126
127
128    </tr>
129
130
131
132
133
134
135 <tr>
136
137
138
139
140
141
142 <td style="vertical-align: top;">
143     
144     
145     
146     
147     
148     
149      <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p>
150
151
152
153
154
155
156
157      </td>
158
159
160
161
162
163
164 <td style="vertical-align: top;">L</td>
165
166
167
168
169
170
171
172      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
173
174
175
176
177
178
179 <td style="vertical-align: top;"> 
180     
181     
182     
183     
184     
185     
186      <p style="font-style: normal;">Near-surface adjustment of the
187mixing length to the Prandtl-layer law.&nbsp; </p>
188
189
190
191
192
193
194 
195     
196     
197     
198     
199     
200     
201      <p>Usually
202the mixing length in LES models l<sub>LES</sub>
203depends (as in PALM) on the grid size and is possibly restricted
204further in case of stable stratification and near the lower wall (see
205parameter <a href="#wall_adjustment">wall_adjustment</a>).
206With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span>
207the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi
208is calculated
209and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>,
210l<sub>PR</sub>). This usually gives a decrease of the
211mixing length at
212the bottom boundary and considers the fact that eddy sizes
213decrease in the vicinity of the wall.&nbsp; </p>
214
215
216
217
218
219
220 
221     
222     
223     
224     
225     
226     
227      <p style="font-style: normal;"><b>Warning:</b> So
228far, there is
229no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> !&nbsp; </p>
230
231
232
233
234
235
236
237     
238     
239     
240     
241     
242     
243      <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the
244Prandtl-layer being
245switched on (see <a href="#prandtl_layer">prandtl_layer</a>)
246      <span style="font-style: italic;">'(u*)** 2+neumann'</span>
247should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>),
248otherwise the near-surface value of the TKE is not in agreement with
249the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz
250should provide the same value for K<sub>m</sub>). A warning
251is given,
252if this is not the case.</p>
253
254
255
256
257
258
259 </td>
260
261
262
263
264
265
266 </tr>
267
268
269
270
271
272
273 <tr>
274
275
276
277
278
279
280
281      <td style="vertical-align: top;"> 
282     
283     
284     
285     
286     
287     
288      <p><a name="alpha_surface"></a><b>alpha_surface</b></p>
289
290
291
292
293
294
295
296      </td>
297
298
299
300
301
302
303 <td style="vertical-align: top;">R<br>
304
305
306
307
308
309
310 </td>
311
312
313
314
315
316
317
318      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
319
320
321
322
323
324
325 </td>
326
327
328
329
330
331
332
333      <td style="vertical-align: top;"> 
334     
335     
336     
337     
338     
339     
340      <p style="font-style: normal;">Inclination of the model domain
341with respect to the horizontal (in degrees).&nbsp; </p>
342
343
344
345
346
347
348 
349     
350     
351     
352     
353     
354     
355      <p style="font-style: normal;">By means of <b>alpha_surface</b>
356the model domain can be inclined in x-direction with respect to the
357horizontal. In this way flows over inclined surfaces (e.g. drainage
358flows, gravity flows) can be simulated. In case of <b>alpha_surface
359      </b>/= <span style="font-style: italic;">0</span>
360the buoyancy term
361appears both in
362the equation of motion of the u-component and of the w-component.<br>
363
364
365
366
367
368
369
370      </p>
371
372
373
374
375
376
377 
378     
379     
380     
381     
382     
383     
384      <p style="font-style: normal;">An inclination
385is only possible in
386case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a>
387and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p>
388
389
390
391
392
393
394
395     
396     
397     
398     
399     
400     
401      <p>Runs with inclined surface still require additional
402user-defined code as well as modifications to the default code. Please
403ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM
404developer&nbsp; group</a>.</p>
405
406
407
408
409
410
411 </td>
412
413
414
415
416
417
418 </tr>
419
420
421
422
423
424
425
426    <tr>
427
428
429
430
431
432
433 <td style="vertical-align: top;"> 
434     
435     
436     
437     
438     
439     
440      <p><a name="bc_e_b"></a><b>bc_e_b</b></p>
441
442
443
444
445
446
447 </td>
448
449
450
451
452
453
454
455      <td style="vertical-align: top;">C * 20</td>
456
457
458
459
460
461
462 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
463
464
465
466
467
468
469
470      <td style="vertical-align: top;"> 
471     
472     
473     
474     
475     
476     
477      <p style="font-style: normal;">Bottom boundary condition of the
478TKE.&nbsp; </p>
479
480
481
482
483
484
485 
486     
487     
488     
489     
490     
491     
492      <p><b>bc_e_b</b> may be
493set to&nbsp;<span style="font-style: italic;">'neumann'</span>
494or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>.
495      <b>bc_e_b</b>
496= <span style="font-style: italic;">'neumann'</span>
497yields to
498e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated
499via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span>
500also yields to
501e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated
502diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if
503a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>).
504If this is not the case, a warning is given and <b>bc_e_b</b>
505is reset
506to <span style="font-style: italic;">'neumann'</span>.&nbsp;
507      </p>
508
509
510
511
512
513
514 
515     
516     
517     
518     
519     
520     
521      <p style="font-style: normal;">At the top
522boundary a Neumann
523boundary condition is generally used: (e(nz+1) = e(nz)).</p>
524
525
526
527
528
529
530 </td>
531
532
533
534
535
536
537
538    </tr>
539
540
541
542
543
544
545 <tr>
546
547
548
549
550
551
552 <td style="vertical-align: top;">
553     
554     
555     
556     
557     
558     
559      <p><a name="bc_lr"></a><b>bc_lr</b></p>
560
561
562
563
564
565
566
567      </td>
568
569
570
571
572
573
574 <td style="vertical-align: top;">C * 20</td>
575
576
577
578
579
580
581
582      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
583
584
585
586
587
588
589
590      <td style="vertical-align: top;">Boundary
591condition along x (for all quantities).<br>
592
593
594
595
596
597
598 <br>
599
600
601
602
603
604
605
606By default, a cyclic boundary condition is used along x.<br>
607
608
609
610
611
612
613 <br>
614
615
616
617
618
619
620
621      <span style="font-weight: bold;">bc_lr</span> may
622also be
623assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
624(inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span>
625(inflow from
626right, outflow to the left). This requires the multi-grid method to be
627used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
628and it also requires cyclic boundary conditions along y (see&nbsp;<a href="#bc_ns">bc_ns</a>).<br>
629
630
631
632
633
634
635 <br>
636
637
638
639
640
641
642
643In case of these non-cyclic lateral boundaries, a Dirichlet condition
644is used at the inflow for all quantities (initial vertical profiles -
645see <a href="#initializing_actions">initializing_actions</a>
646- are fixed during the run) except u, to which a Neumann (zero
647gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
648gradient) condition is used for the scalars. For perturbation
649pressure Neumann (zero gradient) conditions are assumed both at the
650inflow and at the outflow.<br>
651
652
653
654
655
656
657 <br>
658
659
660
661
662
663
664
665When using non-cyclic lateral boundaries, a filter is applied to the
666velocity field in the vicinity of the outflow in order to suppress any
667reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a>
668and <a href="#outflow_damping_width">outflow_damping_width</a>).<br>
669
670
671
672
673
674
675
676      <br>
677
678
679
680
681
682
683
684In order to maintain a turbulent state of the flow, it may be
685neccessary to continuously impose perturbations on the horizontal
686velocity field in the vicinity of the inflow throughout the whole run.
687This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>.
688The horizontal range to which these perturbations are applied is
689controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a>
690and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>.
691The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>,
692      <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>,
693and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>.
694The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br>
695
696
697
698
699
700
701
702      <br>
703
704
705
706
707
708
709
710In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver
711at_all_substeps</a> = .T. should be used.<br>
712
713
714
715
716
717
718 <br>
719
720
721
722
723
724
725 <span style="font-weight: bold;">Note:</span><br>
726
727
728
729
730
731
732
733Using non-cyclic lateral boundaries requires very sensitive adjustments
734of the inflow (vertical profiles) and the bottom boundary conditions,
735e.g. a surface heating should not be applied near the inflow boundary
736because this may significantly disturb the inflow. Please check the
737model results very carefully.</td>
738
739
740
741
742
743
744 </tr>
745
746
747
748
749
750
751 <tr>
752
753
754
755
756
757
758 <td style="vertical-align: top;"> 
759     
760     
761     
762     
763     
764     
765      <p><a name="bc_ns"></a><b>bc_ns</b></p>
766
767
768
769
770
771
772
773      </td>
774
775
776
777
778
779
780 <td style="vertical-align: top;">C * 20</td>
781
782
783
784
785
786
787
788      <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td>
789
790
791
792
793
794
795
796      <td style="vertical-align: top;">Boundary
797condition along y (for all quantities).<br>
798
799
800
801
802
803
804 <br>
805
806
807
808
809
810
811
812By default, a cyclic boundary condition is used along y.<br>
813
814
815
816
817
818
819 <br>
820
821
822
823
824
825
826
827      <span style="font-weight: bold;">bc_ns</span> may
828also be
829assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span>
830(inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span>
831(inflow from front ("south"), outflow to the rear ("north")). This
832requires the multi-grid
833method to be used for solving the Poisson equation for perturbation
834pressure (see <a href="chapter_4.2.html#psolver">psolver</a>)
835and it also requires cyclic boundary conditions along x (see<br>
836
837
838
839
840
841
842 <a href="#bc_lr">bc_lr</a>).<br>
843
844
845
846
847
848
849 <br>
850
851
852
853
854
855
856
857In case of these non-cyclic lateral boundaries, a Dirichlet condition
858is used at the inflow for all quantities (initial vertical profiles -
859see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a>
860- are fixed during the run) except u, to which a Neumann (zero
861gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero
862gradient) condition is used for the scalars. For perturbation
863pressure Neumann (zero gradient) conditions are assumed both at the
864inflow and at the outflow.<br>
865
866
867
868
869
870
871 <br>
872
873
874
875
876
877
878
879For further details regarding non-cyclic lateral boundary conditions
880see <a href="#bc_lr">bc_lr</a>.</td>
881
882
883
884
885
886
887 </tr>
888
889
890
891
892
893
894
895    <tr>
896
897
898
899
900
901
902 <td style="vertical-align: top;"> 
903     
904     
905     
906     
907     
908     
909      <p><a name="bc_p_b"></a><b>bc_p_b</b></p>
910
911
912
913
914
915
916 </td>
917
918
919
920
921
922
923
924      <td style="vertical-align: top;">C * 20</td>
925
926
927
928
929
930
931 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
932
933
934
935
936
937
938
939      <td style="vertical-align: top;"> 
940     
941     
942     
943     
944     
945     
946      <p style="font-style: normal;">Bottom boundary condition of the
947perturbation pressure.&nbsp; </p>
948
949
950
951
952
953
954 
955     
956     
957     
958     
959     
960     
961      <p>Allowed values
962are <span style="font-style: italic;">'dirichlet'</span>,
963      <span style="font-style: italic;">'neumann'</span>
964and <span style="font-style: italic;">'neumann+inhomo'</span>.&nbsp;
965      <span style="font-style: italic;">'dirichlet'</span>
966sets
967p(k=0)=0.0,&nbsp; <span style="font-style: italic;">'neumann'</span>
968sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span>
969corresponds to an extended Neumann boundary condition where heat flux
970or temperature inhomogeneities near the
971surface (pt(k=1))&nbsp; are additionally regarded (see Shen and
972LeClerc
973(1995, Q.J.R. Meteorol. Soc.,
9741209)). This condition is only permitted with the Prandtl-layer
975switched on (<a href="#prandtl_layer">prandtl_layer</a>),
976otherwise the run is terminated.&nbsp; </p>
977
978
979
980
981
982
983 
984     
985     
986     
987     
988     
989     
990      <p>Since
991at the bottom boundary of the model the vertical
992velocity
993disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>)
994dp/dz = 0 should
995be used, which leaves the vertical component w unchanged when the
996pressure solver is applied. Simultaneous use of the Neumann boundary
997conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>)
998usually yields no consistent solution for the perturbation pressure and
999should be avoided.</p>
1000
1001
1002
1003
1004
1005
1006 </td>
1007
1008
1009
1010
1011
1012
1013 </tr>
1014
1015
1016
1017
1018
1019
1020 <tr>
1021
1022
1023
1024
1025
1026
1027 <td style="vertical-align: top;"> 
1028     
1029     
1030     
1031     
1032     
1033     
1034      <p><a name="bc_p_t"></a><b>bc_p_t</b></p>
1035
1036
1037
1038
1039
1040
1041
1042      </td>
1043
1044
1045
1046
1047
1048
1049 <td style="vertical-align: top;">C * 20</td>
1050
1051
1052
1053
1054
1055
1056
1057      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1058
1059
1060
1061
1062
1063
1064
1065      <td style="vertical-align: top;"> 
1066     
1067     
1068     
1069     
1070     
1071     
1072      <p style="font-style: normal;">Top boundary condition of the
1073perturbation pressure.&nbsp; </p>
1074
1075
1076
1077
1078
1079
1080 
1081     
1082     
1083     
1084     
1085     
1086     
1087      <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span>
1088(p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span>
1089(p(k=nz+1)=p(k=nz)).&nbsp; </p>
1090
1091
1092
1093
1094
1095
1096 
1097     
1098     
1099     
1100     
1101     
1102     
1103      <p>Simultaneous use
1104of Neumann boundary conditions both at the
1105top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>)
1106usually yields no consistent solution for the perturbation pressure and
1107should be avoided. Since at the bottom boundary the Neumann
1108condition&nbsp; is a good choice (see <a href="#bc_p_b">bc_p_b</a>),
1109a Dirichlet condition should be set at the top boundary.</p>
1110
1111
1112
1113
1114
1115
1116 </td>
1117
1118
1119
1120
1121
1122
1123
1124    </tr>
1125
1126
1127
1128
1129
1130
1131 <tr>
1132
1133
1134
1135
1136
1137
1138 <td style="vertical-align: top;">
1139     
1140     
1141     
1142     
1143     
1144     
1145      <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p>
1146
1147
1148
1149
1150
1151
1152
1153      </td>
1154
1155
1156
1157
1158
1159
1160 <td style="vertical-align: top;">C*20</td>
1161
1162
1163
1164
1165
1166
1167
1168      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1169
1170
1171
1172
1173
1174
1175
1176      <td style="vertical-align: top;"> 
1177     
1178     
1179     
1180     
1181     
1182     
1183      <p style="font-style: normal;">Bottom boundary condition of the
1184potential temperature.&nbsp; </p>
1185
1186
1187
1188
1189
1190
1191 
1192     
1193     
1194     
1195     
1196     
1197     
1198      <p>Allowed values
1199are <span style="font-style: italic;">'dirichlet'</span>
1200(pt(k=0) = const. = <a href="#pt_surface">pt_surface</a>
1201+ <a href="#pt_surface_initial_change">pt_surface_initial_change</a>;
1202the user may change this value during the run using user-defined code)
1203and <span style="font-style: italic;">'neumann'</span>
1204(pt(k=0)=pt(k=1)).&nbsp; <br>
1205
1206
1207
1208
1209
1210
1211
1212When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b>
1213= <span style="font-style: italic;">'neumann'</span>
1214must be used, because otherwise the resolved scale may contribute to
1215the surface flux so that a constant value cannot be guaranteed.</p>
1216
1217
1218
1219
1220
1221
1222     
1223     
1224     
1225     
1226     
1227     
1228      <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable,&nbsp;<a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p>
1229
1230
1231
1232
1233
1234
1235
1236      </td>
1237
1238
1239
1240
1241
1242
1243 </tr>
1244
1245
1246
1247
1248
1249
1250 <tr>
1251
1252
1253
1254
1255
1256
1257 <td style="vertical-align: top;"> 
1258     
1259     
1260     
1261     
1262     
1263     
1264      <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p>
1265
1266
1267
1268
1269
1270
1271
1272      </td>
1273
1274
1275
1276
1277
1278
1279 <td style="vertical-align: top;">C * 20</td>
1280
1281
1282
1283
1284
1285
1286
1287      <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td>
1288
1289
1290
1291
1292
1293
1294
1295      <td style="vertical-align: top;"> 
1296     
1297     
1298     
1299     
1300     
1301     
1302      <p style="font-style: normal;">Top boundary condition of the
1303potential temperature.&nbsp; </p>
1304
1305
1306
1307
1308
1309
1310 
1311     
1312     
1313     
1314     
1315     
1316     
1317      <p>Allowed are the
1318values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1)
1319does not change during the run), <span style="font-style: italic;">'neumann'</span>
1320(pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>.
1321With the 'initial_gradient'-condition the value of the temperature
1322gradient at the top is
1323calculated from the initial
1324temperature profile (see <a href="#pt_surface">pt_surface</a>,
1325      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>)
1326by bc_pt_t_val = (pt_init(k=nz+1) -
1327pt_init(k=nz)) / dzu(nz+1).<br>
1328
1329
1330
1331
1332
1333
1334
1335Using this value (assumed constant during the
1336run) the temperature boundary values are calculated as&nbsp; </p>
1337
1338
1339
1340
1341
1342
1343
1344     
1345     
1346     
1347     
1348     
1349     
1350      <ul>
1351
1352
1353
1354
1355
1356
1357 
1358       
1359       
1360       
1361       
1362       
1363       
1364        <p style="font-style: normal;">pt(k=nz+1) =
1365pt(k=nz) +
1366bc_pt_t_val * dzu(nz+1)</p>
1367
1368
1369
1370
1371
1372
1373 
1374     
1375     
1376     
1377     
1378     
1379     
1380      </ul>
1381
1382
1383
1384
1385
1386
1387 
1388     
1389     
1390     
1391     
1392     
1393     
1394      <p style="font-style: normal;">(up to k=nz the prognostic
1395equation for the temperature is solved).<br>
1396
1397
1398
1399
1400
1401
1402
1403When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>),
1404      <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span>
1405must be used, because otherwise the resolved scale may contribute to
1406the top flux so that a constant value cannot be guaranteed.</p>
1407
1408
1409
1410
1411
1412
1413 </td>
1414
1415
1416
1417
1418
1419
1420
1421    </tr>
1422
1423
1424
1425
1426
1427
1428 <tr>
1429
1430
1431
1432
1433
1434
1435 <td style="vertical-align: top;">
1436     
1437     
1438     
1439     
1440     
1441     
1442      <p><a name="bc_q_b"></a><b>bc_q_b</b></p>
1443
1444
1445
1446
1447
1448
1449
1450      </td>
1451
1452
1453
1454
1455
1456
1457 <td style="vertical-align: top;">C * 20</td>
1458
1459
1460
1461
1462
1463
1464
1465      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1466
1467
1468
1469
1470
1471
1472
1473      <td style="vertical-align: top;"> 
1474     
1475     
1476     
1477     
1478     
1479     
1480      <p style="font-style: normal;">Bottom boundary condition of the
1481specific humidity / total water content.&nbsp; </p>
1482
1483
1484
1485
1486
1487
1488 
1489     
1490     
1491     
1492     
1493     
1494     
1495      <p>Allowed
1496values are <span style="font-style: italic;">'dirichlet'</span>
1497(q(k=0) = const. = <a href="#q_surface">q_surface</a>
1498+ <a href="#q_surface_initial_change">q_surface_initial_change</a>;
1499the user may change this value during the run using user-defined code)
1500and <span style="font-style: italic;">'neumann'</span>
1501(q(k=0)=q(k=1)).&nbsp; <br>
1502
1503
1504
1505
1506
1507
1508
1509When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b>
1510= <span style="font-style: italic;">'neumann'</span>
1511must be used, because otherwise the resolved scale may contribute to
1512the surface flux so that a constant value cannot be guaranteed.</p>
1513
1514
1515
1516
1517
1518
1519
1520      </td>
1521
1522
1523
1524
1525
1526
1527 </tr>
1528
1529
1530
1531
1532
1533
1534 <tr>
1535
1536
1537
1538
1539
1540
1541 <td style="vertical-align: top;"> 
1542     
1543     
1544     
1545     
1546     
1547     
1548      <p><a name="bc_q_t"></a><b>bc_q_t</b></p>
1549
1550
1551
1552
1553
1554
1555
1556      </td>
1557
1558
1559
1560
1561
1562
1563 <td style="vertical-align: top;"><span style="font-style: italic;">C
1564* 20</span></td>
1565
1566
1567
1568
1569
1570
1571 <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1572
1573
1574
1575
1576
1577
1578
1579      <td style="vertical-align: top;"> 
1580     
1581     
1582     
1583     
1584     
1585     
1586      <p style="font-style: normal;">Top boundary condition of the
1587specific humidity / total water content.&nbsp; </p>
1588
1589
1590
1591
1592
1593
1594 
1595     
1596     
1597     
1598     
1599     
1600     
1601      <p>Allowed
1602are the values <span style="font-style: italic;">'dirichlet'</span>
1603(q(k=nz) and q(k=nz+1) do
1604not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1605With the Neumann boundary
1606condition the value of the humidity gradient at the top is calculated
1607from the
1608initial humidity profile (see <a href="#q_surface">q_surface</a>,
1609      <a href="#q_vertical_gradient">q_vertical_gradient</a>)
1610by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br>
1611
1612
1613
1614
1615
1616
1617
1618Using this value (assumed constant during the run) the humidity
1619boundary values
1620are calculated as&nbsp; </p>
1621
1622
1623
1624
1625
1626
1627 
1628     
1629     
1630     
1631     
1632     
1633     
1634      <ul>
1635
1636
1637
1638
1639
1640
1641 
1642       
1643       
1644       
1645       
1646       
1647       
1648        <p style="font-style: normal;">q(k=nz+1) =q(k=nz) +
1649bc_q_t_val * dzu(nz+1)</p>
1650
1651
1652
1653
1654
1655
1656 
1657     
1658     
1659     
1660     
1661     
1662     
1663      </ul>
1664
1665
1666
1667
1668
1669
1670 
1671     
1672     
1673     
1674     
1675     
1676     
1677      <p style="font-style: normal;">(up tp k=nz the prognostic
1678equation for q is solved). </p>
1679
1680
1681
1682
1683
1684
1685 </td>
1686
1687
1688
1689
1690
1691
1692 </tr>
1693
1694
1695
1696
1697
1698
1699 <tr>
1700
1701
1702
1703
1704
1705
1706
1707      <td style="vertical-align: top;"> 
1708     
1709     
1710     
1711     
1712     
1713     
1714      <p><a name="bc_s_b"></a><b>bc_s_b</b></p>
1715
1716
1717
1718
1719
1720
1721 </td>
1722
1723
1724
1725
1726
1727
1728
1729      <td style="vertical-align: top;">C * 20</td>
1730
1731
1732
1733
1734
1735
1736 <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
1737
1738
1739
1740
1741
1742
1743
1744      <td style="vertical-align: top;"> 
1745     
1746     
1747     
1748     
1749     
1750     
1751      <p style="font-style: normal;">Bottom boundary condition of the
1752scalar concentration.&nbsp; </p>
1753
1754
1755
1756
1757
1758
1759 
1760     
1761     
1762     
1763     
1764     
1765     
1766      <p>Allowed values
1767are <span style="font-style: italic;">'dirichlet'</span>
1768(s(k=0) = const. = <a href="#s_surface">s_surface</a>
1769+ <a href="#s_surface_initial_change">s_surface_initial_change</a>;
1770the user may change this value during the run using user-defined code)
1771and <span style="font-style: italic;">'neumann'</span>
1772(s(k=0) =
1773s(k=1)).&nbsp; <br>
1774
1775
1776
1777
1778
1779
1780
1781When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b>
1782= <span style="font-style: italic;">'neumann'</span>
1783must be used, because otherwise the resolved scale may contribute to
1784the surface flux so that a constant value cannot be guaranteed.</p>
1785
1786
1787
1788
1789
1790
1791
1792      </td>
1793
1794
1795
1796
1797
1798
1799 </tr>
1800
1801
1802
1803
1804
1805
1806 <tr>
1807
1808
1809
1810
1811
1812
1813 <td style="vertical-align: top;"> 
1814     
1815     
1816     
1817     
1818     
1819     
1820      <p><a name="bc_s_t"></a><b>bc_s_t</b></p>
1821
1822
1823
1824
1825
1826
1827
1828      </td>
1829
1830
1831
1832
1833
1834
1835 <td style="vertical-align: top;">C * 20</td>
1836
1837
1838
1839
1840
1841
1842
1843      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1844
1845
1846
1847
1848
1849
1850
1851      <td style="vertical-align: top;"> 
1852     
1853     
1854     
1855     
1856     
1857     
1858      <p style="font-style: normal;">Top boundary condition of the
1859scalar concentration.&nbsp; </p>
1860
1861
1862
1863
1864
1865
1866 
1867     
1868     
1869     
1870     
1871     
1872     
1873      <p>Allowed are the
1874values <span style="font-style: italic;">'dirichlet'</span>
1875(s(k=nz) and s(k=nz+1) do
1876not change during the run) and <span style="font-style: italic;">'neumann'</span>.
1877With the Neumann boundary
1878condition the value of the scalar concentration gradient at the top is
1879calculated
1880from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>)
1881by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br>
1882
1883
1884
1885
1886
1887
1888
1889Using this value (assumed constant during the run) the concentration
1890boundary values
1891are calculated as </p>
1892
1893
1894
1895
1896
1897
1898 
1899     
1900     
1901     
1902     
1903     
1904     
1905      <ul>
1906
1907
1908
1909
1910
1911
1912 
1913       
1914       
1915       
1916       
1917       
1918       
1919        <p style="font-style: normal;">s(k=nz+1) = s(k=nz) +
1920bc_s_t_val * dzu(nz+1)</p>
1921
1922
1923
1924
1925
1926
1927 
1928     
1929     
1930     
1931     
1932     
1933     
1934      </ul>
1935
1936
1937
1938
1939
1940
1941 
1942     
1943     
1944     
1945     
1946     
1947     
1948      <p style="font-style: normal;">(up to k=nz the prognostic
1949equation for the scalar concentration is
1950solved).</p>
1951
1952
1953
1954
1955
1956
1957 </td>
1958
1959
1960
1961
1962
1963
1964 </tr>
1965
1966
1967
1968
1969
1970
1971 <tr>
1972
1973
1974
1975
1976
1977
1978      <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td>
1979
1980
1981
1982
1983
1984
1985      <td style="vertical-align: top;">C * 20</td>
1986
1987
1988
1989
1990
1991
1992      <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td>
1993
1994
1995
1996
1997
1998
1999      <td style="vertical-align: top;">
2000     
2001     
2002     
2003     
2004     
2005     
2006      <p style="font-style: normal;">Top boundary condition of the salinity.&nbsp; </p>
2007
2008
2009
2010
2011
2012
2013 
2014     
2015     
2016     
2017     
2018     
2019     
2020      <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p>
2021
2022
2023
2024
2025
2026
2027     
2028     
2029     
2030     
2031     
2032     
2033      <p style="font-style: normal;">Allowed are the
2034values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1)
2035does not change during the run) and <span style="font-style: italic;">'neumann'</span>
2036(sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>.&nbsp;<br>
2037
2038
2039
2040
2041
2042
2043      <br>
2044
2045
2046
2047
2048
2049
2050
2051When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>),
2052      <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span>
2053must be used, because otherwise the resolved scale may contribute to
2054the top flux so that a constant value cannot be guaranteed.</p>
2055
2056
2057
2058
2059
2060
2061      </td>
2062
2063
2064
2065
2066
2067
2068    </tr>
2069
2070
2071
2072
2073
2074
2075    <tr>
2076
2077
2078
2079
2080
2081
2082 <td style="vertical-align: top;"> 
2083     
2084     
2085     
2086     
2087     
2088     
2089      <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p>
2090
2091
2092
2093
2094
2095
2096
2097      </td>
2098
2099
2100
2101
2102
2103
2104 <td style="vertical-align: top;">C * 20</td>
2105
2106
2107
2108
2109
2110
2111
2112      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2113
2114
2115
2116
2117
2118
2119
2120      <td style="vertical-align: top;"> 
2121     
2122     
2123     
2124     
2125     
2126     
2127      <p style="font-style: normal;">Bottom boundary condition of the
2128horizontal velocity components u and v.&nbsp; </p>
2129
2130
2131
2132
2133
2134
2135 
2136     
2137     
2138     
2139     
2140     
2141     
2142      <p>Allowed
2143values are <span style="font-style: italic;">'dirichlet' </span>and
2144      <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b>
2145= <span style="font-style: italic;">'dirichlet'</span>
2146yields the
2147no-slip condition with u=v=0 at the bottom. Due to the staggered grid
2148u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a>
2149(below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 *
2150dz. u=v=0 at the bottom is guaranteed using mirror boundary
2151condition:&nbsp; </p>
2152
2153
2154
2155
2156
2157
2158 
2159     
2160     
2161     
2162     
2163     
2164     
2165      <ul>
2166
2167
2168
2169
2170
2171
2172 
2173       
2174       
2175       
2176       
2177       
2178       
2179        <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = -
2180v(k=1)</p>
2181
2182
2183
2184
2185
2186
2187 
2188     
2189     
2190     
2191     
2192     
2193     
2194      </ul>
2195
2196
2197
2198
2199
2200
2201 
2202     
2203     
2204     
2205     
2206     
2207     
2208      <p style="font-style: normal;">The
2209Neumann boundary condition
2210yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) =
2211v(k=1).
2212With Prandtl - layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), the free-slip condition is not
2213allowed (otherwise the run will be terminated)<font color="#000000">.</font></p>
2214
2215
2216
2217
2218
2219
2220
2221      </td>
2222
2223
2224
2225
2226
2227
2228 </tr>
2229
2230
2231
2232
2233
2234
2235 <tr>
2236
2237
2238
2239
2240
2241
2242 <td style="vertical-align: top;"> 
2243     
2244     
2245     
2246     
2247     
2248     
2249      <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p>
2250
2251
2252
2253
2254
2255
2256
2257      </td>
2258
2259
2260
2261
2262
2263
2264 <td style="vertical-align: top;">C * 20</td>
2265
2266
2267
2268
2269
2270
2271
2272      <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td>
2273
2274
2275
2276
2277
2278
2279
2280      <td style="vertical-align: top;"> 
2281     
2282     
2283     
2284     
2285     
2286     
2287      <p style="font-style: normal;">Top boundary condition of the
2288horizontal velocity components u and v.&nbsp; </p>
2289
2290
2291
2292
2293
2294
2295 
2296     
2297     
2298     
2299     
2300     
2301     
2302      <p>Allowed
2303values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span>
2304and <span style="font-style: italic;">'neumann'</span>.
2305The
2306Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) =
2307vg(nz+1),
2308Neumann condition yields the free-slip condition with u(k=nz+1) =
2309u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations
2310for the velocities are solved). The special condition&nbsp;<span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) =
2311vg(nz+1) = 0.</p>
2312
2313
2314
2315
2316
2317
2318     
2319     
2320     
2321     
2322     
2323     
2324      <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a>&nbsp;is internally set ('neumann') and does not need to be prescribed.</p>
2325
2326
2327
2328
2329
2330
2331 </td>
2332
2333
2334
2335
2336
2337
2338 </tr>
2339
2340
2341
2342
2343
2344
2345 <tr>
2346
2347
2348
2349
2350
2351
2352      <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td>
2353
2354
2355
2356
2357
2358
2359      <td style="vertical-align: top;">R</td>
2360
2361
2362
2363
2364
2365
2366      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
2367
2368
2369
2370
2371
2372
2373      <td style="vertical-align: top;">
2374     
2375     
2376     
2377     
2378     
2379     
2380      <p>Kinematic salinity flux near the surface (in psu m/s).&nbsp;</p>
2381
2382
2383
2384
2385
2386
2387This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
2388     
2389     
2390     
2391     
2392     
2393     
2394      <p>The
2395respective salinity flux value is used
2396as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
2397condition must be used for the salinity, which is currently the only available condition.<br>
2398
2399
2400
2401
2402
2403
2404 </p>
2405
2406
2407
2408
2409
2410
2411 </td>
2412
2413
2414
2415
2416
2417
2418    </tr>
2419
2420
2421
2422
2423
2424
2425    <tr>
2426
2427
2428
2429
2430
2431
2432
2433      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td>
2434
2435
2436
2437
2438
2439
2440
2441      <td style="vertical-align: top;">R</td>
2442
2443
2444
2445
2446
2447
2448 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2449
2450
2451
2452
2453
2454
2455 <td>Height
2456of a single building in m.<br>
2457
2458
2459
2460
2461
2462
2463 <br>
2464
2465
2466
2467
2468
2469
2470 <span style="font-weight: bold;">building_height</span> must
2471be less than the height of the model domain. This parameter requires
2472the use of&nbsp;<a href="#topography">topography</a>
2473= <span style="font-style: italic;">'single_building'</span>.</td>
2474
2475
2476
2477
2478
2479
2480
2481    </tr>
2482
2483
2484
2485
2486
2487
2488 <tr>
2489
2490
2491
2492
2493
2494
2495 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td>
2496
2497
2498
2499
2500
2501
2502
2503      <td style="vertical-align: top;">R</td>
2504
2505
2506
2507
2508
2509
2510 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2511
2512
2513
2514
2515
2516
2517 <td><span style="font-style: italic;"></span>Width of a single
2518building in m.<br>
2519
2520
2521
2522
2523
2524
2525 <br>
2526
2527
2528
2529
2530
2531
2532
2533Currently, <span style="font-weight: bold;">building_length_x</span>
2534must be at least <span style="font-style: italic;">3
2535*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a>
2536      </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>.
2537This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2538= <span style="font-style: italic;">'single_building'</span>.</td>
2539
2540
2541
2542
2543
2544
2545
2546    </tr>
2547
2548
2549
2550
2551
2552
2553 <tr>
2554
2555
2556
2557
2558
2559
2560 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td>
2561
2562
2563
2564
2565
2566
2567
2568      <td style="vertical-align: top;">R</td>
2569
2570
2571
2572
2573
2574
2575 <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td>
2576
2577
2578
2579
2580
2581
2582 <td>Depth
2583of a single building in m.<br>
2584
2585
2586
2587
2588
2589
2590 <br>
2591
2592
2593
2594
2595
2596
2597
2598Currently, <span style="font-weight: bold;">building_length_y</span>
2599must be at least <span style="font-style: italic;">3
2600*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires
2601the use of&nbsp;<a href="#topography">topography</a>
2602= <span style="font-style: italic;">'single_building'</span>.</td>
2603
2604
2605
2606
2607
2608
2609
2610    </tr>
2611
2612
2613
2614
2615
2616
2617 <tr>
2618
2619
2620
2621
2622
2623
2624 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td>
2625
2626
2627
2628
2629
2630
2631
2632      <td style="vertical-align: top;">R</td>
2633
2634
2635
2636
2637
2638
2639 <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td>
2640
2641
2642
2643
2644
2645
2646
2647      <td>x-coordinate of the left building wall (distance between the
2648left building wall and the left border of the model domain) in m.<br>
2649
2650
2651
2652
2653
2654
2655
2656      <br>
2657
2658
2659
2660
2661
2662
2663
2664Currently, <span style="font-weight: bold;">building_wall_left</span>
2665must be at least <span style="font-style: italic;">1
2666*&nbsp;</span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a>&nbsp;
2667- 1 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a></span>.
2668This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2669= <span style="font-style: italic;">'single_building'</span>.<br>
2670
2671
2672
2673
2674
2675
2676
2677      <br>
2678
2679
2680
2681
2682
2683
2684
2685The default value&nbsp;<span style="font-weight: bold;">building_wall_left</span>
2686= <span style="font-style: italic;">( ( <a href="#nx">nx</a>&nbsp;+
26871 ) * <a href="#dx">dx</a> -&nbsp; <a href="#building_length_x">building_length_x</a> ) / 2</span>
2688centers the building in x-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2689
2690
2691
2692
2693
2694
2695 </tr>
2696
2697
2698
2699
2700
2701
2702 <tr>
2703
2704
2705
2706
2707
2708
2709
2710      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td>
2711
2712
2713
2714
2715
2716
2717
2718      <td style="vertical-align: top;">R</td>
2719
2720
2721
2722
2723
2724
2725 <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td>
2726
2727
2728
2729
2730
2731
2732
2733      <td>y-coordinate of the South building wall (distance between the
2734South building wall and the South border of the model domain) in m.<br>
2735
2736
2737
2738
2739
2740
2741
2742      <br>
2743
2744
2745
2746
2747
2748
2749
2750Currently, <span style="font-weight: bold;">building_wall_south</span>
2751must be at least <span style="font-style: italic;">1
2752*&nbsp;</span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a>&nbsp;
2753- 1 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a></span>.
2754This parameter requires the use of&nbsp;<a href="#topography">topography</a>
2755= <span style="font-style: italic;">'single_building'</span>.<br>
2756
2757
2758
2759
2760
2761
2762
2763      <br>
2764
2765
2766
2767
2768
2769
2770
2771The default value&nbsp;<span style="font-weight: bold;">building_wall_south</span>
2772= <span style="font-style: italic;">( ( <a href="#ny">ny</a>&nbsp;+
27731 ) * <a href="#dy">dy</a> -&nbsp; <a href="#building_length_y">building_length_y</a> ) / 2</span>
2774centers the building in y-direction.&nbsp;<font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td>
2775
2776
2777
2778
2779
2780
2781 </tr>
2782
2783
2784
2785
2786
2787
2788 <tr>
2789
2790      <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td>
2791
2792      <td style="vertical-align: top;">C * 20</td>
2793
2794      <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td>
2795
2796      <td style="vertical-align: top;">Canopy mode.<br>
2797
2798      <br>
2799
2800      <font color="#000000">
2801Besides using the default value, that will create a horizontally
2802homogeneous plant canopy that extends over the total horizontal
2803extension of the model domain, the user may add code to the user
2804interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a>
2805to allow further canopy&nbsp;modes. <br>
2806
2807      <br>
2808
2809The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if&nbsp;<a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td>
2810
2811    </tr>
2812
2813    <tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_height"></a>canyon_height</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">50.0</td><td>Street canyon height
2814in m.<br>
2815
2816
2817
2818
2819
2820
2821 <br>
2822
2823
2824
2825
2826
2827
2828 <span style="font-weight: bold;">canyon_height</span> must
2829be less than the height of the model domain. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2830= <span style="font-style: italic;">'single_street_canyon'</span>.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_x"></a>canyon_width_x</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in x-direction in m.<br>
2831
2832
2833
2834
2835
2836
2837 <br>
2838
2839
2840
2841
2842
2843
2844
2845Currently, <span style="font-weight: bold;">canyon_width_x</span>
2846must be at least <span style="font-style: italic;">3
2847*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dx">dx</a>
2848      </span><span style="font-style: italic;">- <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a></span>.
2849This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2850= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>. A non-default value implies a canyon orientation in y-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_y"></a>canyon_width_y</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in y-direction in m.<br>
2851
2852
2853
2854
2855
2856
2857 <br>
2858
2859
2860
2861
2862
2863
2864
2865Currently, <span style="font-weight: bold;">canyon_width_y</span>
2866must be at least <span style="font-style: italic;">3
2867*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and no more than <span style="font-style: italic;">(&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#ny">ny</a><span style="font-style: italic;"> - 1 )&nbsp;</span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dy">dy</a></span><span style="font-style: italic;"> - <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a></span>. This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2868= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span>.&nbsp;A non-default value implies a canyon orientation in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_left"></a>canyon_wall_left</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in x-direction</span></td><td>x-coordinate of the left canyon wall (distance between the
2869left canyon wall and the left border of the model domain) in m.<br>
2870
2871
2872
2873
2874
2875
2876
2877      <br>
2878
2879
2880
2881
2882
2883
2884
2885Currently, <span style="font-weight: bold;">canyon_wall_left</span>
2886must be at least <span style="font-style: italic;">1
2887*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#nx">nx</a>&nbsp;
2888- 1 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a></span>.
2889This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2890= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2891
2892
2893
2894
2895
2896
2897
2898      <br>
2899
2900
2901
2902
2903
2904
2905
2906The default value <span style="font-weight: bold;">canyon_wall_left</span>
2907= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#nx">nx</a>&nbsp;+
29081 ) * <a href="chapter_4.1.html#dx">dx</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> ) / 2</span>
2909centers the canyon in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_south"></a>canyon_wall_south</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in y-direction</span></td><td>y-coordinate of the South canyon wall (distance between the
2910South canyon wall and the South border of the model domain) in m.<br>
2911
2912
2913
2914
2915
2916
2917
2918      <br>
2919
2920
2921
2922
2923
2924
2925
2926Currently, <span style="font-weight: bold;">canyon_wall_south</span>
2927must be at least <span style="font-style: italic;">1
2928*&nbsp;</span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#ny">ny</a>&nbsp;
2929- 1 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a></span>.
2930This parameter requires&nbsp;<a href="chapter_4.1.html#topography">topography</a>
2931= <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br>
2932
2933
2934
2935
2936
2937
2938
2939      <br>
2940
2941
2942
2943
2944
2945
2946
2947The default value <span style="font-weight: bold;">canyon_wall_south</span>
2948= <span style="font-style: italic;">( ( <a href="chapter_4.1.html#ny">ny</a>&nbsp;+
29491 ) * <a href="chapter_4.1.html#dy">dy</a> -&nbsp;&nbsp;</span><a href="chapter_4.1.html#building_length_y"><span style="font-style: italic;"></span></a><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">canyon_wid</a><span style="font-style: italic;"><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">th_y</a> ) / 2</span>
2950centers the canyon in y-direction.</td></tr><tr>
2951
2952
2953
2954
2955
2956
2957
2958      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br>
2959
2960
2961
2962
2963
2964
2965
2966      </td>
2967
2968
2969
2970
2971
2972
2973 <td style="vertical-align: top;">L<br>
2974
2975
2976
2977
2978
2979
2980 </td>
2981
2982
2983
2984
2985
2986
2987
2988      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br>
2989
2990
2991
2992
2993
2994
2995 </td>
2996
2997
2998
2999
3000
3001
3002
3003      <td style="vertical-align: top;">Parameter to switch on
3004usage of cloud droplets.<br>
3005
3006
3007
3008
3009
3010
3011 <br>
3012
3013
3014
3015
3016
3017
3018
3019      <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span>
3020
3021
3022
3023
3024Cloud droplets require to use&nbsp;particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet
3025features (number of droplets, initial radius, etc.) can be steered with
3026the&nbsp; respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>).
3027The real number of initial droplets in a grid cell is equal to the
3028initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a>
3029      <span lang="en-GB"><font face="Thorndale, serif">and
3030      </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>)
3031times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br>
3032
3033
3034
3035
3036
3037
3038
3039      <br>
3040
3041
3042
3043
3044
3045
3046
3047In case of using cloud droplets, the default condensation scheme in
3048PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a>
3049must be set <span style="font-style: italic;">.F.</span>.<br>
3050
3051
3052
3053
3054
3055
3056
3057      </td>
3058
3059
3060
3061
3062
3063
3064 </tr>
3065
3066
3067
3068
3069
3070
3071 <tr>
3072
3073
3074
3075
3076
3077
3078 <td style="vertical-align: top;"> 
3079     
3080     
3081     
3082     
3083     
3084     
3085      <p><a name="cloud_physics"></a><b>cloud_physics</b></p>
3086
3087
3088
3089
3090
3091
3092
3093      </td>
3094
3095
3096
3097
3098
3099
3100 <td style="vertical-align: top;">L<br>
3101
3102
3103
3104
3105
3106
3107 </td>
3108
3109
3110
3111
3112
3113
3114
3115      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3116
3117
3118
3119
3120
3121
3122 <td style="vertical-align: top;"> 
3123     
3124     
3125     
3126     
3127     
3128     
3129      <p>Parameter to switch
3130on the condensation scheme.&nbsp; </p>
3131
3132
3133
3134
3135
3136
3137
3138For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations
3139for the
3140liquid water&nbsp;
3141content and the liquid water potential temperature are solved instead
3142of those for specific humidity and potential temperature. Note
3143that a grid volume is assumed to be either completely saturated or
3144completely
3145unsaturated (0%-or-100%-scheme). A simple precipitation scheme can
3146additionally be switched on with parameter <a href="#precipitation">precipitation</a>.
3147Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br>
3148
3149
3150
3151
3152
3153
3154 <b><br>
3155
3156
3157
3158
3159
3160
3161
3162cloud_physics =</b> <span style="font-style: italic;">.TRUE.
3163      </span>requires&nbsp;<a href="#humidity">humidity</a>
3164=<span style="font-style: italic;"> .TRUE.</span> .<br>
3165
3166
3167
3168
3169
3170
3171
3172Detailed information about the condensation scheme is given in the
3173description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud
3174physics module</a> (pdf-file, only in German).<br>
3175
3176
3177
3178
3179
3180
3181 <br>
3182
3183
3184
3185
3186
3187
3188
3189This condensation scheme is not allowed if cloud droplets are simulated
3190explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br>
3191
3192
3193
3194
3195
3196
3197
3198      </td>
3199
3200
3201
3202
3203
3204
3205 </tr>
3206
3207
3208
3209
3210
3211
3212 <tr>
3213
3214
3215
3216
3217
3218
3219 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td>
3220
3221
3222
3223
3224
3225
3226
3227      <td style="vertical-align: top;">L</td>
3228
3229
3230
3231
3232
3233
3234 <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
3235
3236
3237
3238
3239
3240
3241 <td>Conservation
3242of volume flow in x- and y-direction.<br>
3243
3244
3245
3246
3247
3248
3249 <br>
3250
3251
3252
3253
3254
3255
3256 <span style="font-weight: bold;">conserve_volume_flow</span>
3257= <span style="font-style: italic;">.T.</span>
3258guarantees that the volume flow through the xz- and yz-cross-sections of
3259the total model domain remains constant throughout the run depending on the chosen <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow</span>
3260= <span style="font-style: italic;">.T.</span> requires <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.F.</span> .<br>
3261
3262
3263
3264
3265
3266
3267
3268      </td>
3269
3270
3271
3272
3273
3274
3275 </tr>
3276
3277
3278
3279
3280
3281
3282 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow_mode"></a>conserve_volume_flow_mode</span></td><td style="vertical-align: top;">C * 16</td><td style="vertical-align: top;"><span style="font-style: italic;">'default'</span></td><td>Modus of volume flow conservation.<br><br>The following values are allowed:<br><p style="font-style: normal;"><span style="font-style: italic;">'default'</span>
3283      </p>
3284
3285
3286
3287
3288
3289
3290 
3291     
3292     
3293     
3294     
3295     
3296     
3297      <ul><p>Per default, PALM uses&nbsp;<span style="font-style: italic;">'initial_profiles'</span> for cyclic lateral boundary conditions (<a href="#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>) and&nbsp;<span style="font-style: italic;">'inflow_profile'</span> for non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3298
3299
3300
3301
3302
3303
3304 
3305     
3306     
3307     
3308     
3309     
3310     
3311      <p style="font-style: italic;">'initial_profiles' </p>
3312
3313
3314
3315
3316
3317
3318
3319     
3320     
3321     
3322     
3323     
3324     
3325      <ul><p>The
3326target volume flow&nbsp;is calculated at t=0 from the initial profiles
3327of u and v.&nbsp;This setting is only allowed for&nbsp;cyclic lateral
3328boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3329
3330
3331
3332
3333
3334
3335 
3336     
3337     
3338     
3339     
3340     
3341     
3342      <p style="font-style: normal;"><span style="font-style: italic;">'inflow_profile'</span>
3343      </p>
3344
3345
3346
3347
3348
3349
3350 
3351     
3352     
3353     
3354     
3355     
3356     
3357      <ul><p>The
3358target volume flow&nbsp;is&nbsp;calculated at every timestep from the
3359inflow profile of&nbsp;u or v, respectively. This setting&nbsp;is only
3360allowed for&nbsp;non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3361
3362
3363
3364
3365
3366
3367 
3368     
3369     
3370     
3371     
3372     
3373     
3374      <p style="font-style: italic;">'bulk_velocity' </p>
3375
3376
3377
3378
3379
3380
3381
3382     
3383     
3384     
3385     
3386     
3387     
3388      <ul><p>The target volume flow is calculated from a predefined bulk velocity (see <a href="#u_bulk">u_bulk</a> and <a href="#v_bulk">v_bulk</a>). This setting is only allowed for&nbsp;cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul>
3389
3390
3391
3392
3393
3394
3395 
3396     
3397     
3398     
3399     
3400     
3401     
3402      <span style="font-style: italic;"></span>Note that&nbsp;<span style="font-weight: bold;">conserve_volume_flow_mode</span>
3403only comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T. .</span> </td></tr>
3404
3405    <tr>
3406      <td style="vertical-align: top;"><a name="coupling_start_time"></a><span style="font-weight: bold;">coupling_start_time</span></td>
3407
3408      <td style="vertical-align: top;">R</td>
3409
3410      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3411
3412      <td style="vertical-align: top;">Simulation time of precursor run.
3413      <br>
3414      <br>
3415         Sets the time period a precursor run shall run uncoupled. This parameter is used to set up the precursor run control for atmosphere-ocean-coupled runs. It has to be set individually to the atmospheric / oceanic precursor run. The time in the data output will show negative values during the precursor run. See documentation  for further information.
3416     
3417      </td>
3418
3419    </tr>
3420
3421      <td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td>
3422
3423      <td style="vertical-align: top;">R</td>
3424
3425      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3426
3427      <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br>
3428
3429
3430      <br>
3431
3432
3433If <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br>
3434
3435
3436It is assumed that solar radiation penetrates the canopy and warms the
3437foliage which, in turn, warms the air in contact with it. <br>
3438
3439
3440Note: Instead of using the value prescribed by <a href="#surface_heatflux">surface_heatflux</a>,
3441the near surface heat flux is determined from an exponential function
3442that is dependent on the cumulative leaf_area_index (Shaw and Schumann
3443(1992, Boundary Layer Meteorol., 61, 47-64)).</td>
3444
3445    </tr>
3446
3447    <tr>
3448
3449
3450
3451
3452
3453
3454 <td style="vertical-align: top;"> 
3455     
3456     
3457     
3458     
3459     
3460     
3461      <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p>
3462
3463
3464
3465
3466
3467
3468
3469      </td>
3470
3471
3472
3473
3474
3475
3476 <td style="vertical-align: top;">L</td>
3477
3478
3479
3480
3481
3482
3483
3484      <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td>
3485
3486
3487
3488
3489
3490
3491 <td style="vertical-align: top;"> 
3492     
3493     
3494     
3495     
3496     
3497     
3498      <p>Cuts off of
3499so-called overshoots, which can occur with the
3500upstream-spline scheme.&nbsp; </p>
3501
3502
3503
3504
3505
3506
3507 
3508     
3509     
3510     
3511     
3512     
3513     
3514      <p><font color="#000000">The cubic splines tend to overshoot in
3515case of discontinuous changes of variables between neighbouring grid
3516points.</font><font color="#ff0000"> </font><font color="#000000">This
3517may lead to errors in calculating the advection tendency.</font>
3518Choice
3519of <b>cut_spline_overshoot</b> = <i>.TRUE.</i>
3520(switched on by
3521default)
3522allows variable values not to exceed an interval defined by the
3523respective adjacent grid points. This interval can be adjusted
3524seperately for every prognostic variable (see initialization parameters
3525      <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>,
3526etc.). This might be necessary in case that the
3527default interval has a non-tolerable effect on the model
3528results.&nbsp; </p>
3529
3530
3531
3532
3533
3534
3535 
3536     
3537     
3538     
3539     
3540     
3541     
3542      <p>Overshoots may also be removed
3543using the parameters <a href="#ups_limit_e">ups_limit_e</a>,
3544      <a href="#ups_limit_pt">ups_limit_pt</a>,
3545etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p>
3546
3547
3548
3549
3550
3551
3552
3553      </td>
3554
3555
3556
3557
3558
3559
3560 </tr>
3561
3562
3563
3564
3565
3566
3567 <tr>
3568
3569
3570
3571
3572
3573
3574 <td style="vertical-align: top;"> 
3575     
3576     
3577     
3578     
3579     
3580     
3581      <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p>
3582
3583
3584
3585
3586
3587
3588
3589      </td>
3590
3591
3592
3593
3594
3595
3596 <td style="vertical-align: top;">R</td>
3597
3598
3599
3600
3601
3602
3603
3604      <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td>
3605
3606
3607
3608
3609
3610
3611
3612      <td style="vertical-align: top;"> 
3613     
3614     
3615     
3616     
3617     
3618     
3619      <p>Height where
3620the damping layer begins in the 1d-model
3621(in m).&nbsp; </p>
3622
3623
3624
3625
3626
3627
3628 
3629     
3630     
3631     
3632     
3633     
3634     
3635      <p>This parameter is used to
3636switch on a damping layer for the
36371d-model, which is generally needed for the damping of inertia
3638oscillations. Damping is done by gradually increasing the value
3639of the eddy diffusivities about 10% per vertical grid level
3640(starting with the value at the height given by <b>damp_level_1d</b>,
3641or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1)
3642=
36431.1 * K<sub>m</sub>(k).
3644The values of K<sub>m</sub> are limited to 10 m**2/s at
3645maximum.&nbsp; <br>
3646
3647
3648
3649
3650
3651
3652
3653This parameter only comes into effect if the 1d-model is switched on
3654for
3655the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a>
3656= <span style="font-style: italic;">'set_1d-model_profiles'</span>.
3657      <br>
3658
3659
3660
3661
3662
3663
3664 </p>
3665
3666
3667
3668
3669
3670
3671 </td>
3672
3673
3674
3675
3676
3677
3678 </tr>
3679
3680
3681
3682
3683
3684
3685 <tr>
3686
3687
3688
3689
3690
3691
3692 <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br>
3693
3694
3695
3696
3697
3698
3699
3700      </td>
3701
3702
3703
3704
3705
3706
3707 <td style="vertical-align: top;">C*20<br>
3708
3709
3710
3711
3712
3713
3714
3715      </td>
3716
3717
3718
3719
3720
3721
3722 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
3723
3724
3725
3726
3727
3728
3729 <span style="font-style: italic;">model'</span><br>
3730
3731
3732
3733
3734
3735
3736 </td>
3737
3738
3739
3740
3741
3742
3743
3744      <td style="vertical-align: top;">Calculation method for
3745the energy dissipation term in the TKE equation of the 1d-model.<br>
3746
3747
3748
3749
3750
3751
3752
3753      <br>
3754
3755
3756
3757
3758
3759
3760
3761By default the dissipation is calculated as in the 3d-model using diss
3762= (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br>
3763
3764
3765
3766
3767
3768
3769 <br>
3770
3771
3772
3773
3774
3775
3776
3777Setting <span style="font-weight: bold;">dissipation_1d</span>
3778= <span style="font-style: italic;">'detering'</span>
3779forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br>
3780
3781
3782
3783
3784
3785
3786
3787      </td>
3788
3789
3790
3791
3792
3793
3794 </tr>
3795    <tr><td style="vertical-align: top;"><p><a name="dp_external"></a><b>dp_external</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>External pressure gradient switch.<br><br>This
3796parameter is used to switch on/off an external pressure gradient as
3797driving force. The external pressure gradient is controlled by the
3798parameters <a href="#dp_smooth">dp_smooth</a>, <a href="#dp_level_b">dp_level_b</a> and <a href="#dpdxy">dpdxy</a>.<br><br>Note that&nbsp;<span style="font-weight: bold;">dp_external</span> = <span style="font-style: italic;">.T.</span> requires <a href="#conserve_volume_flow">conserve_volume_flow</a> =<span style="font-style: italic;"> .F. </span>It is normally recommended to disable the Coriolis force by setting <a href="#omega">omega</a> = 0.0.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_smooth"></a><b>dp_smooth</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>Vertically smooth the external pressure gradient using a sinusoidal smoothing function.<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>. It is useful in combination with&nbsp;<a href="#dp_level_b">dp_level_b</a> &gt;&gt; 0 to generate a non-accelerated boundary layer well below&nbsp;<a href="#dp_level_b">dp_level_b</a>.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_level_b"></a><b>dp_level_b</b></p></td><td style="vertical-align: top;">R</td><td style="vertical-align: top; font-style: italic;">0.0</td><td><font size="3">Lower
3799limit of the vertical range for which the external pressure gradient is applied (</font>in <font size="3">m).</font><br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span><span lang="en-GB">It
3800must hold the condition zu(0) &lt;= <b>dp_level_b</b>
3801&lt;= zu(</span><a href="#nz"><span lang="en-GB">nz</span></a><span lang="en-GB">)</span><span lang="en-GB">.&nbsp;</span>It can be used in combination with&nbsp;<a href="#dp_smooth">dp_smooth</a> = <span style="font-style: italic;">.T.</span> to generate a non-accelerated boundary layer well below&nbsp;<span style="font-weight: bold;">dp_level_b</span> if&nbsp;<span style="font-weight: bold;">dp_level_b</span> &gt;&gt; 0.<br><br>Note
3802that there is no upper limit of the vertical range because the external
3803pressure gradient is always applied up to the top of the model domain.</td></tr><tr><td style="vertical-align: top;"><p><a name="dpdxy"></a><b>dpdxy</b></p></td><td style="vertical-align: top;">R(2)</td><td style="font-style: italic; vertical-align: top;">2 * 0.0</td><td>Values of the external pressure gradient applied in x- and y-direction, respectively (in Pa/m).<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>It sets the pressure gradient values. Negative values mean an acceleration, positive values mean deceleration. For example, <span style="font-weight: bold;">dpdxy</span> = -0.0002, 0.0, drives the flow in positive x-direction, <span lang="en-GB"></span></td></tr>
3804
3805
3806
3807
3808
3809
3810    <tr>
3811
3812      <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td>
3813
3814      <td style="vertical-align: top;">R</td>
3815
3816      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
3817
3818      <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br>
3819
3820      <br>
3821
3822This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td>
3823
3824    </tr>
3825
3826    <tr>
3827
3828
3829
3830
3831
3832
3833 <td style="vertical-align: top;"> 
3834     
3835     
3836     
3837     
3838     
3839     
3840      <p><a name="dt"></a><b>dt</b></p>
3841
3842
3843
3844
3845
3846
3847 </td>
3848
3849
3850
3851
3852
3853
3854
3855      <td style="vertical-align: top;">R</td>
3856
3857
3858
3859
3860
3861
3862 <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td>
3863
3864
3865
3866
3867
3868
3869
3870      <td style="vertical-align: top;"> 
3871     
3872     
3873     
3874     
3875     
3876     
3877      <p>Time step for
3878the 3d-model (in s).&nbsp; </p>
3879
3880
3881
3882
3883
3884
3885 
3886     
3887     
3888     
3889     
3890     
3891     
3892      <p>By default, (i.e.
3893if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>)
3894the value of the time step is calculating after each time step
3895(following the time step criteria) and
3896used for the next step.</p>
3897
3898
3899
3900
3901
3902
3903 
3904     
3905     
3906     
3907     
3908     
3909     
3910      <p>If the user assigns <b>dt</b>
3911a value, then the time step is
3912fixed to this value throughout the whole run (whether it fulfills the
3913time step
3914criteria or not). However, changes are allowed for restart runs,
3915because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run
3916parameter</a>.&nbsp; </p>
3917
3918
3919
3920
3921
3922
3923 
3924     
3925     
3926     
3927     
3928     
3929     
3930      <p>In case that the
3931calculated time step meets the condition<br>
3932
3933
3934
3935
3936
3937
3938 </p>
3939
3940
3941
3942
3943
3944
3945 
3946     
3947     
3948     
3949     
3950     
3951     
3952      <ul>
3953
3954
3955
3956
3957
3958
3959
3960       
3961       
3962       
3963       
3964       
3965       
3966        <p><b>dt</b> &lt; 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max
3967= 20.0)</p>
3968
3969
3970
3971
3972
3973
3974 
3975     
3976     
3977     
3978     
3979     
3980     
3981      </ul>
3982
3983
3984
3985
3986
3987
3988 
3989     
3990     
3991     
3992     
3993     
3994     
3995      <p>the simulation will be
3996aborted. Such situations usually arise
3997in case of any numerical problem / instability which causes a
3998non-realistic increase of the wind speed.&nbsp; </p>
3999
4000
4001
4002
4003
4004
4005 
4006     
4007     
4008     
4009     
4010     
4011     
4012      <p>A
4013small time step due to a large mean horizontal windspeed
4014speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
4015in order to spare CPU time.<br>
4016
4017
4018
4019
4020
4021
4022 </p>
4023
4024
4025
4026
4027
4028
4029 
4030     
4031     
4032     
4033     
4034     
4035     
4036      <p>If the
4037leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>)
4038a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a>
4039* dt_crit where dt_crit is the maximum timestep allowed by the CFL and
4040diffusion condition. Next it is examined whether dt_new exceeds or
4041falls below the
4042value of the previous timestep by at
4043least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span>
4044= dt_new is immediately used for the next timestep. If it is larger,
4045then <span style="font-weight: bold;">dt </span>=
40461.02 * dt_prev
4047(previous timestep) is used as the new timestep, however the time
4048step is only increased if the last change of the time step is dated
4049back at
4050least 30 iterations. If dt_new is located in the interval mentioned
4051above, then dt
4052does not change at all. By doing so, permanent time step changes as
4053well as large
4054sudden changes (increases) in the time step are avoided.</p>
4055
4056
4057
4058
4059
4060
4061 </td>
4062
4063
4064
4065
4066
4067
4068
4069    </tr>
4070
4071
4072
4073
4074
4075
4076 <tr>
4077
4078
4079
4080
4081
4082
4083 <td style="vertical-align: top;">
4084     
4085     
4086     
4087     
4088     
4089     
4090      <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p>
4091
4092
4093
4094
4095
4096
4097
4098      </td>
4099
4100
4101
4102
4103
4104
4105 <td style="vertical-align: top;">R</td>
4106
4107
4108
4109
4110
4111
4112
4113      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4114
4115
4116
4117
4118
4119
4120
4121      <td style="vertical-align: top;"> 
4122     
4123     
4124     
4125     
4126     
4127     
4128      <p>Temporal
4129interval of vertical profile output of the 1D-model
4130(in s).&nbsp; </p>
4131
4132
4133
4134
4135
4136
4137 
4138     
4139     
4140     
4141     
4142     
4143     
4144      <p>Data are written in ASCII
4145format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>.
4146This parameter is only in effect if the 1d-model has been switched on
4147for the
4148initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4149= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4150
4151
4152
4153
4154
4155
4156
4157      </td>
4158
4159
4160
4161
4162
4163
4164 </tr>
4165
4166
4167
4168
4169
4170
4171 <tr>
4172
4173
4174
4175
4176
4177
4178 <td style="vertical-align: top;"> 
4179     
4180     
4181     
4182     
4183     
4184     
4185      <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p>
4186
4187
4188
4189
4190
4191
4192
4193      </td>
4194
4195
4196
4197
4198
4199
4200 <td style="vertical-align: top;">R</td>
4201
4202
4203
4204
4205
4206
4207
4208      <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td>
4209
4210
4211
4212
4213
4214
4215 <td style="vertical-align: top;"> 
4216     
4217     
4218     
4219     
4220     
4221     
4222      <p>Temporal interval of
4223runtime control output of the 1d-model
4224(in s).&nbsp; </p>
4225
4226
4227
4228
4229
4230
4231 
4232     
4233     
4234     
4235     
4236     
4237     
4238      <p>Data are written in ASCII
4239format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.
4240This parameter is only in effect if the 1d-model is switched on for the
4241initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
4242= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
4243
4244
4245
4246
4247
4248
4249
4250      </td>
4251
4252
4253
4254
4255
4256
4257 </tr>
4258
4259
4260
4261
4262
4263
4264 <tr>
4265
4266
4267
4268
4269
4270
4271 <td style="vertical-align: top;"> 
4272     
4273     
4274     
4275     
4276     
4277     
4278      <p><a name="dx"></a><b>dx</b></p>
4279
4280
4281
4282
4283
4284
4285
4286      </td>
4287
4288
4289
4290
4291
4292
4293 <td style="vertical-align: top;">R</td>
4294
4295
4296
4297
4298
4299
4300
4301      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4302
4303
4304
4305
4306
4307
4308 <td style="vertical-align: top;"> 
4309     
4310     
4311     
4312     
4313     
4314     
4315      <p>Horizontal grid
4316spacing along the x-direction (in m).&nbsp; </p>
4317
4318
4319
4320
4321
4322
4323 
4324     
4325     
4326     
4327     
4328     
4329     
4330      <p>Along
4331x-direction only a constant grid spacing is allowed.</p>
4332
4333
4334
4335
4336
4337
4338     
4339     
4340     
4341     
4342     
4343     
4344      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4345and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4346
4347
4348
4349
4350
4351
4352 </td>
4353
4354
4355
4356
4357
4358
4359
4360    </tr>
4361
4362
4363
4364
4365
4366
4367 <tr>
4368
4369
4370
4371
4372
4373
4374 <td style="vertical-align: top;">
4375     
4376     
4377     
4378     
4379     
4380     
4381      <p><a name="dy"></a><b>dy</b></p>
4382
4383
4384
4385
4386
4387
4388
4389      </td>
4390
4391
4392
4393
4394
4395
4396 <td style="vertical-align: top;">R</td>
4397
4398
4399
4400
4401
4402
4403
4404      <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td>
4405
4406
4407
4408
4409
4410
4411 <td style="vertical-align: top;"> 
4412     
4413     
4414     
4415     
4416     
4417     
4418      <p>Horizontal grid
4419spacing along the y-direction (in m).&nbsp; </p>
4420
4421
4422
4423
4424
4425
4426 
4427     
4428     
4429     
4430     
4431     
4432     
4433      <p>Along y-direction only a constant grid spacing is allowed.</p>
4434
4435
4436
4437
4438
4439
4440     
4441     
4442     
4443     
4444     
4445     
4446      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
4447and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
4448
4449
4450
4451
4452
4453
4454 </td>
4455
4456
4457
4458
4459
4460
4461
4462    </tr>
4463
4464
4465
4466
4467
4468
4469 <tr>
4470
4471
4472
4473
4474
4475
4476 <td style="vertical-align: top;">
4477     
4478     
4479     
4480     
4481     
4482     
4483      <p><a name="dz"></a><b>dz</b></p>
4484
4485
4486
4487
4488
4489
4490
4491      </td>
4492
4493
4494
4495
4496
4497
4498 <td style="vertical-align: top;">R</td>
4499
4500
4501
4502
4503
4504
4505
4506      <td style="vertical-align: top;"><br>
4507
4508
4509
4510
4511
4512
4513 </td>
4514
4515
4516
4517
4518
4519
4520 <td style="vertical-align: top;"> 
4521     
4522     
4523     
4524     
4525     
4526     
4527      <p>Vertical grid
4528spacing (in m).&nbsp; </p>
4529
4530
4531
4532
4533
4534
4535 
4536     
4537     
4538     
4539     
4540     
4541     
4542      <p>This parameter must be
4543assigned by the user, because no
4544default value is given.<br>
4545
4546
4547
4548
4549
4550
4551 </p>
4552
4553
4554
4555
4556
4557
4558 
4559     
4560     
4561     
4562     
4563     
4564     
4565      <p>By default, the
4566model uses constant grid spacing along z-direction, but it can be
4567stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a>
4568and <a href="#dz_stretch_factor">dz_stretch_factor</a>.
4569In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br>
4570
4571
4572
4573
4574
4575
4576 </p>
4577
4578
4579
4580
4581
4582
4583 
4584     
4585     
4586     
4587     
4588     
4589     
4590      <p>Assuming
4591a constant <span style="font-weight: bold;">dz</span>,
4592the scalar levels (zu) are calculated directly by:&nbsp; </p>
4593
4594
4595
4596
4597
4598
4599
4600     
4601     
4602     
4603     
4604     
4605     
4606      <ul>
4607
4608
4609
4610
4611
4612
4613 
4614       
4615       
4616       
4617       
4618       
4619       
4620        <p>zu(0) = - dz * 0.5&nbsp; <br>
4621
4622
4623
4624
4625
4626
4627
4628zu(1) = dz * 0.5</p>
4629
4630
4631
4632
4633
4634
4635 
4636     
4637     
4638     
4639     
4640     
4641     
4642      </ul>
4643
4644
4645
4646
4647
4648
4649 
4650     
4651     
4652     
4653     
4654     
4655     
4656      <p>The w-levels lie
4657half between them:&nbsp; </p>
4658
4659
4660
4661
4662
4663
4664 
4665     
4666     
4667     
4668     
4669     
4670     
4671      <ul>
4672
4673
4674
4675
4676
4677
4678 
4679       
4680       
4681       
4682       
4683       
4684       
4685        <p>zw(k) =
4686( zu(k) + zu(k+1) ) * 0.5</p>
4687
4688
4689
4690
4691
4692
4693 
4694     
4695     
4696     
4697     
4698     
4699     
4700      </ul>
4701
4702
4703
4704
4705
4706
4707 </td>
4708
4709
4710
4711
4712
4713
4714 </tr>
4715
4716
4717
4718
4719
4720
4721
4722    <tr>
4723
4724
4725
4726
4727
4728
4729      <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td>
4730
4731
4732
4733
4734
4735
4736      <td style="vertical-align: top;">R</td>
4737
4738
4739
4740
4741
4742
4743      <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td>
4744
4745
4746
4747
4748
4749
4750      <td style="vertical-align: top;">Allowed maximum vertical grid
4751spacing (in m).<br>
4752
4753
4754
4755
4756
4757
4758      <br>
4759
4760
4761
4762
4763
4764
4765If the vertical grid is stretched
4766(see <a href="#dz_stretch_factor">dz_stretch_factor</a>
4767and <a href="#dz_stretch_level">dz_stretch_level</a>),
4768      <span style="font-weight: bold;">dz_max</span> can
4769be used to limit the vertical grid spacing.</td>
4770
4771
4772
4773
4774
4775
4776    </tr>
4777
4778
4779
4780
4781
4782
4783    <tr>
4784
4785
4786
4787
4788
4789
4790
4791      <td style="vertical-align: top;"> 
4792     
4793     
4794     
4795     
4796     
4797     
4798      <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p>
4799
4800
4801
4802
4803
4804
4805
4806      </td>
4807
4808
4809
4810
4811
4812
4813 <td style="vertical-align: top;">R</td>
4814
4815
4816
4817
4818
4819
4820
4821      <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td>
4822
4823
4824
4825
4826
4827
4828 <td style="vertical-align: top;"> 
4829     
4830     
4831     
4832     
4833     
4834     
4835      <p>Stretch factor for a
4836vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>).&nbsp;
4837      </p>
4838
4839
4840
4841
4842
4843
4844 
4845     
4846     
4847     
4848     
4849     
4850     
4851      <p>The stretch factor should not exceed a value of
4852approx. 1.10 -
48531.12, otherwise the discretization errors due to the stretched grid not
4854negligible any more. (refer Kalnay de Rivas)</p>
4855
4856
4857
4858
4859
4860
4861 </td>
4862
4863
4864
4865
4866
4867
4868 </tr>
4869
4870
4871
4872
4873
4874
4875
4876    <tr>
4877
4878
4879
4880
4881
4882
4883 <td style="vertical-align: top;"> 
4884     
4885     
4886     
4887     
4888     
4889     
4890      <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p>
4891
4892
4893
4894
4895
4896
4897
4898      </td>
4899
4900
4901
4902
4903
4904
4905 <td style="vertical-align: top;">R</td>
4906
4907
4908
4909
4910
4911
4912
4913      <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br>
4914
4915
4916
4917
4918
4919
4920 </td>
4921
4922
4923
4924
4925
4926
4927
4928      <td style="vertical-align: top;"> 
4929     
4930     
4931     
4932     
4933     
4934     
4935      <p>Height level
4936above/below which the grid is to be stretched
4937vertically (in m).&nbsp; </p>
4938
4939
4940
4941
4942
4943
4944 
4945     
4946     
4947     
4948     
4949     
4950     
4951      <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m)&nbsp;<span style="font-weight: bold;">above </span>which the grid is to be stretched
4952vertically. The vertical grid
4953spacings <a href="#dz">dz</a>
4954above this level are calculated as&nbsp; </p>
4955
4956
4957
4958
4959
4960
4961 
4962     
4963     
4964     
4965     
4966     
4967     
4968      <ul>
4969
4970
4971
4972
4973
4974
4975 
4976       
4977       
4978       
4979       
4980       
4981       
4982        <p><b>dz</b>(k+1)
4983= <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p>
4984
4985
4986
4987
4988
4989
4990
4991     
4992     
4993     
4994     
4995     
4996     
4997      </ul>
4998
4999
5000
5001
5002
5003
5004 
5005     
5006     
5007     
5008     
5009     
5010     
5011      <p>and used as spacings for the scalar levels (zu).
5012The
5013w-levels are then defined as:&nbsp; </p>
5014
5015
5016
5017
5018
5019
5020 
5021     
5022     
5023     
5024     
5025     
5026     
5027      <ul>
5028
5029
5030
5031
5032
5033
5034 
5035       
5036       
5037       
5038       
5039       
5040       
5041        <p>zw(k)
5042= ( zu(k) + zu(k+1) ) * 0.5.
5043
5044 
5045     
5046      </p>
5047
5048
5049
5050
5051     
5052     
5053     
5054     
5055      </ul>
5056
5057
5058
5059
5060     
5061     
5062     
5063     
5064      <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched
5065vertically. The vertical grid
5066spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as
5067
5068 
5069     
5070      </p>
5071
5072
5073
5074
5075     
5076     
5077     
5078     
5079      <ul>
5080
5081
5082
5083
5084       
5085       
5086       
5087       
5088        <p><b>dz</b>(k-1)
5089= <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p>
5090
5091
5092
5093
5094     
5095     
5096     
5097     
5098      </ul>
5099
5100
5101
5102
5103
5104
5105 </td>
5106
5107
5108
5109
5110
5111
5112 </tr>
5113
5114
5115
5116
5117
5118
5119
5120    <tr>
5121
5122
5123
5124
5125
5126      <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td>
5127
5128
5129
5130
5131
5132      <td style="vertical-align: top;">R</td>
5133
5134
5135
5136
5137
5138      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5139
5140
5141
5142
5143
5144      <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5145
5146
5147
5148
5149
5150
5151
5152      <br>
5153
5154
5155
5156
5157
5158
5159This
5160option prescribes an initial&nbsp;subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if&nbsp;<a href="#km_constant">km_constant</a> is not set.</td>
5161
5162
5163
5164
5165
5166    </tr>
5167
5168
5169
5170
5171
5172    <tr>
5173
5174
5175
5176
5177
5178
5179 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td>
5180
5181
5182
5183
5184
5185
5186
5187      <td style="vertical-align: top;">R</td>
5188
5189
5190
5191
5192
5193
5194 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
5195
5196
5197
5198
5199
5200
5201 <td>Minimum
5202subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br>
5203
5204
5205
5206
5207
5208
5209
5210      <br>
5211
5212
5213
5214
5215
5216
5217This
5218option&nbsp;adds artificial viscosity to the flow by ensuring that
5219the
5220subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td>
5221
5222
5223
5224
5225
5226
5227 </tr>
5228
5229
5230
5231
5232
5233
5234
5235    <tr>
5236
5237
5238
5239
5240
5241
5242 <td style="vertical-align: top;"> 
5243     
5244     
5245     
5246     
5247     
5248     
5249      <p><a name="end_time_1d"></a><b>end_time_1d</b></p>
5250
5251
5252
5253
5254
5255
5256
5257      </td>
5258
5259
5260
5261
5262
5263
5264 <td style="vertical-align: top;">R</td>
5265
5266
5267
5268
5269
5270
5271
5272      <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br>
5273
5274
5275
5276
5277
5278
5279 </td>
5280
5281
5282
5283
5284
5285
5286
5287      <td style="vertical-align: top;"> 
5288     
5289     
5290     
5291     
5292     
5293     
5294      <p>Time to be
5295simulated for the 1d-model (in s).&nbsp; </p>
5296
5297
5298
5299
5300
5301
5302 
5303     
5304     
5305     
5306     
5307     
5308     
5309      <p>The
5310default value corresponds to a simulated time of 10 days.
5311Usually, after such a period the inertia oscillations have completely
5312decayed and the solution of the 1d-model can be regarded as stationary
5313(see <a href="#damp_level_1d">damp_level_1d</a>).
5314This parameter is only in effect if the 1d-model is switched on for the
5315initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a>
5316= <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p>
5317
5318
5319
5320
5321
5322
5323
5324      </td>
5325
5326
5327
5328
5329
5330
5331 </tr>
5332
5333
5334
5335
5336
5337
5338 <tr>
5339
5340
5341
5342
5343
5344
5345 <td style="vertical-align: top;"> 
5346     
5347     
5348     
5349     
5350     
5351     
5352      <p><a name="fft_method"></a><b>fft_method</b></p>
5353
5354
5355
5356
5357
5358
5359
5360      </td>
5361
5362
5363
5364
5365
5366
5367 <td style="vertical-align: top;">C * 20</td>
5368
5369
5370
5371
5372
5373
5374
5375      <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;">
5376
5377
5378
5379
5380
5381
5382 <span style="font-style: italic;">specific'</span></td>
5383
5384
5385
5386
5387
5388
5389
5390      <td style="vertical-align: top;"> 
5391     
5392     
5393     
5394     
5395     
5396     
5397      <p>FFT-method to
5398be used.<br>
5399
5400
5401
5402
5403
5404
5405 </p>
5406
5407
5408
5409
5410
5411
5412 
5413     
5414     
5415     
5416     
5417     
5418     
5419      <p><br>
5420
5421
5422
5423
5424
5425
5426
5427The fast fourier transformation (FFT) is used for solving the
5428perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>)
5429and for calculating power spectra (see optional software packages,
5430section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p>
5431
5432
5433
5434
5435
5436
5437
5438     
5439     
5440     
5441     
5442     
5443     
5444      <p><br>
5445
5446
5447
5448
5449
5450
5451
5452By default, system-specific, optimized routines from external
5453vendor libraries are used. However, these are available only on certain
5454computers and there are more or less severe restrictions concerning the
5455number of gridpoints to be used with them.<br>
5456
5457
5458
5459
5460
5461
5462 </p>
5463
5464
5465
5466
5467
5468
5469 
5470     
5471     
5472     
5473     
5474     
5475     
5476      <p>There
5477are two other PALM internal methods available on every
5478machine (their respective source code is part of the PALM source code):</p>
5479
5480
5481
5482
5483
5484
5485
5486     
5487     
5488     
5489     
5490     
5491     
5492      <p>1.: The <span style="font-weight: bold;">Temperton</span>-method
5493from Clive Temperton (ECWMF) which is computationally very fast and
5494switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>.
5495The number of horizontal gridpoints (nx+1, ny+1) to be used with this
5496method must be composed of prime factors 2, 3 and 5.<br>
5497
5498
5499
5500
5501
5502
5503 </p>
5504
5505
5506
5507
5508
5509
5510
55112.: The <span style="font-weight: bold;">Singleton</span>-method
5512which is very slow but has no restrictions concerning the number of
5513gridpoints to be used with, switched on with <b>fft_method</b>
5514= <span style="font-style: italic;">'singleton-algorithm'</span>.
5515      </td>
5516
5517
5518
5519
5520
5521
5522 </tr>
5523
5524
5525
5526
5527
5528
5529 <tr>
5530
5531
5532
5533
5534
5535
5536 <td style="vertical-align: top;"> 
5537     
5538     
5539     
5540     
5541     
5542     
5543      <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p>
5544
5545
5546
5547
5548
5549
5550
5551      </td>
5552
5553
5554
5555
5556
5557
5558 <td style="vertical-align: top;">L</td>
5559
5560
5561
5562
5563
5564
5565
5566      <td style="vertical-align: top;"><i>.F.</i></td>
5567
5568
5569
5570
5571
5572
5573
5574      <td style="vertical-align: top;">Application of a
5575Galilei-transformation to the
5576coordinate
5577system of the model.<br>
5578
5579
5580
5581
5582
5583
5584     
5585     
5586     
5587     
5588     
5589     
5590      <p>With <b>galilei_transformation</b>
5591= <i>.T.,</i> a so-called
5592Galilei-transformation is switched on which ensures that the coordinate
5593system of the model is moved along with the geostrophical wind.
5594Alternatively, the model domain can be moved along with the averaged
5595horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>,
5596this can and will naturally change in time). With this method,
5597numerical inaccuracies of the Piascek - Williams - scheme (concerns in
5598particular the momentum advection) are minimized. Beyond that, in the
5599majority of cases the lower relative velocities in the moved system
5600permit a larger time step (<a href="#dt">dt</a>).
5601Switching the transformation on is only worthwhile if the geostrophical
5602wind (ug, vg)
5603and the averaged horizontal wind clearly deviate from the value 0. In
5604each case, the distance the coordinate system has been moved is written
5605to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.&nbsp;
5606      </p>
5607
5608
5609
5610
5611
5612
5613 
5614     
5615     
5616     
5617     
5618     
5619     
5620      <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
5621and <a href="#bc_ns">bc_ns</a>), the specification
5622of a gestrophic
5623wind that is not constant with height
5624as well as e.g. stationary inhomogeneities at the bottom boundary do
5625not allow the use of this transformation.</p>
5626
5627
5628
5629
5630
5631
5632 </td>
5633
5634
5635
5636
5637
5638
5639 </tr>
5640
5641
5642
5643
5644
5645
5646
5647    <tr>
5648
5649
5650
5651
5652
5653
5654 <td style="vertical-align: top;"> 
5655     
5656     
5657     
5658     
5659     
5660     
5661      <p><a name="grid_matching"></a><b>grid_matching</b></p>
5662
5663
5664
5665
5666
5667
5668
5669      </td>
5670
5671
5672
5673
5674
5675
5676 <td style="vertical-align: top;">C * 6</td>
5677
5678
5679
5680
5681
5682
5683
5684      <td style="vertical-align: top;"><span style="font-style: italic;">'strict'</span></td>
5685
5686
5687
5688
5689
5690
5691 <td style="vertical-align: top;">Variable to adjust the
5692subdomain
5693sizes in parallel runs.<br>
5694
5695
5696
5697
5698
5699
5700 <br>
5701
5702
5703
5704
5705
5706
5707
5708For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>,
5709the subdomains are forced to have an identical
5710size on all processors. In this case the processor numbers in the
5711respective directions of the virtual processor net must fulfill certain
5712divisor conditions concerning the grid point numbers in the three
5713directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a>
5714and <a href="#nz">nz</a>).
5715Advantage of this method is that all PEs bear the same computational
5716load.<br>
5717
5718
5719
5720
5721
5722
5723 <br>
5724
5725
5726
5727
5728
5729
5730
5731There is no such restriction by default, because then smaller
5732subdomains are allowed on those processors which
5733form the right and/or north boundary of the virtual processor grid. On
5734all other processors the subdomains are of same size. Whether smaller
5735subdomains are actually used, depends on the number of processors and
5736the grid point numbers used. Information about the respective settings
5737are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br>
5738
5739
5740
5741
5742
5743
5744
5745      <br>
5746
5747
5748
5749
5750
5751
5752
5753When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>)
5754only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>
5755is allowed.<br>
5756
5757
5758
5759
5760
5761
5762 <br>
5763
5764
5765
5766
5767
5768
5769 <b>Note:</b><br>
5770
5771
5772
5773
5774
5775
5776
5777In some cases for small processor numbers there may be a very bad load
5778balancing among the
5779processors which may reduce the performance of the code.</td>
5780
5781
5782
5783
5784
5785
5786 </tr>
5787
5788
5789
5790
5791
5792
5793
5794    <tr><td style="vertical-align: top;"><p><a name="humidity"></a><b>humidity</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><i>.F.</i></td><td style="vertical-align: top;"><p>Parameter to
5795switch on the prognostic equation for specific
5796humidity q.<br>
5797
5798
5799
5800
5801
5802
5803 </p>
5804
5805
5806
5807
5808
5809
5810 
5811     
5812     
5813     
5814     
5815     
5816     
5817      <p>The initial vertical
5818profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a>
5819and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>.&nbsp;
5820Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a>
5821and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br>
5822
5823
5824
5825
5826
5827
5828
5829      </p>
5830
5831
5832
5833
5834
5835
5836
5837If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a>
5838= .TRUE.), q becomes the total liquid water content (sum of specific
5839humidity and liquid water content).</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_height"></a>inflow_damping_height</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">from precursor run</span></td><td style="vertical-align: top;">Height below which the turbulence signal is used for turbulence recycling (in m).<br><br>In case of a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>),
5840this parameter defines the vertical thickness of the turbulent layer up
5841to which the turbulence extracted at the recycling plane (see <a href="chapter_4.1.html#recycling_width">recycling_width</a>)
5842shall be imposed to the inflow. Above this level the turbulence signal
5843is linearly damped to zero. The transition range within which the
5844signal falls to zero is given by the parameter <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>By default, this height is set as the height of the convective boundary layer as calculated from a precursor run. See <a href="chapter_3.9.html">chapter 3.9</a> about proper settings for getting this CBL height from a precursor run. </td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_width"></a>inflow_damping_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#inflow_damping_height">inflow_damping</a></span><a href="chapter_4.1.html#inflow_damping_height"><br style="font-style: italic;"><span style="font-style: italic;">_height</span></a></td><td style="vertical-align: top;">Transition range within which the turbulance signal is damped to zero (in m).<br><br>See <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> for explanation.</td></tr><tr>
5845
5846
5847
5848
5849
5850
5851 <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br>
5852
5853
5854
5855
5856
5857
5858
5859begin</b></td>
5860
5861
5862
5863
5864
5865
5866 <td style="vertical-align: top;">I</td>
5867
5868
5869
5870
5871
5872
5873
5874      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;">
5875
5876
5877
5878
5879
5880
5881 <span style="font-style: italic;">nx/2 or ny/2)</span></td>
5882
5883
5884
5885
5886
5887
5888
5889      <td style="vertical-align: top;">Lower
5890limit of the horizontal range for which random perturbations are to be
5891imposed on the horizontal velocity field (gridpoints).<br>
5892
5893
5894
5895
5896
5897
5898 <br>
5899
5900
5901
5902
5903
5904
5905
5906If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5907or <a href="#bc_ns">bc_ns</a>),
5908this parameter gives the gridpoint number (counted horizontally from
5909the inflow)&nbsp; from which on perturbations are imposed on the
5910horizontal velocity field. Perturbations must be switched on with
5911parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
5912
5913
5914
5915
5916
5917
5918
5919    </tr>
5920
5921
5922
5923
5924
5925
5926 <tr>
5927
5928
5929
5930
5931
5932
5933 <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br>
5934
5935
5936
5937
5938
5939
5940
5941end</b></td>
5942
5943
5944
5945
5946
5947
5948 <td style="vertical-align: top;">I</td>
5949
5950
5951
5952
5953
5954
5955
5956      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;">
5957
5958
5959
5960
5961
5962
5963 <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;">
5964
5965
5966
5967
5968
5969
5970 <span style="font-style: italic;">3/4*ny)</span></td>
5971
5972
5973
5974
5975
5976
5977 <td style="vertical-align: top;">Upper
5978limit of the horizontal range for which random perturbations are
5979to be imposed on the horizontal velocity field (gridpoints).<br>
5980
5981
5982
5983
5984
5985
5986 <br>
5987
5988
5989
5990
5991
5992
5993
5994If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a>
5995or <a href="#bc_ns">bc_ns</a>),
5996this parameter gives the gridpoint number (counted horizontally from
5997the inflow)&nbsp; unto which perturbations are imposed on the
5998horizontal
5999velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td>
6000
6001
6002
6003
6004
6005
6006
6007    </tr>
6008
6009
6010
6011
6012
6013
6014 <tr>
6015
6016
6017
6018
6019
6020
6021 <td style="vertical-align: top;">
6022     
6023     
6024     
6025     
6026     
6027     
6028      <p><a name="initializing_actions"></a><b>initializing_actions</b></p>
6029
6030
6031
6032
6033
6034
6035
6036      </td>
6037
6038
6039
6040
6041
6042
6043 <td style="vertical-align: top;">C * 100</td>
6044
6045
6046
6047
6048
6049
6050
6051      <td style="vertical-align: top;"><br>
6052
6053
6054
6055
6056
6057
6058 </td>
6059
6060
6061
6062
6063
6064
6065 <td style="vertical-align: top;"> 
6066     
6067     
6068     
6069     
6070     
6071     
6072      <p style="font-style: normal;">Initialization actions
6073to be carried out.&nbsp; </p>
6074
6075
6076
6077
6078
6079
6080 
6081     
6082     
6083     
6084     
6085     
6086     
6087      <p style="font-style: normal;">This parameter does not have a
6088default value and therefore must be assigned with each model run. For
6089restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span>
6090must be set. For the initial run of a job chain the following values
6091are allowed:&nbsp; </p>
6092
6093
6094
6095
6096
6097
6098 
6099     
6100     
6101     
6102     
6103     
6104     
6105      <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span>
6106      </p>
6107
6108
6109
6110
6111
6112
6113 
6114     
6115     
6116     
6117     
6118     
6119     
6120      <ul>
6121
6122
6123
6124
6125
6126
6127 
6128       
6129       
6130       
6131       
6132       
6133       
6134        <p>A horizontal wind profile consisting
6135of linear sections (see <a href="#ug_surface">ug_surface</a>,
6136        <a href="#ug_vertical_gradient">ug_vertical_gradient</a>,
6137        <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
6138and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>,
6139        <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
6140respectively) as well as a vertical temperature (humidity) profile
6141consisting of
6142linear sections (see <a href="#pt_surface">pt_surface</a>,
6143        <a href="#pt_vertical_gradient">pt_vertical_gradient</a>,
6144        <a href="#q_surface">q_surface</a>
6145and <a href="#q_vertical_gradient">q_vertical_gradient</a>)
6146are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub>
6147and K<sub>h</sub> are set to very small values because
6148otherwise no TKE
6149would be generated.</p>
6150
6151
6152
6153
6154
6155
6156 
6157     
6158     
6159     
6160     
6161     
6162     
6163      </ul>
6164
6165
6166
6167
6168
6169
6170 
6171     
6172     
6173     
6174     
6175     
6176     
6177      <p style="font-style: italic;">'set_1d-model_profiles' </p>
6178
6179
6180
6181
6182
6183
6184
6185     
6186     
6187     
6188     
6189     
6190     
6191      <ul>
6192
6193
6194
6195
6196
6197
6198 
6199       
6200       
6201       
6202       
6203       
6204       
6205        <p>The arrays of the 3d-model are initialized with
6206the
6207(stationary) solution of the 1d-model. These are the variables e, kh,
6208km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The
6209temperature (humidity) profile consisting of linear sections is set as
6210for 'set_constant_profiles' and assumed as constant in time within the
62111d-model. For steering of the 1d-model a set of parameters with suffix
6212"_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>,
6213        <a href="#damp_level_1d">damp_level_1d</a>)
6214is available.</p>
6215
6216
6217
6218
6219
6220
6221 
6222     
6223     
6224     
6225     
6226     
6227     
6228      </ul>
6229
6230
6231
6232
6233
6234
6235 
6236     
6237     
6238     
6239     
6240     
6241     
6242      <p><span style="font-style: italic;">'by_user'</span></p>
6243
6244
6245
6246
6247
6248
6249     
6250     
6251     
6252     
6253     
6254     
6255      <p style="margin-left: 40px;">The initialization of the arrays
6256of the 3d-model is under complete control of the user and has to be
6257done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a>
6258of the user-interface.<span style="font-style: italic;"></span></p>
6259
6260
6261
6262
6263
6264
6265     
6266     
6267     
6268     
6269     
6270     
6271      <p><span style="font-style: italic;">'initialize_vortex'</span>
6272      </p>
6273
6274
6275
6276
6277
6278
6279 
6280     
6281     
6282     
6283     
6284     
6285     
6286      <div style="margin-left: 40px;">The initial
6287velocity field of the
62883d-model corresponds to a
6289Rankine-vortex with vertical axis. This setting may be used to test
6290advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>)
6291are necessary. In order not to distort the vortex, an initial
6292horizontal wind profile constant
6293with height is necessary (to be set by <b>initializing_actions</b>
6294= <span style="font-style: italic;">'set_constant_profiles'</span>)
6295and some other conditions have to be met (neutral stratification,
6296diffusion must be
6297switched off, see <a href="#km_constant">km_constant</a>).
6298The center of the vortex is located at jc = (nx+1)/2. It
6299extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a>
6300and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a>
6301(see init_rankine.f90). </div>
6302
6303
6304
6305
6306
6307
6308 
6309     
6310     
6311     
6312     
6313     
6314     
6315      <p><span style="font-style: italic;">'initialize_ptanom'</span>
6316      </p>
6317
6318
6319
6320
6321
6322
6323 
6324     
6325     
6326     
6327     
6328     
6329     
6330      <ul>
6331
6332
6333
6334
6335
6336
6337 
6338       
6339       
6340       
6341       
6342       
6343       
6344        <p>A 2d-Gauss-like shape disturbance
6345(x,y) is added to the
6346initial temperature field with radius 10.0 * <a href="#dx">dx</a>
6347and center at jc = (nx+1)/2. This may be used for tests of scalar
6348advection schemes
6349(see <a href="#scalar_advec">scalar_advec</a>).
6350Such tests require a horizontal wind profile constant with hight and
6351diffusion
6352switched off (see <span style="font-style: italic;">'initialize_vortex'</span>).
6353Additionally, the buoyancy term
6354must be switched of in the equation of motion&nbsp; for w (this
6355requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the
6356source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p></ul>
6357
6358
6359
6360
6361
6362
6363 
6364     
6365     
6366     
6367     
6368     
6369     
6370      <p style="font-style: italic;">'cyclic_fill'</p><p style="font-style: normal; margin-left: 40px;">Here,
63713d-data from a precursor run are read by the initial (main) run. The
6372precursor run is allowed to have a smaller domain along x and y
6373compared with the main run. Also, different numbers of processors can
6374be used for these two runs. Limitations are that the precursor run must
6375use cyclic horizontal boundary conditions and that the number of vertical grid points, <a href="#nz">nz</a>, must be same for the precursor run and the main run. If the total domain of the main run is larger than that of the precursor
6376run, the domain is filled by cyclic repetition&nbsp;of the (cyclic)
6377precursor data. This initialization method is recommended if a
6378turbulent inflow is used (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). 3d-data must be made available to the run by activating an appropriate file connection statement for local file BININ. See <a href="chapter_3.9.html">chapter 3.9</a> for more details, where usage of a turbulent inflow is explained. </p><p style="font-style: normal;">Values may be
6379combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles
6380initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>,
6381      <span style="font-style: italic;">'set_1d-model_profiles'</span>
6382, and <span style="font-style: italic;">'by_user'</span>
6383must not be given at the same time.</p>
6384
6385
6386
6387
6388
6389
6390 
6391     
6392     
6393     
6394     
6395     
6396     
6397     
6398
6399
6400
6401
6402
6403
6404 </td>
6405
6406
6407
6408
6409
6410
6411 </tr>
6412
6413
6414
6415
6416
6417
6418
6419    <tr>
6420
6421
6422
6423
6424
6425
6426 <td style="vertical-align: top;"> 
6427     
6428     
6429     
6430     
6431     
6432     
6433      <p><a name="km_constant"></a><b>km_constant</b></p>
6434
6435
6436
6437
6438
6439
6440
6441      </td>
6442
6443
6444
6445
6446
6447
6448 <td style="vertical-align: top;">R</td>
6449
6450
6451
6452
6453
6454
6455
6456      <td style="vertical-align: top;"><i>variable<br>
6457
6458
6459
6460
6461
6462
6463
6464(computed from TKE)</i></td>
6465
6466
6467
6468
6469
6470
6471 <td style="vertical-align: top;"> 
6472     
6473     
6474     
6475     
6476     
6477     
6478      <p>Constant eddy
6479diffusivities are used (laminar
6480simulations).&nbsp; </p>
6481
6482
6483
6484
6485
6486
6487 
6488     
6489     
6490     
6491     
6492     
6493     
6494      <p>If this parameter is
6495specified, both in the 1d and in the
64963d-model constant values for the eddy diffusivities are used in
6497space and time with K<sub>m</sub> = <b>km_constant</b>
6498and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>.
6499The prognostic equation for the subgrid-scale TKE is switched off.
6500Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>)
6501switched off.</p>
6502
6503
6504
6505
6506
6507
6508 </td>
6509
6510
6511
6512
6513
6514
6515 </tr>
6516
6517
6518
6519
6520
6521
6522 <tr>
6523
6524
6525
6526
6527
6528
6529 <td style="vertical-align: top;"> 
6530     
6531     
6532     
6533     
6534     
6535     
6536      <p><a name="km_damp_max"></a><b>km_damp_max</b></p>
6537
6538
6539
6540
6541
6542
6543
6544      </td>
6545
6546
6547
6548
6549
6550
6551 <td style="vertical-align: top;">R</td>
6552
6553
6554
6555
6556
6557
6558
6559      <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx
6560or dy)</span></td>
6561
6562
6563
6564
6565
6566
6567 <td style="vertical-align: top;">Maximum
6568diffusivity used for filtering the velocity field in the vicinity of
6569the outflow (in m<sup>2</sup>/s).<br>
6570
6571
6572
6573
6574
6575
6576 <br>
6577
6578
6579
6580
6581
6582
6583
6584When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a>
6585or <a href="#bc_ns">bc_ns</a>),
6586a smoothing has to be applied to the
6587velocity field in the vicinity of the outflow in order to suppress any
6588reflections of outgoing disturbances. Smoothing is done by increasing
6589the eddy diffusivity along the horizontal direction which is
6590perpendicular to the outflow boundary. Only velocity components
6591parallel to the outflow boundary are filtered (e.g. v and w, if the
6592outflow is along x). Damping is applied from the bottom to the top of
6593the domain.<br>
6594
6595
6596
6597
6598
6599
6600 <br>
6601
6602
6603
6604
6605
6606
6607
6608The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a>
6609which defines the number of gridpoints (counted from the outflow
6610boundary) from where on the smoothing is applied. Starting from that
6611point, the eddy diffusivity is linearly increased (from zero to its
6612maximum value given by <span style="font-weight: bold;">km_damp_max</span>)
6613until half of the damping range width, from where it remains constant
6614up to the outflow boundary. If at a certain grid point the eddy
6615diffusivity calculated from the flow field is larger than as described
6616above, it is used instead.<br>
6617
6618
6619
6620
6621
6622
6623 <br>
6624
6625
6626
6627
6628
6629
6630
6631The default value of <span style="font-weight: bold;">km_damp_max</span>
6632has been empirically proven to be sufficient.</td>
6633
6634
6635
6636
6637
6638
6639 </tr>
6640
6641
6642
6643
6644
6645
6646 <tr>
6647
6648      <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td>
6649
6650      <td style="vertical-align: top;">R</td>
6651
6652      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
6653
6654      <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br>
6655
6656      <br>
6657
6658This
6659parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value,
6660the leaf area density profile is constructed with <a href="#lad_vertical_gradient">lad_vertical_gradient</a>
6661and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level
6662      </a>.</td>
6663
6664    </tr>
6665
6666    <tr>
6667
6668      <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td>
6669
6670      <td style="vertical-align: top;">R (10)</td>
6671
6672      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6673
6674      <td style="vertical-align: top;">Gradient(s) of the leaf area density (in&nbsp;m<sup>2</sup>/m<sup>4</sup>).<br>
6675
6676      <br>
6677
6678     
6679      <p>This leaf area density gradient
6680holds starting from the height&nbsp;
6681level defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6682(precisely: for all uv levels k where zu(k) &gt; lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>)
6683up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals
6684if <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1)
6685= <i>0.0</i>) can be assigned. The leaf area density at the surface is
6686assigned via <a href="#lad_surface">lad_surface</a>.&nbsp;
6687      </p>
6688
6689      </td>
6690
6691    </tr>
6692
6693    <tr>
6694
6695      <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td>
6696
6697      <td style="vertical-align: top;">R (10)</td>
6698
6699      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
6700
6701      <td style="vertical-align: top;">Height level from which on the&nbsp;gradient
6702of the leaf area density defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>
6703is effective (in m).<br>
6704
6705      <br>
6706
6707The height levels have to be assigned in ascending order. The
6708default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="#lad_vertical_gradient">lad_vertical_gradient</a>.</td>
6709
6710    </tr>
6711
6712    <tr>
6713
6714      <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td>
6715
6716      <td style="vertical-align: top;">R</td>
6717
6718      <td style="vertical-align: top;"><i>0.0</i></td>
6719
6720      <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br>
6721
6722
6723      <br>
6724
6725
6726This parameter is only of importance in cases in that both, <a href="#plant_canopy">plant_canopy</a> and <a href="#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
6727The value of the concentration of a passive scalar at the surface of a
6728leaf is required for the parametrisation of the sources and sinks of
6729scalar concentration due to the canopy.</td>
6730
6731    </tr>
6732
6733    <tr>
6734
6735
6736
6737
6738
6739
6740
6741      <td style="vertical-align: top;"> 
6742     
6743     
6744     
6745     
6746     
6747     
6748      <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p>
6749
6750
6751
6752
6753
6754
6755
6756      </td>
6757
6758
6759
6760
6761
6762
6763 <td style="vertical-align: top;">R</td>
6764
6765
6766
6767
6768
6769
6770
6771      <td style="vertical-align: top;"><i>0.0</i></td>
6772
6773
6774
6775
6776
6777
6778
6779      <td style="vertical-align: top;"> 
6780     
6781     
6782     
6783     
6784     
6785     
6786      <p>Filter factor
6787for the so-called Long-filter.<br>
6788
6789
6790
6791
6792
6793
6794 </p>
6795
6796
6797
6798
6799
6800
6801 
6802     
6803     
6804     
6805     
6806     
6807     
6808      <p><br>
6809
6810
6811
6812
6813
6814
6815
6816This filter very efficiently
6817eliminates 2-delta-waves sometimes cauesed by the upstream-spline
6818scheme (see Mahrer and
6819Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three
6820directions in space. A value of <b>long_filter_factor</b>
6821= <i>0.01</i>
6822sufficiently removes the small-scale waves without affecting the
6823longer waves.<br>
6824
6825
6826
6827
6828
6829
6830 </p>
6831
6832
6833
6834
6835
6836
6837 
6838     
6839     
6840     
6841     
6842     
6843     
6844      <p>By default, the filter is
6845switched off (= <i>0.0</i>).
6846It is exclusively applied to the tendencies calculated by the
6847upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a>
6848and <a href="#scalar_advec">scalar_advec</a>),
6849not to the prognostic variables themselves. At the bottom and top
6850boundary of the model domain the filter effect for vertical
68512-delta-waves is reduced. There, the amplitude of these waves is only
6852reduced by approx. 50%, otherwise by nearly 100%.&nbsp; <br>
6853
6854
6855
6856
6857
6858
6859
6860Filter factors with values &gt; <i>0.01</i> also
6861reduce the amplitudes
6862of waves with wavelengths longer than 2-delta (see the paper by Mahrer
6863and
6864Pielke, quoted above). </p>
6865
6866
6867
6868
6869
6870
6871 </td>
6872
6873
6874
6875
6876
6877
6878 </tr>
6879
6880
6881
6882
6883
6884
6885 <tr>
6886
6887
6888
6889
6890
6891
6892      <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td>
6893
6894
6895
6896
6897
6898
6899      <td style="vertical-align: top;">C*16</td>
6900
6901
6902
6903
6904
6905
6906      <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td>
6907
6908
6909
6910
6911
6912
6913      <td>Method used to optimize loops for solving the prognostic equations .<br>
6914
6915
6916
6917
6918
6919
6920      <br>
6921
6922
6923
6924
6925
6926
6927By
6928default, the optimization method depends on the host on which PALM is
6929running. On machines with vector-type CPUs, single 3d-loops are used to
6930calculate each tendency term of each prognostic equation, while on all
6931other machines, all prognostic equations are solved within one big loop
6932over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br>
6933
6934
6935
6936
6937
6938
6939      <br>
6940
6941
6942
6943
6944
6945
6946The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td>
6947
6948
6949
6950
6951
6952
6953    </tr>
6954
6955
6956
6957
6958
6959
6960    <tr>
6961
6962
6963
6964
6965
6966
6967
6968      <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br>
6969
6970
6971
6972
6973
6974
6975
6976      </td>
6977
6978
6979
6980
6981
6982
6983 <td style="vertical-align: top;">C*20<br>
6984
6985
6986
6987
6988
6989
6990
6991      </td>
6992
6993
6994
6995
6996
6997
6998 <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;">
6999
7000
7001
7002
7003
7004
7005 <span style="font-style: italic;">model'</span><br>
7006
7007
7008
7009
7010
7011
7012 </td>
7013
7014
7015
7016
7017
7018
7019
7020      <td style="vertical-align: top;">Mixing length used in the
70211d-model.<br>
7022
7023
7024
7025
7026
7027
7028 <br>
7029
7030
7031
7032
7033
7034
7035
7036By default the mixing length is calculated as in the 3d-model (i.e. it
7037depends on the grid spacing).<br>
7038
7039
7040
7041
7042
7043
7044 <br>
7045
7046
7047
7048
7049
7050
7051
7052By setting <span style="font-weight: bold;">mixing_length_1d</span>
7053= <span style="font-style: italic;">'blackadar'</span>,
7054the so-called Blackadar mixing length is used (l = kappa * z / ( 1 +
7055kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br>
7056
7057
7058
7059
7060
7061
7062
7063      </td>
7064
7065
7066
7067
7068
7069
7070 </tr>
7071
7072
7073
7074
7075
7076
7077 
7078
7079
7080
7081
7082
7083
7084
7085    <tr>
7086
7087
7088
7089
7090
7091
7092 <td style="vertical-align: top;"> 
7093     
7094     
7095     
7096     
7097     
7098     
7099      <p><a name="momentum_advec"></a><b>momentum_advec</b></p>
7100
7101
7102
7103
7104
7105
7106
7107      </td>
7108
7109
7110
7111
7112
7113
7114 <td style="vertical-align: top;">C * 10</td>
7115
7116
7117
7118
7119
7120
7121
7122      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
7123
7124
7125
7126
7127
7128
7129
7130      <td style="vertical-align: top;"> 
7131     
7132     
7133     
7134     
7135     
7136     
7137      <p>Advection
7138scheme to be used for the momentum equations.<br>
7139
7140
7141
7142
7143
7144
7145 <br>
7146
7147
7148
7149
7150
7151
7152
7153The user can choose between the following schemes:<br>
7154
7155
7156
7157
7158
7159
7160
7161&nbsp;<br>
7162
7163
7164
7165
7166
7167
7168 <br>
7169
7170
7171
7172
7173
7174
7175 <span style="font-style: italic;">'pw-scheme'</span><br>
7176
7177
7178
7179
7180
7181
7182
7183      </p>
7184
7185
7186
7187
7188
7189
7190 
7191     
7192     
7193     
7194     
7195     
7196     
7197      <div style="margin-left: 40px;">The scheme of
7198Piascek and
7199Williams (1970, J. Comp. Phys., 6,
7200392-405) with central differences in the form C3 is used.<br>
7201
7202
7203
7204
7205
7206
7207
7208If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
7209= <span style="font-style: italic;">'leapfrog+euler'</span>
7210the
7211advection scheme is - for the Euler-timestep - automatically switched
7212to an upstream-scheme.<br>
7213
7214
7215
7216
7217
7218
7219 </div>
7220
7221
7222
7223
7224
7225
7226 
7227     
7228     
7229     
7230     
7231     
7232     
7233      <p> </p>
7234
7235
7236
7237
7238
7239
7240 
7241     
7242     
7243     
7244     
7245     
7246     
7247      <p><span style="font-style: italic;">'ups-scheme'</span><br>
7248
7249
7250
7251
7252
7253
7254
7255      </p>
7256
7257
7258
7259
7260
7261
7262 
7263     
7264     
7265     
7266     
7267     
7268     
7269      <div style="margin-left: 40px;">The
7270upstream-spline scheme is
7271used
7272(see Mahrer and Pielke,
72731978: Mon. Wea. Rev., 106, 818-830). In opposite to the
7274Piascek-Williams scheme, this is characterized by much better numerical
7275features (less numerical diffusion, better preservation of flow
7276structures, e.g. vortices), but computationally it is much more
7277expensive. In
7278addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
7279= <span style="font-style: italic;">'</span><i>euler'</i>),
7280i.e. the
7281timestep accuracy is only of first order.
7282For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>)
7283should then also be carried out with the upstream-spline scheme,
7284because otherwise the scalar variables would
7285be subject to large numerical diffusion due to the upstream
7286scheme.&nbsp; </div>
7287
7288
7289
7290
7291
7292
7293 
7294     
7295     
7296     
7297     
7298     
7299     
7300      <p style="margin-left: 40px;">Since
7301the cubic splines used tend
7302to overshoot under
7303certain circumstances, this effect must be adjusted by suitable
7304filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
7305      <a href="#long_filter_factor">long_filter_factor</a>,
7306      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
7307This is always neccessary for runs with stable stratification,
7308even if this stratification appears only in parts of the model domain.<br>
7309
7310
7311
7312
7313
7314
7315
7316      </p>
7317
7318
7319
7320
7321
7322
7323 
7324     
7325     
7326     
7327     
7328     
7329     
7330      <div style="margin-left: 40px;">With stable
7331stratification the
7332upstream-spline scheme also
7333produces gravity waves with large amplitude, which must be
7334suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
7335
7336
7337
7338
7339
7340
7341
7342      <br>
7343
7344
7345
7346
7347
7348
7349 <span style="font-weight: bold;">Important: </span>The&nbsp;
7350upstream-spline scheme is not implemented for humidity and passive
7351scalars (see&nbsp;<a href="#humidity">humidity</a>
7352and <a href="#passive_scalar">passive_scalar</a>)
7353and requires the use of a 2d-domain-decomposition. The last conditions
7354severely restricts code optimization on several machines leading to
7355very long execution times! The scheme is also not allowed for
7356non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
7357and <a href="#bc_ns">bc_ns</a>).</div>
7358
7359
7360
7361
7362
7363
7364 </td>
7365
7366
7367
7368
7369
7370
7371
7372    </tr>
7373
7374
7375
7376
7377
7378
7379 <tr>
7380
7381
7382
7383
7384
7385
7386 <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br>
7387
7388
7389
7390
7391
7392
7393
7394      </td>
7395
7396
7397
7398
7399
7400
7401 <td style="vertical-align: top;">C*20<br>
7402
7403
7404
7405
7406
7407
7408
7409(10)<br>
7410
7411
7412
7413
7414
7415
7416 </td>
7417
7418
7419
7420
7421
7422
7423 <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;">
7424
7425
7426
7427
7428
7429
7430 <span style="font-style: italic;">sion for all</span><br style="font-style: italic;">
7431
7432
7433
7434
7435
7436
7437 <span style="font-style: italic;">output quan-</span><br style="font-style: italic;">
7438
7439
7440
7441
7442
7443
7444 <span style="font-style: italic;">tities</span><br>
7445
7446
7447
7448
7449
7450
7451 </td>
7452
7453
7454
7455
7456
7457
7458
7459      <td style="vertical-align: top;">Defines the accuracy of
7460the NetCDF output.<br>
7461
7462
7463
7464
7465
7466
7467 <br>
7468
7469
7470
7471
7472
7473
7474
7475By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>)
7476have single precision&nbsp; (4 byte) accuracy. Double precision (8
7477byte) can be choosen alternatively.<br>
7478
7479
7480
7481
7482
7483
7484
7485Accuracy for the different output data (cross sections, 3d-volume data,
7486spectra, etc.) can be set independently.<br>
7487
7488
7489
7490
7491
7492
7493 <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL4'</span>
7494(single precision) or <span style="font-style: italic;">'&lt;out&gt;_NF90_REAL8'</span>
7495(double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>,
7496where the string <span style="font-style: italic;">'&lt;out&gt;'
7497      </span>can be chosen out of the following list:<br>
7498
7499
7500
7501
7502
7503
7504 <br>
7505
7506
7507
7508
7509
7510
7511
7512     
7513     
7514     
7515     
7516     
7517     
7518      <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2">
7519
7520
7521
7522
7523
7524
7525 <tbody>
7526
7527
7528
7529
7530
7531
7532
7533          <tr>
7534
7535
7536
7537
7538
7539
7540 <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br>
7541
7542
7543
7544
7545
7546
7547 </td>
7548
7549
7550
7551
7552
7553
7554
7555            <td style="vertical-align: top;">horizontal cross section<br>
7556
7557
7558
7559
7560
7561
7562
7563            </td>
7564
7565
7566
7567
7568
7569
7570 </tr>
7571
7572
7573
7574
7575
7576
7577 <tr>
7578
7579
7580
7581
7582
7583
7584 <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br>
7585
7586
7587
7588
7589
7590
7591 </td>
7592
7593
7594
7595
7596
7597
7598
7599            <td style="vertical-align: top;">vertical (xz) cross
7600section<br>
7601
7602
7603
7604
7605
7606
7607 </td>
7608
7609
7610
7611
7612
7613
7614 </tr>
7615
7616
7617
7618
7619
7620
7621 <tr>
7622
7623
7624
7625
7626
7627
7628 <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br>
7629
7630
7631
7632
7633
7634
7635 </td>
7636
7637
7638
7639
7640
7641
7642
7643            <td style="vertical-align: top;">vertical (yz) cross
7644section<br>
7645
7646
7647
7648
7649
7650
7651 </td>
7652
7653
7654
7655
7656
7657
7658 </tr>
7659
7660
7661
7662
7663
7664
7665 <tr>
7666
7667
7668
7669
7670
7671
7672 <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br>
7673
7674
7675
7676
7677
7678
7679 </td>
7680
7681
7682
7683
7684
7685
7686
7687            <td style="vertical-align: top;">all cross sections<br>
7688
7689
7690
7691
7692
7693
7694
7695            </td>
7696
7697
7698
7699
7700
7701
7702 </tr>
7703
7704
7705
7706
7707
7708
7709 <tr>
7710
7711
7712
7713
7714
7715
7716 <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br>
7717
7718
7719
7720
7721
7722
7723 </td>
7724
7725
7726
7727
7728
7729
7730
7731            <td style="vertical-align: top;">volume data<br>
7732
7733
7734
7735
7736
7737
7738 </td>
7739
7740
7741
7742
7743
7744
7745
7746          </tr>
7747
7748
7749
7750
7751
7752
7753 <tr>
7754
7755
7756
7757
7758
7759
7760 <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br>
7761
7762
7763
7764
7765
7766
7767 </td>
7768
7769
7770
7771
7772
7773
7774
7775            <td style="vertical-align: top;">vertical profiles<br>
7776
7777
7778
7779
7780
7781
7782
7783            </td>
7784
7785
7786
7787
7788
7789
7790 </tr>
7791
7792
7793
7794
7795
7796
7797 <tr>
7798
7799
7800
7801
7802
7803
7804 <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br>
7805
7806
7807
7808
7809
7810
7811 </td>
7812
7813
7814
7815
7816
7817
7818
7819            <td style="vertical-align: top;">time series, particle
7820time series<br>
7821
7822
7823
7824
7825
7826
7827 </td>
7828
7829
7830
7831
7832
7833
7834 </tr>
7835
7836
7837
7838
7839
7840
7841 <tr>
7842
7843
7844
7845
7846
7847
7848 <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br>
7849
7850
7851
7852
7853
7854
7855 </td>
7856
7857
7858
7859
7860
7861
7862
7863            <td style="vertical-align: top;">spectra<br>
7864
7865
7866
7867
7868
7869
7870 </td>
7871
7872
7873
7874
7875
7876
7877
7878          </tr>
7879
7880
7881
7882
7883
7884
7885 <tr>
7886
7887
7888
7889
7890
7891
7892 <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br>
7893
7894
7895
7896
7897
7898
7899 </td>
7900
7901
7902
7903
7904
7905
7906
7907            <td style="vertical-align: top;">particles<br>
7908
7909
7910
7911
7912
7913
7914 </td>
7915
7916
7917
7918
7919
7920
7921
7922          </tr>
7923
7924
7925
7926
7927
7928
7929 <tr>
7930
7931
7932
7933
7934
7935
7936 <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br>
7937
7938
7939
7940
7941
7942
7943 </td>
7944
7945
7946
7947
7948
7949
7950
7951            <td style="vertical-align: top;">all output quantities<br>
7952
7953
7954
7955
7956
7957
7958
7959            </td>
7960
7961
7962
7963
7964
7965
7966 </tr>
7967
7968
7969
7970
7971
7972
7973 
7974       
7975       
7976       
7977       
7978       
7979       
7980        </tbody> 
7981     
7982     
7983     
7984     
7985     
7986     
7987      </table>
7988
7989
7990
7991
7992
7993
7994 <br>
7995
7996
7997
7998
7999
8000
8001 <span style="font-weight: bold;">Example:</span><br>
8002
8003
8004
8005
8006
8007
8008
8009If all cross section data and the particle data shall be output in
8010double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span>
8011has to be assigned.<br>
8012
8013
8014
8015
8016
8017
8018 </td>
8019
8020
8021
8022
8023
8024
8025 </tr>
8026
8027
8028
8029
8030
8031
8032
8033   
8034
8035
8036
8037
8038
8039
8040 
8041
8042
8043
8044
8045
8046
8047
8048    <tr>
8049
8050
8051
8052
8053
8054
8055 <td style="vertical-align: top;"> 
8056     
8057     
8058     
8059     
8060     
8061     
8062      <p><a name="nsor_ini"></a><b>nsor_ini</b></p>
8063
8064
8065
8066
8067
8068
8069
8070      </td>
8071
8072
8073
8074
8075
8076
8077 <td style="vertical-align: top;">I</td>
8078
8079
8080
8081
8082
8083
8084
8085      <td style="vertical-align: top;"><i>100</i></td>
8086
8087
8088
8089
8090
8091
8092
8093      <td style="vertical-align: top;"> 
8094     
8095     
8096     
8097     
8098     
8099     
8100      <p>Initial number
8101of iterations with the SOR algorithm.&nbsp; </p>
8102
8103
8104
8105
8106
8107
8108 
8109     
8110     
8111     
8112     
8113     
8114     
8115      <p>This
8116parameter is only effective if the SOR algorithm was
8117selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a>
8118= <span style="font-style: italic;">'sor'</span>)
8119and specifies the
8120number of initial iterations of the SOR
8121scheme (at t = 0). The number of subsequent iterations at the following
8122timesteps is determined
8123with the parameter <a href="#nsor">nsor</a>.
8124Usually <b>nsor</b> &lt; <b>nsor_ini</b>,
8125since in each case
8126subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a>
8127use the solution of the previous call as initial value. Suitable
8128test runs should determine whether sufficient convergence of the
8129solution is obtained with the default value and if necessary the value
8130of <b>nsor_ini</b> should be changed.</p>
8131
8132
8133
8134
8135
8136
8137 </td>
8138
8139
8140
8141
8142
8143
8144
8145    </tr>
8146
8147
8148
8149
8150
8151
8152 <tr>
8153
8154
8155
8156
8157
8158
8159 <td style="vertical-align: top;">
8160     
8161     
8162     
8163     
8164     
8165     
8166      <p><a name="nx"></a><b>nx</b></p>
8167
8168
8169
8170
8171
8172
8173
8174      </td>
8175
8176
8177
8178
8179
8180
8181 <td style="vertical-align: top;">I</td>
8182
8183
8184
8185
8186
8187
8188
8189      <td style="vertical-align: top;"><br>
8190
8191
8192
8193
8194
8195
8196 </td>
8197
8198
8199
8200
8201
8202
8203 <td style="vertical-align: top;"> 
8204     
8205     
8206     
8207     
8208     
8209     
8210      <p>Number of grid
8211points in x-direction.&nbsp; </p>
8212
8213
8214
8215
8216
8217
8218 
8219     
8220     
8221     
8222     
8223     
8224     
8225      <p>A value for this
8226parameter must be assigned. Since the lower
8227array bound in PALM
8228starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>.
8229In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)*
8230      <a href="#dx">dx</a>.</p>
8231
8232
8233
8234
8235
8236
8237 
8238     
8239     
8240     
8241     
8242     
8243     
8244      <p>For
8245parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8246= <span style="font-style: italic;">'strict'</span>,
8247      <b>nx+1</b> must
8248be an integral multiple
8249of the processor numbers (see <a href="#npex">npex</a>
8250and <a href="#npey">npey</a>)
8251along x- as well as along y-direction (due to data
8252transposition restrictions).</p>
8253
8254
8255
8256
8257
8258
8259     
8260     
8261     
8262     
8263     
8264     
8265      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8266and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8267
8268
8269
8270
8271
8272
8273 </td>
8274
8275
8276
8277
8278
8279
8280 </tr>
8281
8282
8283
8284
8285
8286
8287 <tr>
8288
8289
8290
8291
8292
8293
8294
8295      <td style="vertical-align: top;"> 
8296     
8297     
8298     
8299     
8300     
8301     
8302      <p><a name="ny"></a><b>ny</b></p>
8303
8304
8305
8306
8307
8308
8309
8310      </td>
8311
8312
8313
8314
8315
8316
8317 <td style="vertical-align: top;">I</td>
8318
8319
8320
8321
8322
8323
8324
8325      <td style="vertical-align: top;"><br>
8326
8327
8328
8329
8330
8331
8332 </td>
8333
8334
8335
8336
8337
8338
8339 <td style="vertical-align: top;"> 
8340     
8341     
8342     
8343     
8344     
8345     
8346      <p>Number of grid
8347points in y-direction.&nbsp; </p>
8348
8349
8350
8351
8352
8353
8354 
8355     
8356     
8357     
8358     
8359     
8360     
8361      <p>A value for this
8362parameter must be assigned. Since the lower
8363array bound in PALM starts with j = 0, the actual number of grid points
8364is equal to <b>ny+1</b>. In case of cyclic boundary
8365conditions along
8366y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p>
8367
8368
8369
8370
8371
8372
8373
8374     
8375     
8376     
8377     
8378     
8379     
8380      <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a>
8381= <span style="font-style: italic;">'strict'</span>,
8382      <b>ny+1</b> must
8383be an integral multiple
8384of the processor numbers (see <a href="#npex">npex</a>
8385and <a href="#npey">npey</a>)&nbsp;
8386along y- as well as along x-direction (due to data
8387transposition restrictions).</p>
8388
8389
8390
8391
8392
8393
8394     
8395     
8396     
8397     
8398     
8399     
8400      <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be&nbsp;equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a>
8401and&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p>
8402
8403
8404
8405
8406
8407
8408 </td>
8409
8410
8411
8412
8413
8414
8415 </tr>
8416
8417
8418
8419
8420
8421
8422 <tr>
8423
8424
8425
8426
8427
8428
8429
8430      <td style="vertical-align: top;"> 
8431     
8432     
8433     
8434     
8435     
8436     
8437      <p><a name="nz"></a><b>nz</b></p>
8438
8439
8440
8441
8442
8443
8444
8445      </td>
8446
8447
8448
8449
8450
8451
8452 <td style="vertical-align: top;">I</td>
8453
8454
8455
8456
8457
8458
8459
8460      <td style="vertical-align: top;"><br>
8461
8462
8463
8464
8465
8466
8467 </td>
8468
8469
8470
8471
8472
8473
8474 <td style="vertical-align: top;"> 
8475     
8476     
8477     
8478     
8479     
8480     
8481      <p>Number of grid
8482points in z-direction.&nbsp; </p>
8483
8484
8485
8486
8487
8488
8489 
8490     
8491     
8492     
8493     
8494     
8495     
8496      <p>A value for this
8497parameter must be assigned. Since the lower
8498array bound in PALM
8499starts with k = 0 and since one additional grid point is added at the
8500top boundary (k = <b>nz+1</b>), the actual number of grid
8501points is <b>nz+2</b>.
8502However, the prognostic equations are only solved up to <b>nz</b>
8503(u,
8504v)
8505or up to <b>nz-1</b> (w, scalar quantities). The top
8506boundary for u
8507and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b>
8508for all
8509other quantities.&nbsp; </p>
8510
8511
8512
8513
8514
8515
8516 
8517     
8518     
8519     
8520     
8521     
8522     
8523      <p>For parallel
8524runs,&nbsp; in case of <a href="#grid_matching">grid_matching</a>
8525= <span style="font-style: italic;">'strict'</span>,
8526      <b>nz</b> must
8527be an integral multiple of
8528the number of processors in x-direction (due to data transposition
8529restrictions).</p>
8530
8531
8532
8533
8534
8535
8536 </td>
8537
8538
8539
8540
8541
8542
8543 </tr>
8544
8545
8546
8547
8548
8549
8550 <tr>
8551
8552
8553
8554
8555
8556
8557      <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td>
8558
8559
8560
8561
8562
8563
8564      <td style="vertical-align: top;">L</td>
8565
8566
8567
8568
8569
8570
8571      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
8572
8573
8574
8575
8576
8577
8578      <td style="vertical-align: top;">Parameter to switch on&nbsp;ocean runs.<br>
8579
8580
8581
8582
8583
8584
8585      <br>
8586
8587
8588
8589
8590
8591
8592By default PALM is configured to simulate&nbsp;atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows&nbsp;simulation of ocean turbulent flows. Setting this switch has several effects:<br>
8593
8594
8595
8596
8597
8598
8599      <br>
8600
8601
8602
8603
8604
8605
8606     
8607     
8608     
8609     
8610     
8611     
8612      <ul>
8613
8614
8615
8616
8617
8618
8619        <li>An additional prognostic equation for salinity is solved.</li>
8620
8621
8622
8623
8624
8625
8626        <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li>
8627
8628
8629
8630
8631
8632
8633        <li>Potential
8634density is calculated from the equation of state for seawater after
8635each timestep, using the algorithm proposed by Jackett et al. (2006, J.
8636Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br>
8637
8638
8639
8640
8641
8642
8643So far, only the initial hydrostatic pressure is entered into this equation.</li>
8644
8645
8646
8647
8648
8649
8650        <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li>
8651
8652
8653
8654
8655
8656
8657        <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values&nbsp;given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li>
8658
8659
8660
8661
8662
8663
8664        <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li>
8665
8666
8667
8668
8669
8670
8671        <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li>
8672
8673
8674
8675
8676
8677
8678     
8679     
8680     
8681     
8682     
8683     
8684      </ul>
8685
8686
8687
8688
8689
8690
8691      <br>
8692
8693
8694
8695
8696
8697
8698Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br>
8699
8700
8701
8702
8703
8704
8705      <br>
8706
8707
8708
8709
8710
8711
8712Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br>
8713
8714
8715
8716
8717
8718
8719      <br>
8720
8721
8722
8723
8724
8725
8726      <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br>
8727
8728
8729
8730      </td>
8731
8732
8733
8734
8735
8736
8737    </tr>
8738
8739
8740
8741
8742
8743
8744    <tr>
8745
8746
8747
8748
8749
8750
8751 <td style="vertical-align: top;"> 
8752     
8753     
8754     
8755     
8756     
8757     
8758      <p><a name="omega"></a><b>omega</b></p>
8759
8760
8761
8762
8763
8764
8765
8766      </td>
8767
8768
8769
8770
8771
8772
8773 <td style="vertical-align: top;">R</td>
8774
8775
8776
8777
8778
8779
8780
8781      <td style="vertical-align: top;"><i>7.29212E-5</i></td>
8782
8783
8784
8785
8786
8787
8788
8789      <td style="vertical-align: top;"> 
8790     
8791     
8792     
8793     
8794     
8795     
8796      <p>Angular
8797velocity of the rotating system (in rad s<sup>-1</sup>).&nbsp;
8798      </p>
8799
8800
8801
8802
8803
8804
8805 
8806     
8807     
8808     
8809     
8810     
8811     
8812      <p>The angular velocity of the earth is set by
8813default. The
8814values
8815of the Coriolis parameters are calculated as:&nbsp; </p>
8816
8817
8818
8819
8820
8821
8822 
8823     
8824     
8825     
8826     
8827     
8828     
8829      <ul>
8830
8831
8832
8833
8834
8835
8836
8837       
8838       
8839       
8840       
8841       
8842       
8843        <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>)&nbsp;
8844        <br>
8845
8846
8847
8848
8849
8850
8851f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p>
8852
8853
8854
8855
8856
8857
8858
8859     
8860     
8861     
8862     
8863     
8864     
8865      </ul>
8866
8867
8868
8869
8870
8871
8872 </td>
8873
8874
8875
8876
8877
8878
8879 </tr>
8880
8881
8882
8883
8884
8885
8886 <tr>
8887
8888
8889
8890
8891
8892
8893 <td style="vertical-align: top;"> 
8894     
8895     
8896     
8897     
8898     
8899     
8900      <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p>
8901
8902
8903
8904
8905
8906
8907
8908      </td>
8909
8910
8911
8912
8913
8914
8915 <td style="vertical-align: top;">I</td>
8916
8917
8918
8919
8920
8921
8922
8923      <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20,
8924nx/2</span> or <span style="font-style: italic;">ny/2)</span></td>
8925
8926
8927
8928
8929
8930
8931
8932      <td style="vertical-align: top;">Width of
8933the damping range in the vicinity of the outflow (gridpoints).<br>
8934
8935
8936
8937
8938
8939
8940
8941      <br>
8942
8943
8944
8945
8946
8947
8948
8949When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a>
8950or <a href="chapter_4.1.html#bc_ns">bc_ns</a>),
8951a smoothing has to be applied to the
8952velocity field in the vicinity of the outflow in order to suppress any
8953reflections of outgoing disturbances. This parameter controlls the
8954horizontal range to which the smoothing is applied. The range is given
8955in gridpoints counted from the respective outflow boundary. For further
8956details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>,
8957which defines the magnitude of the damping.</td>
8958
8959
8960
8961
8962
8963
8964 </tr>
8965
8966
8967
8968
8969
8970
8971
8972    <tr>
8973
8974
8975
8976
8977
8978
8979 <td style="vertical-align: top;"> 
8980     
8981     
8982     
8983     
8984     
8985     
8986      <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p>
8987
8988
8989
8990
8991
8992
8993
8994      </td>
8995
8996
8997
8998
8999
9000
9001 <td style="vertical-align: top;">R</td>
9002
9003
9004
9005
9006
9007
9008
9009      <td style="vertical-align: top;"><i>0.0</i></td>
9010
9011
9012
9013
9014
9015
9016
9017      <td style="vertical-align: top;"> 
9018     
9019     
9020     
9021     
9022     
9023     
9024      <p>Allowed limit
9025for the overshooting of subgrid-scale TKE in
9026case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>).&nbsp;
9027      </p>
9028
9029
9030
9031
9032
9033
9034 
9035     
9036     
9037     
9038     
9039     
9040     
9041      <p>By deafult, if cut-off of overshoots is switched
9042on for the
9043upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>),
9044no overshoots are permitted at all. If <b>overshoot_limit_e</b>
9045is given a non-zero value, overshoots with the respective
9046amplitude (both upward and downward) are allowed.&nbsp; </p>
9047
9048
9049
9050
9051
9052
9053
9054     
9055     
9056     
9057     
9058     
9059     
9060      <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p>
9061
9062
9063
9064
9065
9066
9067
9068      </td>
9069
9070
9071
9072
9073
9074
9075 </tr>
9076
9077
9078
9079
9080
9081
9082 <tr>
9083
9084
9085
9086
9087
9088
9089 <td style="vertical-align: top;"> 
9090     
9091     
9092     
9093     
9094     
9095     
9096      <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p>
9097
9098
9099
9100
9101
9102
9103
9104      </td>
9105
9106
9107
9108
9109
9110
9111 <td style="vertical-align: top;">R</td>
9112
9113
9114
9115
9116
9117
9118
9119      <td style="vertical-align: top;"><i>0.0</i></td>
9120
9121
9122
9123
9124
9125
9126
9127      <td style="vertical-align: top;"> 
9128     
9129     
9130     
9131     
9132     
9133     
9134      <p>Allowed limit
9135for the overshooting of potential temperature in
9136case that the upstream-spline scheme is switched on (in K).&nbsp; </p>
9137
9138
9139
9140
9141
9142
9143
9144     
9145     
9146     
9147     
9148     
9149     
9150      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9151      </p>
9152
9153
9154
9155
9156
9157
9158 
9159     
9160     
9161     
9162     
9163     
9164     
9165      <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p>
9166
9167
9168
9169
9170
9171
9172
9173      </td>
9174
9175
9176
9177
9178
9179
9180 </tr>
9181
9182
9183
9184
9185
9186
9187 <tr>
9188
9189
9190
9191
9192
9193
9194 <td style="vertical-align: top;"> 
9195     
9196     
9197     
9198     
9199     
9200     
9201      <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p>
9202
9203
9204
9205
9206
9207
9208
9209      </td>
9210
9211
9212
9213
9214
9215
9216 <td style="vertical-align: top;">R</td>
9217
9218
9219
9220
9221
9222
9223
9224      <td style="vertical-align: top;"><i>0.0</i></td>
9225
9226
9227
9228
9229
9230
9231
9232      <td style="vertical-align: top;">Allowed limit for the
9233overshooting of
9234the u-component of velocity in case that the upstream-spline scheme is
9235switched on (in m/s).
9236     
9237     
9238     
9239     
9240     
9241     
9242      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9243      </p>
9244
9245
9246
9247
9248
9249
9250 
9251     
9252     
9253     
9254     
9255     
9256     
9257      <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p>
9258
9259
9260
9261
9262
9263
9264
9265      </td>
9266
9267
9268
9269
9270
9271
9272 </tr>
9273
9274
9275
9276
9277
9278
9279 <tr>
9280
9281
9282
9283
9284
9285
9286 <td style="vertical-align: top;"> 
9287     
9288     
9289     
9290     
9291     
9292     
9293      <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p>
9294
9295
9296
9297
9298
9299
9300
9301      </td>
9302
9303
9304
9305
9306
9307
9308 <td style="vertical-align: top;">R</td>
9309
9310
9311
9312
9313
9314
9315
9316      <td style="vertical-align: top;"><i>0.0</i></td>
9317
9318
9319
9320
9321
9322
9323
9324      <td style="vertical-align: top;"> 
9325     
9326     
9327     
9328     
9329     
9330     
9331      <p>Allowed limit
9332for the overshooting of the v-component of
9333velocity in case that the upstream-spline scheme is switched on
9334(in m/s).&nbsp; </p>
9335
9336
9337
9338
9339
9340
9341 
9342     
9343     
9344     
9345     
9346     
9347     
9348      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9349      </p>
9350
9351
9352
9353
9354
9355
9356 
9357     
9358     
9359     
9360     
9361     
9362     
9363      <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p>
9364
9365
9366
9367
9368
9369
9370
9371      </td>
9372
9373
9374
9375
9376
9377
9378 </tr>
9379
9380
9381
9382
9383
9384
9385 <tr>
9386
9387
9388
9389
9390
9391
9392 <td style="vertical-align: top;"> 
9393     
9394     
9395     
9396     
9397     
9398     
9399      <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p>
9400
9401
9402
9403
9404
9405
9406
9407      </td>
9408
9409
9410
9411
9412
9413
9414 <td style="vertical-align: top;">R</td>
9415
9416
9417
9418
9419
9420
9421
9422      <td style="vertical-align: top;"><i>0.0</i></td>
9423
9424
9425
9426
9427
9428
9429
9430      <td style="vertical-align: top;"> 
9431     
9432     
9433     
9434     
9435     
9436     
9437      <p>Allowed limit
9438for the overshooting of the w-component of
9439velocity in case that the upstream-spline scheme is switched on
9440(in m/s).&nbsp; </p>
9441
9442
9443
9444
9445
9446
9447 
9448     
9449     
9450     
9451     
9452     
9453     
9454      <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>.&nbsp;
9455      </p>
9456
9457
9458
9459
9460
9461
9462 
9463     
9464     
9465     
9466     
9467     
9468     
9469      <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p>
9470
9471
9472
9473
9474
9475
9476
9477      </td>
9478
9479
9480
9481
9482
9483
9484 </tr>
9485
9486
9487
9488
9489
9490
9491 <tr>
9492
9493
9494
9495
9496
9497
9498 <td style="vertical-align: top;"> 
9499     
9500     
9501     
9502     
9503     
9504     
9505      <p><a name="passive_scalar"></a><b>passive_scalar</b></p>
9506
9507
9508
9509
9510
9511
9512
9513      </td>
9514
9515
9516
9517
9518
9519
9520 <td style="vertical-align: top;">L</td>
9521
9522
9523
9524
9525
9526
9527
9528      <td style="vertical-align: top;"><i>.F.</i></td>
9529
9530
9531
9532
9533
9534
9535
9536      <td style="vertical-align: top;"> 
9537     
9538     
9539     
9540     
9541     
9542     
9543      <p>Parameter to
9544switch on the prognostic equation for a passive
9545scalar. <br>
9546
9547
9548
9549
9550
9551
9552 </p>
9553
9554
9555
9556
9557
9558
9559 
9560     
9561     
9562     
9563     
9564     
9565     
9566      <p>The initial vertical profile
9567of s can be set via parameters <a href="#s_surface">s_surface</a>,
9568      <a href="#s_vertical_gradient">s_vertical_gradient</a>
9569and&nbsp; <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
9570Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a>
9571and <a href="#surface_scalarflux">surface_scalarflux</a>.&nbsp;
9572      </p>
9573
9574
9575
9576
9577
9578
9579 
9580     
9581     
9582     
9583     
9584     
9585     
9586      <p><b>Note:</b> <br>
9587
9588
9589
9590
9591
9592
9593
9594With <span style="font-weight: bold;">passive_scalar</span>
9595switched
9596on, the simultaneous use of humidity (see&nbsp;<a href="#humidity">humidity</a>)
9597is impossible.</p>
9598
9599
9600
9601
9602
9603
9604 </td>
9605
9606
9607
9608
9609
9610
9611 </tr>
9612
9613
9614
9615
9616
9617
9618 <tr>
9619
9620      <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td>
9621
9622      <td style="vertical-align: top;">I</td>
9623
9624      <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td>
9625
9626      <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br>
9627
9628      <br>
9629
9630Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td>
9631
9632    </tr>
9633
9634    <tr>
9635
9636
9637
9638
9639
9640
9641 <td style="vertical-align: top;"> 
9642     
9643     
9644     
9645     
9646     
9647     
9648      <p><a name="phi"></a><b>phi</b></p>
9649
9650
9651
9652
9653
9654
9655
9656      </td>
9657
9658
9659
9660
9661
9662
9663 <td style="vertical-align: top;">R</td>
9664
9665
9666
9667
9668
9669
9670
9671      <td style="vertical-align: top;"><i>55.0</i></td>
9672
9673
9674
9675
9676
9677
9678
9679      <td style="vertical-align: top;"> 
9680     
9681     
9682     
9683     
9684     
9685     
9686      <p>Geographical
9687latitude (in degrees).&nbsp; </p>
9688
9689
9690
9691
9692
9693
9694 
9695     
9696     
9697     
9698     
9699     
9700     
9701      <p>The value of
9702this parameter determines the value of the
9703Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>)
9704is non-zero.</p>
9705
9706
9707
9708
9709
9710
9711 </td>
9712
9713
9714
9715
9716
9717
9718 </tr>
9719
9720
9721
9722
9723
9724
9725 <tr>
9726
9727      <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td>
9728
9729      <td style="vertical-align: top;">L</td>
9730
9731      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9732
9733      <td style="vertical-align: top;">Switch for the plant_canopy_model.<br>
9734
9735      <br>
9736
9737If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br>
9738
9739The
9740impact of a plant canopy on a turbulent flow is considered by an
9741additional drag term in the momentum equations and an additional sink
9742term in the prognostic equation for the subgrid-scale TKE. These
9743additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). The top boundary of the plant canopy is determined by the parameter <a href="#pch_index">pch_index</a>. For all heights equal to or larger than zw(k=<span style="font-weight: bold;">pch_index</span>) the leaf area density is 0 (i.e. there is no canopy at these heights!). <br>
9744
9745By default, a horizontally homogeneous plant canopy is prescribed, if&nbsp; <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br><br>If <span style="font-weight: bold;">plant_canopy</span> and&nbsp; <span style="font-weight: bold;">passive_scalar</span><span style="font-style: italic;"> </span>are set <span style="font-style: italic;">.T.</span>,
9746the canopy acts as an additional source or sink, respectively, of
9747scalar concentration. The source/sink strength is dependent on the
9748scalar concentration at the leaf surface, which is generally constant
9749with time in PALM and which can be specified by specifying the
9750parameter <a href="#leaf_surface_concentration">leaf_surface_concentration</a>. <br><br>Additional heating of the air by the plant canopy is taken into account, when the default value of the parameter <a href="#cthf">cthf</a> is altered in the parameter file. In that case the value of <a href="#surface_heatflux">surface_heatflux</a>
9751specified in the parameter file is not used in the model. Instead the
9752near-surface heat flux is derived from an expontial function that is
9753dependent on the cumulative leaf area index. <br> 
9754
9755      <br>
9756
9757      <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td>
9758
9759    </tr>
9760
9761    <tr>
9762
9763
9764
9765
9766
9767
9768 <td style="vertical-align: top;"> 
9769     
9770     
9771     
9772     
9773     
9774     
9775      <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p>
9776
9777
9778
9779
9780
9781
9782
9783      </td>
9784
9785
9786
9787
9788
9789
9790 <td style="vertical-align: top;">L</td>
9791
9792
9793
9794
9795
9796
9797
9798      <td style="vertical-align: top;"><i>.T.</i></td>
9799
9800
9801
9802
9803
9804
9805
9806      <td style="vertical-align: top;"> 
9807     
9808     
9809     
9810     
9811     
9812     
9813      <p>Parameter to
9814switch on a Prandtl layer.&nbsp; </p>
9815
9816
9817
9818
9819
9820
9821 
9822     
9823     
9824     
9825     
9826     
9827     
9828      <p>By default,
9829a Prandtl layer is switched on at the bottom
9830boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a>
9831(the first computational grid point above ground for u, v and the
9832scalar quantities).
9833In this case, at the bottom boundary, free-slip conditions for u and v
9834(see <a href="#bc_uv_b">bc_uv_b</a>)
9835are not allowed. Likewise, laminar
9836simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>)
9837are forbidden.&nbsp; </p>
9838
9839
9840
9841
9842
9843
9844 
9845     
9846     
9847     
9848     
9849     
9850     
9851      <p>With Prandtl-layer
9852switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a>
9853= '<i>(u*)**2+neumann'</i> must not be used and is
9854automatically
9855changed to <i>'neumann'</i> if necessary.&nbsp; Also,
9856the pressure
9857boundary condition <a href="#bc_p_b">bc_p_b</a>
9858= <i>'neumann+inhomo'</i>&nbsp; is not allowed. </p>
9859
9860
9861
9862
9863
9864
9865
9866     
9867     
9868     
9869     
9870     
9871     
9872      <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p>
9873
9874
9875
9876
9877
9878
9879
9880      </td>
9881
9882
9883
9884
9885
9886
9887 </tr>
9888
9889
9890
9891
9892
9893
9894 <tr>
9895
9896
9897
9898
9899
9900
9901 <td style="vertical-align: top;"> 
9902     
9903     
9904     
9905     
9906     
9907     
9908      <p><a name="precipitation"></a><b>precipitation</b></p>
9909
9910
9911
9912
9913
9914
9915
9916      </td>
9917
9918
9919
9920
9921
9922
9923 <td style="vertical-align: top;">L</td>
9924
9925
9926
9927
9928
9929
9930
9931      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
9932
9933
9934
9935
9936
9937
9938 <td style="vertical-align: top;"> 
9939     
9940     
9941     
9942     
9943     
9944     
9945      <p>Parameter to switch
9946on the precipitation scheme.<br>
9947
9948
9949
9950
9951
9952
9953 </p>
9954
9955
9956
9957
9958
9959
9960 
9961     
9962     
9963     
9964     
9965     
9966     
9967      <p>For
9968precipitation processes PALM uses a simplified Kessler
9969scheme. This scheme only considers the
9970so-called autoconversion, that means the generation of rain water by
9971coagulation of cloud drops among themselves. Precipitation begins and
9972is immediately removed from the flow as soon as the liquid water
9973content exceeds the critical value of 0.5 g/kg.</p>
9974
9975
9976
9977
9978
9979
9980     
9981     
9982     
9983     
9984     
9985     
9986      <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p>
9987
9988
9989
9990
9991
9992
9993 </td>
9994
9995
9996
9997
9998
9999
10000 </tr>
10001
10002
10003
10004
10005
10006
10007
10008    <tr>
10009
10010
10011
10012
10013
10014
10015      <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td>
10016
10017
10018
10019
10020
10021
10022      <td style="vertical-align: top;">R</td>
10023
10024
10025
10026
10027
10028
10029      <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as
10030refrence</span></td>
10031
10032
10033
10034
10035
10036
10037      <td style="vertical-align: top;">Reference
10038temperature to be used in all buoyancy terms (in K).<br>
10039
10040
10041
10042
10043
10044
10045      <br>
10046
10047
10048
10049
10050
10051
10052By
10053default, the instantaneous horizontal average over the total model
10054domain is used.<br>
10055
10056
10057
10058
10059
10060
10061      <br>
10062
10063
10064
10065
10066
10067
10068      <span style="font-weight: bold;">Attention:</span><br>
10069
10070
10071
10072
10073
10074
10075In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td>
10076
10077
10078
10079
10080
10081
10082    </tr>
10083
10084
10085
10086
10087
10088
10089    <tr>
10090
10091
10092
10093
10094
10095
10096 <td style="vertical-align: top;"> 
10097     
10098     
10099     
10100     
10101     
10102     
10103      <p><a name="pt_surface"></a><b>pt_surface</b></p>
10104
10105
10106
10107
10108
10109
10110
10111      </td>
10112
10113
10114
10115
10116
10117
10118 <td style="vertical-align: top;">R</td>
10119
10120
10121
10122
10123
10124
10125
10126      <td style="vertical-align: top;"><i>300.0</i></td>
10127
10128
10129
10130
10131
10132
10133
10134      <td style="vertical-align: top;"> 
10135     
10136     
10137     
10138     
10139     
10140     
10141      <p>Surface
10142potential temperature (in K).&nbsp; </p>
10143
10144
10145
10146
10147
10148
10149 
10150     
10151     
10152     
10153     
10154     
10155     
10156      <p>This
10157parameter assigns the value of the potential temperature
10158      <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value,
10159the
10160initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10161and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level
10162      </a>.
10163This profile is also used for the 1d-model as a stationary profile.</p>
10164
10165
10166
10167
10168
10169
10170     
10171     
10172     
10173     
10174     
10175     
10176      <p><span style="font-weight: bold;">Attention:</span><br>
10177
10178
10179
10180
10181
10182
10183In case of ocean runs (see <a href="#ocean">ocean</a>),
10184this parameter gives the temperature value at the sea surface, which is
10185at k=nzt. The profile is then constructed from the surface down to the
10186bottom of the model.</p>
10187
10188
10189
10190
10191
10192
10193
10194      </td>
10195
10196
10197
10198
10199
10200
10201 </tr>
10202
10203
10204
10205
10206
10207
10208 <tr>
10209
10210
10211
10212
10213
10214
10215 <td style="vertical-align: top;"> 
10216     
10217     
10218     
10219     
10220     
10221     
10222      <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b>
10223      <br>
10224
10225
10226
10227
10228
10229
10230 <b>_change</b></p>
10231
10232
10233
10234
10235
10236
10237 </td>
10238
10239
10240
10241
10242
10243
10244 <td style="vertical-align: top;">R</td>
10245
10246
10247
10248
10249
10250
10251 <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
10252
10253
10254
10255
10256
10257
10258 </td>
10259
10260
10261
10262
10263
10264
10265
10266      <td style="vertical-align: top;"> 
10267     
10268     
10269     
10270     
10271     
10272     
10273      <p>Change in
10274surface temperature to be made at the beginning of
10275the 3d run
10276(in K).&nbsp; </p>
10277
10278
10279
10280
10281
10282
10283 
10284     
10285     
10286     
10287     
10288     
10289     
10290      <p>If <b>pt_surface_initial_change</b>
10291is set to a non-zero
10292value, the near surface sensible heat flux is not allowed to be given
10293simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p>
10294
10295
10296
10297
10298
10299
10300
10301      </td>
10302
10303
10304
10305
10306
10307
10308 </tr>
10309
10310
10311
10312
10313
10314
10315 <tr>
10316
10317
10318
10319
10320
10321
10322 <td style="vertical-align: top;"> 
10323     
10324     
10325     
10326     
10327     
10328     
10329      <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p>
10330
10331
10332
10333
10334
10335
10336
10337      </td>
10338
10339
10340
10341
10342
10343
10344 <td style="vertical-align: top;">R (10)</td>
10345
10346
10347
10348
10349
10350
10351
10352      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10353
10354
10355
10356
10357
10358
10359
10360      <td style="vertical-align: top;"> 
10361     
10362     
10363     
10364     
10365     
10366     
10367      <p>Temperature
10368gradient(s) of the initial temperature profile (in
10369K
10370/ 100 m).&nbsp; </p>
10371
10372
10373
10374
10375
10376
10377 
10378     
10379     
10380     
10381     
10382     
10383     
10384      <p>This temperature gradient
10385holds starting from the height&nbsp;
10386level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>
10387(precisely: for all uv levels k where zu(k) &gt;
10388pt_vertical_gradient_level,
10389pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>)
10390up to the top boundary or up to the next height level defined
10391by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>.
10392A total of 10 different gradients for 11 height intervals (10 intervals
10393if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1)
10394= <i>0.0</i>) can be assigned. The surface temperature is
10395assigned via <a href="#pt_surface">pt_surface</a>.&nbsp;
10396      </p>
10397
10398
10399
10400
10401
10402
10403 
10404     
10405     
10406     
10407     
10408     
10409     
10410      <p>Example:&nbsp; </p>
10411
10412
10413
10414
10415
10416
10417 
10418     
10419     
10420     
10421     
10422     
10423     
10424      <ul>
10425
10426
10427
10428
10429
10430
10431 
10432       
10433       
10434       
10435       
10436       
10437       
10438        <p><b>pt_vertical_gradient</b>
10439= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
10440
10441
10442
10443
10444
10445
10446
10447        <b>pt_vertical_gradient_level</b> = <i>500.0</i>,
10448        <i>1000.0</i>,</p>
10449
10450
10451
10452
10453
10454
10455 
10456     
10457     
10458     
10459     
10460     
10461     
10462      </ul>
10463
10464
10465
10466
10467
10468
10469 
10470     
10471     
10472     
10473     
10474     
10475     
10476      <p>That
10477defines the temperature profile to be neutrally
10478stratified
10479up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>.
10480For 500.0 m &lt; z &lt;= 1000.0 m the temperature gradient is
104811.0 K /
10482100 m and for z &gt; 1000.0 m up to the top boundary it is
104830.5 K / 100 m (it is assumed that the assigned height levels correspond
10484with uv levels).</p>
10485
10486
10487
10488
10489
10490
10491     
10492     
10493     
10494     
10495     
10496     
10497      <p><span style="font-weight: bold;">Attention:</span><br>
10498
10499
10500
10501
10502
10503
10504In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
10505the profile is constructed like described above, but starting from the
10506sea surface (k=nzt) down to the bottom boundary of the model. Height
10507levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p>
10508
10509
10510
10511
10512
10513
10514 </td>
10515
10516
10517
10518
10519
10520
10521 </tr>
10522
10523
10524
10525
10526
10527
10528 <tr>
10529
10530
10531
10532
10533
10534
10535 <td style="vertical-align: top;"> 
10536     
10537     
10538     
10539     
10540     
10541     
10542      <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b>
10543      <br>
10544
10545
10546
10547
10548
10549
10550 <b>_level</b></p>
10551
10552
10553
10554
10555
10556
10557 </td>
10558
10559
10560
10561
10562
10563
10564 <td style="vertical-align: top;">R (10)</td>
10565
10566
10567
10568
10569
10570
10571 <td style="vertical-align: top;"> 
10572     
10573     
10574     
10575     
10576     
10577     
10578      <p><i>10 *</i>&nbsp;
10579      <span style="font-style: italic;">0.0</span><br>
10580
10581
10582
10583
10584
10585
10586
10587      </p>
10588
10589
10590
10591
10592
10593
10594 </td>
10595
10596
10597
10598
10599
10600
10601 <td style="vertical-align: top;">
10602     
10603     
10604     
10605     
10606     
10607     
10608      <p>Height level from which on the temperature gradient defined by
10609      <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10610is effective (in m).&nbsp; </p>
10611
10612
10613
10614
10615
10616
10617 
10618     
10619     
10620     
10621     
10622     
10623     
10624      <p>The height levels have to be assigned in ascending order. The
10625default values result in a neutral stratification regardless of the
10626values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a>
10627(unless the top boundary of the model is higher than 100000.0 m).
10628For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p>
10629
10630
10631
10632
10633
10634
10635      <span style="font-weight: bold;">Attention:</span><br>
10636
10637
10638
10639
10640
10641
10642In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.
10643      </td>
10644
10645
10646
10647
10648
10649
10650 </tr>
10651
10652
10653
10654
10655
10656
10657 <tr>
10658
10659
10660
10661
10662
10663
10664 <td style="vertical-align: top;"> 
10665     
10666     
10667     
10668     
10669     
10670     
10671      <p><a name="q_surface"></a><b>q_surface</b></p>
10672
10673
10674
10675
10676
10677
10678
10679      </td>
10680
10681
10682
10683
10684
10685
10686 <td style="vertical-align: top;">R</td>
10687
10688
10689
10690
10691
10692
10693
10694      <td style="vertical-align: top;"><i>0.0</i></td>
10695
10696
10697
10698
10699
10700
10701
10702      <td style="vertical-align: top;"> 
10703     
10704     
10705     
10706     
10707     
10708     
10709      <p>Surface
10710specific humidity / total water content (kg/kg).&nbsp; </p>
10711
10712
10713
10714
10715
10716
10717 
10718     
10719     
10720     
10721     
10722     
10723     
10724      <p>This
10725parameter assigns the value of the specific humidity q at
10726the surface (k=0).&nbsp; Starting from this value, the initial
10727humidity
10728profile is constructed with&nbsp; <a href="#q_vertical_gradient">q_vertical_gradient</a>
10729and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10730This profile is also used for the 1d-model as a stationary profile.</p>
10731
10732
10733
10734
10735
10736
10737
10738      </td>
10739
10740
10741
10742
10743
10744
10745 </tr>
10746
10747
10748
10749
10750
10751
10752 <tr>
10753
10754
10755
10756
10757
10758
10759 <td style="vertical-align: top;"> 
10760     
10761     
10762     
10763     
10764     
10765     
10766      <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b>
10767      <br>
10768
10769
10770
10771
10772
10773
10774 <b>_change</b></p>
10775
10776
10777
10778
10779
10780
10781 </td>
10782
10783
10784
10785
10786
10787
10788 <td style="vertical-align: top;">R<br>
10789
10790
10791
10792
10793
10794
10795 </td>
10796
10797
10798
10799
10800
10801
10802 <td style="vertical-align: top;"><i>0.0</i></td>
10803
10804
10805
10806
10807
10808
10809
10810      <td style="vertical-align: top;"> 
10811     
10812     
10813     
10814     
10815     
10816     
10817      <p>Change in
10818surface specific humidity / total water content to
10819be made at the beginning
10820of the 3d run (kg/kg).&nbsp; </p>
10821
10822
10823
10824
10825
10826
10827 
10828     
10829     
10830     
10831     
10832     
10833     
10834      <p>If <b>q_surface_initial_change</b><i>
10835      </i>is set to a
10836non-zero value the
10837near surface latent heat flux (water flux) is not allowed to be given
10838simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p>
10839
10840
10841
10842
10843
10844
10845
10846      </td>
10847
10848
10849
10850
10851
10852
10853 </tr>
10854
10855
10856
10857
10858
10859
10860 <tr>
10861
10862
10863
10864
10865
10866
10867 <td style="vertical-align: top;"> 
10868     
10869     
10870     
10871     
10872     
10873     
10874      <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p>
10875
10876
10877
10878
10879
10880
10881
10882      </td>
10883
10884
10885
10886
10887
10888
10889 <td style="vertical-align: top;">R (10)</td>
10890
10891
10892
10893
10894
10895
10896
10897      <td style="vertical-align: top;"><i>10 * 0.0</i></td>
10898
10899
10900
10901
10902
10903
10904
10905      <td style="vertical-align: top;"> 
10906     
10907     
10908     
10909     
10910     
10911     
10912      <p>Humidity
10913gradient(s) of the initial humidity profile
10914(in 1/100 m).&nbsp; </p>
10915
10916
10917
10918
10919
10920
10921 
10922     
10923     
10924     
10925     
10926     
10927     
10928      <p>This humidity gradient
10929holds starting from the height
10930level&nbsp; defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>
10931(precisely: for all uv levels k, where zu(k) &gt;
10932q_vertical_gradient_level,
10933q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>)
10934up to the top boundary or up to the next height level defined
10935by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>.
10936A total of 10 different gradients for 11 height intervals (10 intervals
10937if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1)
10938= <i>0.0</i>) can be asigned. The surface humidity is
10939assigned
10940via <a href="#q_surface">q_surface</a>. </p>
10941
10942
10943
10944
10945
10946
10947
10948     
10949     
10950     
10951     
10952     
10953     
10954      <p>Example:&nbsp; </p>
10955
10956
10957
10958
10959
10960
10961 
10962     
10963     
10964     
10965     
10966     
10967     
10968      <ul>
10969
10970
10971
10972
10973
10974
10975 
10976       
10977       
10978       
10979       
10980       
10981       
10982        <p><b>q_vertical_gradient</b>
10983= <i>0.001</i>, <i>0.0005</i>,&nbsp; <br>
10984
10985
10986
10987
10988
10989
10990
10991        <b>q_vertical_gradient_level</b> = <i>500.0</i>,
10992        <i>1000.0</i>,</p>
10993
10994
10995
10996
10997
10998
10999 
11000     
11001     
11002     
11003     
11004     
11005     
11006      </ul>
11007
11008
11009
11010
11011
11012
11013
11014That defines the humidity to be constant with height up to z =
11015500.0
11016m with a
11017value given by <a href="#q_surface">q_surface</a>.
11018For 500.0 m &lt; z &lt;= 1000.0 m the humidity gradient is
110190.001 / 100
11020m and for z &gt; 1000.0 m up to the top boundary it is
110210.0005 / 100 m (it is assumed that the assigned height levels
11022correspond with uv
11023levels). </td>
11024
11025
11026
11027
11028
11029
11030 </tr>
11031
11032
11033
11034
11035
11036
11037 <tr>
11038
11039
11040
11041
11042
11043
11044 <td style="vertical-align: top;"> 
11045     
11046     
11047     
11048     
11049     
11050     
11051      <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b>
11052      <br>
11053
11054
11055
11056
11057
11058
11059 <b>_level</b></p>
11060
11061
11062
11063
11064
11065
11066 </td>
11067
11068
11069
11070
11071
11072
11073 <td style="vertical-align: top;">R (10)</td>
11074
11075
11076
11077
11078
11079
11080 <td style="vertical-align: top;"> 
11081     
11082     
11083     
11084     
11085     
11086     
11087      <p><i>10 *</i>&nbsp;
11088      <i>0.0</i></p>
11089
11090
11091
11092
11093
11094
11095 </td>
11096
11097
11098
11099
11100
11101
11102 <td style="vertical-align: top;"> 
11103     
11104     
11105     
11106     
11107     
11108     
11109      <p>Height level from
11110which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a>
11111is effective (in m).&nbsp; </p>
11112
11113
11114
11115
11116
11117
11118 
11119     
11120     
11121     
11122     
11123     
11124     
11125      <p>The height levels
11126are to be assigned in ascending order. The
11127default values result in a humidity constant with height regardless of
11128the values of <a href="#q_vertical_gradient">q_vertical_gradient</a>
11129(unless the top boundary of the model is higher than 100000.0 m). For
11130the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p>
11131
11132
11133
11134
11135
11136
11137
11138      </td>
11139
11140
11141
11142
11143
11144
11145 </tr>
11146
11147
11148
11149
11150
11151
11152 <tr>
11153
11154
11155
11156
11157
11158
11159 <td style="vertical-align: top;"> 
11160     
11161     
11162     
11163     
11164     
11165     
11166      <p><a name="radiation"></a><b>radiation</b></p>
11167
11168
11169
11170
11171
11172
11173
11174      </td>
11175
11176
11177
11178
11179
11180
11181 <td style="vertical-align: top;">L</td>
11182
11183
11184
11185
11186
11187
11188
11189      <td style="vertical-align: top;"><i>.F.</i></td>
11190
11191
11192
11193
11194
11195
11196
11197      <td style="vertical-align: top;"> 
11198     
11199     
11200     
11201     
11202     
11203     
11204      <p>Parameter to
11205switch on longwave radiation cooling at
11206cloud-tops.&nbsp; </p>
11207
11208
11209
11210
11211
11212
11213 
11214     
11215     
11216     
11217     
11218     
11219     
11220      <p>Long-wave radiation
11221processes are parameterized by the
11222effective emissivity, which considers only the absorption and emission
11223of long-wave radiation at cloud droplets. The radiation scheme can be
11224used only with <a href="#cloud_physics">cloud_physics</a>
11225= .TRUE. .</p>
11226
11227
11228
11229
11230
11231
11232 </td>
11233
11234
11235
11236
11237
11238
11239 </tr>
11240
11241
11242
11243
11244
11245
11246 <tr>
11247
11248
11249
11250
11251
11252
11253 <td style="vertical-align: top;"> 
11254     
11255     
11256     
11257     
11258     
11259     
11260      <p><a name="random_generator"></a><b>random_generator</b></p>
11261
11262
11263
11264
11265
11266
11267
11268      </td>
11269
11270
11271
11272
11273
11274
11275 <td style="vertical-align: top;">C * 20</td>
11276
11277
11278
11279
11280
11281
11282
11283      <td style="vertical-align: top;"> 
11284     
11285     
11286     
11287     
11288     
11289     
11290      <p><i>'numerical</i><br>
11291
11292
11293
11294
11295
11296
11297
11298      <i>recipes'</i></p>
11299
11300
11301
11302
11303
11304
11305 </td>
11306
11307
11308
11309
11310
11311
11312 <td style="vertical-align: top;"> 
11313     
11314     
11315     
11316     
11317     
11318     
11319      <p>Random number
11320generator to be used for creating uniformly
11321distributed random numbers. <br>
11322
11323
11324
11325
11326
11327
11328 </p>
11329
11330
11331
11332
11333
11334
11335 
11336     
11337     
11338     
11339     
11340     
11341     
11342      <p>It is
11343used if random perturbations are to be imposed on the
11344velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>
11345and <a href="chapter_4.2.html#random_heatflux">random_heatflux</a>).
11346By default, the "Numerical Recipes" random number generator is used.
11347This one provides exactly the same order of random numbers on all
11348different machines and should be used in particular for comparison runs.<br>
11349
11350
11351
11352
11353
11354
11355
11356      <br>
11357
11358
11359
11360
11361
11362
11363
11364Besides, a system-specific generator is available ( <b>random_generator</b>
11365= <i>'system-specific')</i> which should particularly be
11366used for runs
11367on vector parallel computers (NEC), because the default generator
11368cannot be vectorized and therefore significantly drops down the code
11369performance on these machines.<br>
11370
11371
11372
11373
11374
11375
11376 </p>
11377
11378
11379
11380
11381
11382
11383 <span style="font-weight: bold;">Note:</span><br>
11384
11385
11386
11387
11388
11389
11390
11391Results from two otherwise identical model runs will not be comparable
11392one-to-one if they used different random number generators.</td>
11393
11394
11395
11396
11397
11398
11399 </tr>
11400
11401
11402
11403
11404
11405
11406
11407    <tr>
11408
11409
11410
11411
11412
11413
11414 <td style="vertical-align: top;"> 
11415     
11416     
11417     
11418     
11419     
11420     
11421      <p><a name="random_heatflux"></a><b>random_heatflux</b></p>
11422
11423
11424
11425
11426
11427
11428
11429      </td>
11430
11431
11432
11433
11434
11435
11436 <td style="vertical-align: top;">L</td>
11437
11438
11439
11440
11441
11442
11443
11444      <td style="vertical-align: top;"><i>.F.</i></td>
11445
11446
11447
11448
11449
11450
11451
11452      <td style="vertical-align: top;"> 
11453     
11454     
11455     
11456     
11457     
11458     
11459      <p>Parameter to
11460impose random perturbations on the internal two-dimensional near
11461surface heat flux field <span style="font-style: italic;">shf</span>.
11462      <br>
11463
11464
11465
11466
11467
11468
11469 </p>
11470
11471
11472
11473
11474
11475
11476If a near surface heat flux is used as bottom
11477boundary
11478condition (see <a href="#surface_heatflux">surface_heatflux</a>),
11479it is by default assumed to be horizontally homogeneous. Random
11480perturbations can be imposed on the internal
11481two-dimensional&nbsp;heat flux field <span style="font-style: italic;">shf</span> by assigning <b>random_heatflux</b>
11482= <i>.T.</i>. The disturbed heat flux field is calculated
11483by
11484multiplying the
11485values at each mesh point with a normally distributed random number
11486with a mean value and standard deviation of 1. This is repeated after
11487every timestep.<br>
11488
11489
11490
11491
11492
11493
11494 <br>
11495
11496
11497
11498
11499
11500
11501
11502In case of a non-flat <a href="#topography">topography</a>,&nbsp;assigning
11503      <b>random_heatflux</b>
11504= <i>.T.</i> imposes random perturbations on the
11505combined&nbsp;heat
11506flux field <span style="font-style: italic;">shf</span>
11507composed of <a href="#surface_heatflux">surface_heatflux</a>
11508at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
11509at the topography top face.</td>
11510
11511
11512
11513
11514
11515
11516 </tr>
11517
11518
11519
11520
11521
11522
11523 <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="recycling_width"></a>recycling_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#nx">nx</a> * <a href="chapter_4.1.html#dx">dx</a></span></td><td style="vertical-align: top;">Distance of the recycling plane from the inflow boundary (in m).<br><br>This
11524parameter sets the horizontal extension (along the direction of the
11525main flow) of the so-called recycling domain which is used to generate
11526a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). <span style="font-weight: bold;">recycling_width</span> must be larger than the grid spacing (dx) and smaller than the length of the total domain (nx * dx).</td></tr><tr>
11527
11528
11529
11530
11531
11532
11533 <td style="vertical-align: top;"> 
11534     
11535     
11536     
11537     
11538     
11539     
11540      <p><a name="rif_max"></a><b>rif_max</b></p>
11541
11542
11543
11544
11545
11546
11547
11548      </td>
11549
11550
11551
11552
11553
11554
11555 <td style="vertical-align: top;">R</td>
11556
11557
11558
11559
11560
11561
11562
11563      <td style="vertical-align: top;"><i>1.0</i></td>
11564
11565
11566
11567
11568
11569
11570
11571      <td style="vertical-align: top;"> 
11572     
11573     
11574     
11575     
11576     
11577     
11578      <p>Upper limit of
11579the flux-Richardson number.&nbsp; </p>
11580
11581
11582
11583
11584
11585
11586 
11587     
11588     
11589     
11590     
11591     
11592     
11593      <p>With the
11594Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>),
11595flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub>
11596(k=1)
11597in the 3d-model (in the 1d model for all heights). Their values in
11598particular determine the
11599values of the friction velocity (1d- and 3d-model) and the values of
11600the eddy diffusivity (1d-model). With small wind velocities at the
11601Prandtl layer top or small vertical wind shears in the 1d-model, rif
11602can take up unrealistic large values. They are limited by an upper (<span style="font-weight: bold;">rif_max</span>) and lower
11603limit (see <a href="#rif_min">rif_min</a>)
11604for the flux-Richardson number. The condition <b>rif_max</b>
11605&gt; <b>rif_min</b>
11606must be met.</p>
11607
11608
11609
11610
11611
11612
11613 </td>
11614
11615
11616
11617
11618
11619
11620 </tr>
11621
11622
11623
11624
11625
11626
11627 <tr>
11628
11629
11630
11631
11632
11633
11634 <td style="vertical-align: top;"> 
11635     
11636     
11637     
11638     
11639     
11640     
11641      <p><a name="rif_min"></a><b>rif_min</b></p>
11642
11643
11644
11645
11646
11647
11648
11649      </td>
11650
11651
11652
11653
11654
11655
11656 <td style="vertical-align: top;">R</td>
11657
11658
11659
11660
11661
11662
11663
11664      <td style="vertical-align: top;"><i>- 5.0</i></td>
11665
11666
11667
11668
11669
11670
11671
11672      <td style="vertical-align: top;"> 
11673     
11674     
11675     
11676     
11677     
11678     
11679      <p>Lower limit of
11680the flux-Richardson number.&nbsp; </p>
11681
11682
11683
11684
11685
11686
11687 
11688     
11689     
11690     
11691     
11692     
11693     
11694      <p>For further
11695explanations see <a href="#rif_max">rif_max</a>.
11696The condition <b>rif_max</b> &gt; <b>rif_min </b>must
11697be met.</p>
11698
11699
11700
11701
11702
11703
11704 </td>
11705
11706
11707
11708
11709
11710
11711 </tr>
11712
11713
11714
11715
11716
11717
11718 <tr>
11719
11720
11721
11722
11723
11724
11725 <td style="vertical-align: top;"> 
11726     
11727     
11728     
11729     
11730     
11731     
11732      <p><a name="roughness_length"></a><b>roughness_length</b></p>
11733
11734
11735
11736
11737
11738
11739
11740      </td>
11741
11742
11743
11744
11745
11746
11747 <td style="vertical-align: top;">R</td>
11748
11749
11750
11751
11752
11753
11754
11755      <td style="vertical-align: top;"><i>0.1</i></td>
11756
11757
11758
11759
11760
11761
11762
11763      <td style="vertical-align: top;"> 
11764     
11765     
11766     
11767     
11768     
11769     
11770      <p>Roughness
11771length (in m).&nbsp; </p>
11772
11773
11774
11775
11776
11777
11778 
11779     
11780     
11781     
11782     
11783     
11784     
11785      <p>This parameter is
11786effective only in case that a Prandtl layer
11787is switched
11788on (see <a href="#prandtl_layer">prandtl_layer</a>).</p>
11789
11790
11791
11792
11793
11794
11795
11796      </td>
11797
11798
11799
11800
11801
11802
11803 </tr>
11804
11805
11806
11807
11808
11809
11810 <tr>
11811
11812
11813
11814
11815
11816
11817      <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td>
11818
11819
11820
11821
11822
11823
11824      <td style="vertical-align: top;">R</td>
11825
11826
11827
11828
11829
11830
11831      <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td>
11832
11833
11834
11835
11836
11837
11838      <td style="vertical-align: top;"> 
11839     
11840     
11841     
11842     
11843     
11844     
11845      <p>Surface salinity (in psu).&nbsp;</p>
11846
11847
11848
11849
11850
11851
11852This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).
11853     
11854     
11855     
11856     
11857     
11858     
11859      <p>This
11860parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value,
11861the
11862initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
11863and&nbsp;<a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level
11864      </a>.</p>
11865
11866
11867
11868
11869
11870
11871      </td>
11872
11873
11874
11875
11876
11877
11878    </tr>
11879
11880
11881
11882
11883
11884
11885    <tr>
11886
11887
11888
11889
11890
11891
11892      <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td>
11893
11894
11895
11896
11897
11898
11899      <td style="vertical-align: top;">R(10)</td>
11900
11901
11902
11903
11904
11905
11906      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
11907
11908
11909
11910
11911
11912
11913      <td style="vertical-align: top;">
11914     
11915     
11916     
11917     
11918     
11919     
11920      <p>Salinity gradient(s) of the initial salinity profile (in psu
11921/ 100 m).&nbsp; </p>
11922
11923
11924
11925
11926
11927
11928 
11929     
11930     
11931     
11932     
11933     
11934     
11935      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
11936
11937
11938
11939
11940
11941
11942     
11943     
11944     
11945     
11946     
11947     
11948      <p>This salinity gradient
11949holds starting from the height&nbsp;
11950level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>
11951(precisely: for all uv levels k where zu(k) &lt;
11952sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) =
11953sa_init(k+1) - dzu(k+1) * <b>sa_vertical_gradient</b>) down to the bottom boundary or down to the next height level defined
11954by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>.
11955A total of 10 different gradients for 11 height intervals (10 intervals
11956if <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>(1)
11957= <i>0.0</i>) can be assigned. The surface salinity at k=nzt is
11958assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>.&nbsp;
11959      </p>
11960
11961
11962
11963
11964
11965
11966 
11967     
11968     
11969     
11970     
11971     
11972     
11973      <p>Example:&nbsp; </p>
11974
11975
11976
11977
11978
11979
11980 
11981     
11982     
11983     
11984     
11985     
11986     
11987      <ul>
11988
11989
11990
11991
11992
11993
11994       
11995       
11996       
11997       
11998       
11999       
12000        <p><b>sa_vertical_gradient</b>
12001= <i>1.0</i>, <i>0.5</i>,&nbsp; <br>
12002
12003
12004
12005
12006
12007
12008
12009        <b>sa_vertical_gradient_level</b> = <i>-500.0</i>,
12010-<i>1000.0</i>,</p>
12011
12012
12013
12014
12015
12016
12017     
12018     
12019     
12020     
12021     
12022     
12023      </ul>
12024
12025
12026
12027
12028
12029
12030 
12031     
12032     
12033     
12034     
12035     
12036     
12037      <p>That
12038defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>.
12039For -500.0 m &lt; z &lt;= -1000.0 m the salinity gradient is
120401.0 psu /
12041100 m and for z &lt; -1000.0 m down to the bottom boundary it is
120420.5 psu / 100 m (it is assumed that the assigned height levels correspond
12043with uv levels).</p>
12044
12045
12046
12047
12048
12049
12050      </td>
12051
12052
12053
12054
12055
12056
12057    </tr>
12058
12059
12060
12061
12062
12063
12064    <tr>
12065
12066
12067
12068
12069
12070
12071      <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td>
12072
12073
12074
12075
12076
12077
12078      <td style="vertical-align: top;">R(10)</td>
12079
12080
12081
12082
12083
12084
12085      <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td>
12086
12087
12088
12089
12090
12091
12092      <td style="vertical-align: top;">
12093     
12094     
12095     
12096     
12097     
12098     
12099      <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12100is effective (in m).&nbsp; </p>
12101
12102
12103
12104
12105
12106
12107 
12108     
12109     
12110     
12111     
12112     
12113     
12114      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
12115
12116
12117
12118
12119
12120
12121     
12122     
12123     
12124     
12125     
12126     
12127      <p>The height levels have to be assigned in descending order. The
12128default values result in a constant salinity profile regardless of the
12129values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>
12130(unless the bottom boundary of the model is lower than -100000.0 m).
12131For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p>
12132
12133
12134
12135
12136
12137
12138      </td>
12139
12140
12141
12142
12143
12144
12145    </tr>
12146
12147
12148
12149
12150
12151
12152    <tr>
12153
12154
12155
12156
12157
12158
12159 <td style="vertical-align: top;"> 
12160     
12161     
12162     
12163     
12164     
12165     
12166      <p><a name="scalar_advec"></a><b>scalar_advec</b></p>
12167
12168
12169
12170
12171
12172
12173
12174      </td>
12175
12176
12177
12178
12179
12180
12181 <td style="vertical-align: top;">C * 10</td>
12182
12183
12184
12185
12186
12187
12188
12189      <td style="vertical-align: top;"><i>'pw-scheme'</i></td>
12190
12191
12192
12193
12194
12195
12196
12197      <td style="vertical-align: top;"> 
12198     
12199     
12200     
12201     
12202     
12203     
12204      <p>Advection
12205scheme to be used for the scalar quantities.&nbsp; </p>
12206
12207
12208
12209
12210
12211
12212 
12213     
12214     
12215     
12216     
12217     
12218     
12219      <p>The
12220user can choose between the following schemes:<br>
12221
12222
12223
12224
12225
12226
12227 </p>
12228
12229
12230
12231
12232
12233
12234 
12235     
12236     
12237     
12238     
12239     
12240     
12241      <p><span style="font-style: italic;">'pw-scheme'</span><br>
12242
12243
12244
12245
12246
12247
12248
12249      </p>
12250
12251
12252
12253
12254
12255
12256 
12257     
12258     
12259     
12260     
12261     
12262     
12263      <div style="margin-left: 40px;">The scheme of
12264Piascek and
12265Williams (1970, J. Comp. Phys., 6,
12266392-405) with central differences in the form C3 is used.<br>
12267
12268
12269
12270
12271
12272
12273
12274If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a>
12275= <span style="font-style: italic;">'leapfrog+euler'</span>
12276the
12277advection scheme is - for the Euler-timestep - automatically switched
12278to an upstream-scheme. <br>
12279
12280
12281
12282
12283
12284
12285 </div>
12286
12287
12288
12289
12290
12291
12292 <br>
12293
12294
12295
12296
12297
12298
12299 
12300     
12301     
12302     
12303     
12304     
12305     
12306      <p><span style="font-style: italic;">'bc-scheme'</span><br>
12307
12308
12309
12310
12311
12312
12313
12314      </p>
12315
12316
12317
12318
12319
12320
12321 
12322     
12323     
12324     
12325     
12326     
12327     
12328      <div style="margin-left: 40px;">The Bott
12329scheme modified by
12330Chlond (1994, Mon.
12331Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with
12332very small numerical diffusion and therefore very good conservation of
12333scalar flow features. The scheme however, is computationally very
12334expensive both because it is expensive itself and because it does (so
12335far) not allow specific code optimizations (e.g. cache optimization).
12336Choice of this
12337scheme forces the Euler timestep scheme to be used for the scalar
12338quantities. For output of horizontally averaged
12339profiles of the resolved / total heat flux, <a href="chapter_4.2.html#data_output_pr">data_output_pr</a>
12340= <i>'w*pt*BC'</i> / <i>'wptBC' </i>should
12341be used, instead of the
12342standard profiles (<span style="font-style: italic;">'w*pt*'</span>
12343and <span style="font-style: italic;">'wpt'</span>)
12344because these are
12345too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>)
12346exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i>
12347show very large errors and should not be used.<br>
12348
12349
12350
12351
12352
12353
12354 <br>
12355
12356
12357
12358
12359
12360
12361
12362This scheme is not allowed for non-cyclic lateral boundary conditions
12363(see <a href="#bc_lr">bc_lr</a>
12364and <a href="#bc_ns">bc_ns</a>).<br>
12365
12366
12367
12368
12369
12370
12371 <br>
12372
12373
12374
12375
12376
12377
12378
12379      </div>
12380
12381
12382
12383
12384
12385
12386 <span style="font-style: italic;">'ups-scheme'</span><br>
12387
12388
12389
12390
12391
12392
12393
12394     
12395     
12396     
12397     
12398     
12399     
12400      <p style="margin-left: 40px;">The upstream-spline-scheme
12401is used
12402(see Mahrer and Pielke,
124031978: Mon. Wea. Rev., 106, 818-830). In opposite to the Piascek
12404Williams scheme, this is characterized by much better numerical
12405features (less numerical diffusion, better preservation of flux
12406structures, e.g. vortices), but computationally it is much more
12407expensive. In
12408addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a>
12409= <span style="font-style: italic;">'</span><i>euler'</i>),
12410i.e. the
12411timestep accuracy is only first order. For this reason the advection of
12412momentum (see <a href="#momentum_advec">momentum_advec</a>)
12413should then also be carried out with the upstream-spline scheme,
12414because otherwise the momentum would
12415be subject to large numerical diffusion due to the upstream
12416scheme.&nbsp; </p>
12417
12418
12419
12420
12421
12422
12423 
12424     
12425     
12426     
12427     
12428     
12429     
12430      <p style="margin-left: 40px;">Since
12431the cubic splines used tend
12432to overshoot under
12433certain circumstances, this effect must be adjusted by suitable
12434filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>,
12435      <a href="#long_filter_factor">long_filter_factor</a>,
12436      <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>).
12437This is always neccesssary for runs with stable stratification,
12438even if this stratification appears only in parts of the model
12439domain.&nbsp; </p>
12440
12441
12442
12443
12444
12445
12446 
12447     
12448     
12449     
12450     
12451     
12452     
12453      <p style="margin-left: 40px;">With
12454stable stratification the
12455upstream-upline scheme also produces gravity waves with large
12456amplitude, which must be
12457suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br>
12458
12459
12460
12461
12462
12463
12464
12465      </p>
12466
12467
12468
12469
12470
12471
12472 
12473     
12474     
12475     
12476     
12477     
12478     
12479      <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The&nbsp;
12480upstream-spline scheme is not implemented for humidity and passive
12481scalars (see&nbsp;<a href="#humidity">humidity</a>
12482and <a href="#passive_scalar">passive_scalar</a>)
12483and requires the use of a 2d-domain-decomposition. The last conditions
12484severely restricts code optimization on several machines leading to
12485very long execution times! This scheme is also not allowed for
12486non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a>
12487and <a href="#bc_ns">bc_ns</a>).</p>
12488
12489
12490
12491
12492
12493
12494      <br>
12495
12496
12497
12498
12499
12500
12501A
12502differing advection scheme can be choosed for the subgrid-scale TKE
12503using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td>
12504
12505
12506
12507
12508
12509
12510
12511    </tr>
12512
12513
12514
12515
12516
12517
12518 <tr>
12519
12520      <td style="vertical-align: top;"><a name="scalar_exchange_coefficient"></a><b>scalar_exchange_coefficient</b></td>
12521
12522      <td style="vertical-align: top;">R</td>
12523
12524      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td>
12525
12526      <td style="vertical-align: top;">Scalar exchange coefficient for a leaf (dimensionless).<br>
12527
12528
12529      <br>
12530
12531
12532This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>.
12533The value of the scalar exchange coefficient is required for the parametrisation of the sources and sinks of
12534scalar concentration due to the canopy.</td>
12535
12536    </tr>
12537
12538    <tr>
12539
12540
12541
12542
12543
12544
12545 <td style="vertical-align: top;">
12546     
12547     
12548     
12549     
12550     
12551     
12552      <p><a name="statistic_regions"></a><b>statistic_regions</b></p>
12553
12554
12555
12556
12557
12558
12559
12560      </td>
12561
12562
12563
12564
12565
12566
12567 <td style="vertical-align: top;">I</td>
12568
12569
12570
12571
12572
12573
12574
12575      <td style="vertical-align: top;"><i>0</i></td>
12576
12577
12578
12579
12580
12581
12582
12583      <td style="vertical-align: top;"> 
12584     
12585     
12586     
12587     
12588     
12589     
12590      <p>Number of
12591additional user-defined subdomains for which
12592statistical analysis
12593and corresponding output (profiles, time series) shall be
12594made.&nbsp; </p>
12595
12596
12597
12598
12599
12600
12601 
12602     
12603     
12604     
12605     
12606     
12607     
12608      <p>By default, vertical profiles and
12609other statistical quantities
12610are calculated as horizontal and/or volume average of the total model
12611domain. Beyond that, these calculations can also be carried out for
12612subdomains which can be defined using the field <a href="chapter_3.5.3.html">rmask </a>within the
12613user-defined software
12614(see <a href="chapter_3.5.3.html">chapter
126153.5.3</a>). The number of these subdomains is determined with the
12616parameter <b>statistic_regions</b>. Maximum 9 additional
12617subdomains
12618are allowed. The parameter <a href="chapter_4.3.html#region">region</a>
12619can be used to assigned names (identifier) to these subdomains which
12620are then used in the headers
12621of the output files and plots.</p>
12622
12623
12624
12625
12626
12627
12628     
12629     
12630     
12631     
12632     
12633     
12634      <p>If the default NetCDF
12635output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>),
12636data for the total domain and all defined subdomains are output to the
12637same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>,
12638      <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>).
12639In case of <span style="font-weight: bold;">statistic_regions</span>
12640&gt; <span style="font-style: italic;">0</span>,
12641data on the file for the different domains can be distinguished by a
12642suffix which is appended to the quantity names. Suffix 0 means data for
12643the total domain, suffix 1 means data for subdomain 1, etc.</p>
12644
12645
12646
12647
12648
12649
12650     
12651     
12652     
12653     
12654     
12655     
12656      <p>In
12657case of <span style="font-weight: bold;">data_output_format</span>
12658= <span style="font-style: italic;">'profil'</span>,
12659individual local files for profiles (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>)&nbsp;are
12660created for each subdomain. The individual subdomain files differ by
12661their name (the
12662number of the respective subdomain is attached, e.g.
12663PLOT1D_DATA_1). In this case the name of the file with the data of
12664the total domain is PLOT1D_DATA_0. If no subdomains
12665are declared (<b>statistic_regions</b> = <i>0</i>),
12666the name
12667PLOT1D_DATA is used (this must be considered in the
12668respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration
12669file).</p>
12670
12671
12672
12673
12674
12675
12676 </td>
12677
12678
12679
12680
12681
12682
12683 </tr>
12684
12685
12686
12687
12688
12689
12690 <tr>
12691
12692
12693
12694
12695
12696
12697 <td style="vertical-align: top;"> 
12698     
12699     
12700     
12701     
12702     
12703     
12704      <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p>
12705
12706
12707
12708
12709
12710
12711
12712      </td>
12713
12714
12715
12716
12717
12718
12719 <td style="vertical-align: top;">R</td>
12720
12721
12722
12723
12724
12725
12726
12727      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
12728
12729
12730
12731
12732
12733
12734
12735heatflux<br>
12736
12737
12738
12739
12740
12741
12742 </span></td>
12743
12744
12745
12746
12747
12748
12749 <td style="vertical-align: top;"> 
12750     
12751     
12752     
12753     
12754     
12755     
12756      <p>Kinematic sensible
12757heat flux at the bottom surface (in K m/s).&nbsp; </p>
12758
12759
12760
12761
12762
12763
12764 
12765     
12766     
12767     
12768     
12769     
12770     
12771      <p>If
12772a value is assigned to this parameter, the internal two-dimensional
12773surface heat flux field <span style="font-style: italic;">shf</span>
12774is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>&nbsp;as
12775bottom (horizontally homogeneous) boundary condition for the
12776temperature equation. This additionally requires that a Neumann
12777condition must be used for the potential temperature (see <a href="#bc_pt_b">bc_pt_b</a>),
12778because otherwise the resolved scale may contribute to
12779the surface flux so that a constant value cannot be guaranteed. Also,
12780changes of the
12781surface temperature (see <a href="#pt_surface_initial_change">pt_surface_initial_change</a>)
12782are not allowed. The parameter <a href="#random_heatflux">random_heatflux</a>
12783can be used to impose random perturbations on the (homogeneous) surface
12784heat
12785flux field <span style="font-style: italic;">shf</span>.&nbsp;</p>
12786
12787
12788
12789
12790
12791
12792
12793     
12794     
12795     
12796     
12797     
12798     
12799      <p>
12800In case of a non-flat <a href="#topography">topography</a>,&nbsp;the
12801internal two-dimensional&nbsp;surface heat
12802flux field <span style="font-style: italic;">shf</span>
12803is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span>
12804at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a>
12805at the topography top face.&nbsp;The parameter<a href="#random_heatflux"> random_heatflux</a>
12806can be used to impose random perturbations on this combined surface
12807heat
12808flux field <span style="font-style: italic;">shf</span>.&nbsp;
12809      </p>
12810
12811
12812
12813
12814
12815
12816 
12817     
12818     
12819     
12820     
12821     
12822     
12823      <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated
12824at each timestep by u<sub>*</sub> * theta<sub>*</sub>
12825(of course only with <a href="#prandtl_layer">prandtl_layer</a>
12826switched on). Here, u<sub>*</sub>
12827and theta<sub>*</sub> are calculated from the Prandtl law
12828assuming
12829logarithmic wind and temperature
12830profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>)
12831must be used as bottom boundary condition for the potential temperature.</p>
12832
12833
12834
12835
12836
12837
12838     
12839     
12840     
12841     
12842     
12843     
12844      <p>See
12845also <a href="#top_heatflux">top_heatflux</a>.</p>
12846
12847
12848
12849
12850
12851
12852
12853      </td>
12854
12855
12856
12857
12858
12859
12860 </tr>
12861
12862
12863
12864
12865
12866
12867 <tr>
12868
12869
12870
12871
12872
12873
12874 <td style="vertical-align: top;"> 
12875     
12876     
12877     
12878     
12879     
12880     
12881      <p><a name="surface_pressure"></a><b>surface_pressure</b></p>
12882
12883
12884
12885
12886
12887
12888
12889      </td>
12890
12891
12892
12893
12894
12895
12896 <td style="vertical-align: top;">R</td>
12897
12898
12899
12900
12901
12902
12903
12904      <td style="vertical-align: top;"><i>1013.25</i></td>
12905
12906
12907
12908
12909
12910
12911
12912      <td style="vertical-align: top;"> 
12913     
12914     
12915     
12916     
12917     
12918     
12919      <p>Atmospheric
12920pressure at the surface (in hPa).&nbsp; </p>
12921
12922
12923
12924
12925
12926
12927
12928Starting from this surface value, the vertical pressure
12929profile is calculated once at the beginning of the run assuming a
12930neutrally stratified
12931atmosphere. This is needed for
12932converting between the liquid water potential temperature and the
12933potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td>
12934
12935
12936
12937
12938
12939
12940
12941    </tr>
12942
12943
12944
12945
12946
12947
12948 <tr>
12949
12950
12951
12952
12953
12954
12955 <td style="vertical-align: top;">
12956     
12957     
12958     
12959     
12960     
12961     
12962      <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p>
12963
12964
12965
12966
12967
12968
12969
12970      </td>
12971
12972
12973
12974
12975
12976
12977 <td style="vertical-align: top;">R</td>
12978
12979
12980
12981
12982
12983
12984
12985      <td style="vertical-align: top;"><i>0.0</i></td>
12986
12987
12988
12989
12990
12991
12992
12993      <td style="vertical-align: top;"> 
12994     
12995     
12996     
12997     
12998     
12999     
13000      <p>Scalar flux at
13001the surface (in kg/(m<sup>2</sup> s)).&nbsp; </p>
13002
13003
13004
13005
13006
13007
13008
13009     
13010     
13011     
13012     
13013     
13014     
13015      <p>If a non-zero value is assigned to this parameter, the
13016respective scalar flux value is used
13017as bottom (horizontally homogeneous) boundary condition for the scalar
13018concentration equation.&nbsp;This additionally requires that a
13019Neumann
13020condition must be used for the scalar concentration&nbsp;(see <a href="#bc_s_b">bc_s_b</a>),
13021because otherwise the resolved scale may contribute to
13022the surface flux so that a constant value cannot be guaranteed. Also,
13023changes of the
13024surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>)
13025are not allowed. <br>
13026
13027
13028
13029
13030
13031
13032 </p>
13033
13034
13035
13036
13037
13038
13039 
13040     
13041     
13042     
13043     
13044     
13045     
13046      <p>If no surface scalar
13047flux is assigned (<b>surface_scalarflux</b>
13048= <i>0.0</i>),
13049it is calculated at each timestep by u<sub>*</sub> * s<sub>*</sub>
13050(of course only with Prandtl layer switched on). Here, s<sub>*</sub>
13051is calculated from the Prandtl law assuming a logarithmic scalar
13052concentration
13053profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>)
13054must be used as bottom boundary condition for the scalar concentration.</p>
13055
13056
13057
13058
13059
13060
13061
13062      </td>
13063
13064
13065
13066
13067
13068
13069 </tr>
13070
13071
13072
13073
13074
13075
13076 <tr>
13077
13078
13079
13080
13081
13082
13083 <td style="vertical-align: top;"> 
13084     
13085     
13086     
13087     
13088     
13089     
13090      <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p>
13091
13092
13093
13094
13095
13096
13097
13098      </td>
13099
13100
13101
13102
13103
13104
13105 <td style="vertical-align: top;">R</td>
13106
13107
13108
13109
13110
13111
13112
13113      <td style="vertical-align: top;"><i>0.0</i></td>
13114
13115
13116
13117
13118
13119
13120
13121      <td style="vertical-align: top;"> 
13122     
13123     
13124     
13125     
13126     
13127     
13128      <p>Kinematic
13129water flux near the surface (in m/s).&nbsp; </p>
13130
13131
13132
13133
13134
13135
13136 
13137     
13138     
13139     
13140     
13141     
13142     
13143      <p>If
13144a non-zero value is assigned to this parameter, the
13145respective water flux value is used
13146as bottom (horizontally homogeneous) boundary condition for the
13147humidity equation. This additionally requires that a Neumann
13148condition must be used for the specific humidity / total water content
13149(see <a href="#bc_q_b">bc_q_b</a>),
13150because otherwise the resolved scale may contribute to
13151the surface flux so that a constant value cannot be guaranteed. Also,
13152changes of the
13153surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>)
13154are not allowed.<br>
13155
13156
13157
13158
13159
13160
13161 </p>
13162
13163
13164
13165
13166
13167
13168 
13169     
13170     
13171     
13172     
13173     
13174     
13175      <p>If no surface water
13176flux is assigned (<b>surface_waterflux</b>
13177= <i>0.0</i>),
13178it is calculated at each timestep by u<sub>*</sub> * q<sub>*</sub>
13179(of course only with Prandtl layer switched on). Here, q<sub>*</sub>
13180is calculated from the Prandtl law assuming a logarithmic temperature
13181profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>)
13182must be used as the bottom boundary condition for the humidity.</p>
13183
13184
13185
13186
13187
13188
13189
13190      </td>
13191
13192
13193
13194
13195
13196
13197 </tr>
13198
13199
13200
13201
13202
13203
13204 <tr>
13205
13206
13207
13208
13209
13210
13211 <td style="vertical-align: top;"> 
13212     
13213     
13214     
13215     
13216     
13217     
13218      <p><a name="s_surface"></a><b>s_surface</b></p>
13219
13220
13221
13222
13223
13224
13225
13226      </td>
13227
13228
13229
13230
13231
13232
13233 <td style="vertical-align: top;">R</td>
13234
13235
13236
13237
13238
13239
13240
13241      <td style="vertical-align: top;"><i>0.0</i></td>
13242
13243
13244
13245
13246
13247
13248
13249      <td style="vertical-align: top;"> 
13250     
13251     
13252     
13253     
13254     
13255     
13256      <p>Surface value
13257of the passive scalar (in kg/m<sup>3</sup>).&nbsp;<br>
13258
13259
13260
13261
13262
13263
13264
13265      </p>
13266
13267
13268
13269
13270
13271
13272
13273This parameter assigns the value of the passive scalar s at
13274the surface (k=0)<b>.</b> Starting from this value, the
13275initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient">
13276s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td>
13277
13278
13279
13280
13281
13282
13283
13284    </tr>
13285
13286
13287
13288
13289
13290
13291 <tr>
13292
13293
13294
13295
13296
13297
13298 <td style="vertical-align: top;">
13299     
13300     
13301     
13302     
13303     
13304     
13305      <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b>
13306      <br>
13307
13308
13309
13310
13311
13312
13313 <b>_change</b></p>
13314
13315
13316
13317
13318
13319
13320 </td>
13321
13322
13323
13324
13325
13326
13327 <td style="vertical-align: top;">R</td>
13328
13329
13330
13331
13332
13333
13334 <td style="vertical-align: top;"><i>0.0</i></td>
13335
13336
13337
13338
13339
13340
13341
13342      <td style="vertical-align: top;"> 
13343     
13344     
13345     
13346     
13347     
13348     
13349      <p>Change in
13350surface scalar concentration to be made at the
13351beginning of the 3d run (in kg/m<sup>3</sup>).&nbsp; </p>
13352
13353
13354
13355
13356
13357
13358
13359     
13360     
13361     
13362     
13363     
13364     
13365      <p>If <b>s_surface_initial_change</b><i>&nbsp;</i>is
13366set to a
13367non-zero
13368value, the near surface scalar flux is not allowed to be given
13369simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p>
13370
13371
13372
13373
13374
13375
13376
13377      </td>
13378
13379
13380
13381
13382
13383
13384 </tr>
13385
13386
13387
13388
13389
13390
13391 <tr>
13392
13393
13394
13395
13396
13397
13398 <td style="vertical-align: top;"> 
13399     
13400     
13401     
13402     
13403     
13404     
13405      <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p>
13406
13407
13408
13409
13410
13411
13412
13413      </td>
13414
13415
13416
13417
13418
13419
13420 <td style="vertical-align: top;">R (10)</td>
13421
13422
13423
13424
13425
13426
13427
13428      <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td>
13429
13430
13431
13432
13433
13434
13435
13436      <td style="vertical-align: top;"> 
13437     
13438     
13439     
13440     
13441     
13442     
13443      <p>Scalar
13444concentration gradient(s) of the initial scalar
13445concentration profile (in kg/m<sup>3 </sup>/
13446100 m).&nbsp; </p>
13447
13448
13449
13450
13451
13452
13453 
13454     
13455     
13456     
13457     
13458     
13459     
13460      <p>The scalar gradient holds
13461starting from the height level
13462defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level
13463      </a>(precisely: for all uv levels k, where zu(k) &gt;
13464s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) +
13465dzu(k) * <b>s_vertical_gradient</b>) up to the top
13466boundary or up to
13467the next height level defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.
13468A total of 10 different gradients for 11 height intervals (10 intervals
13469if <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>(1)
13470= <i>0.0</i>) can be assigned. The surface scalar value is
13471assigned
13472via <a href="#s_surface">s_surface</a>.<br>
13473
13474
13475
13476
13477
13478
13479 </p>
13480
13481
13482
13483
13484
13485
13486
13487     
13488     
13489     
13490     
13491     
13492     
13493      <p>Example:&nbsp; </p>
13494
13495
13496
13497
13498
13499
13500 
13501     
13502     
13503     
13504     
13505     
13506     
13507      <ul>
13508
13509
13510
13511
13512
13513
13514 
13515       
13516       
13517       
13518       
13519       
13520       
13521        <p><b>s_vertical_gradient</b>
13522= <i>0.1</i>, <i>0.05</i>,&nbsp; <br>
13523
13524
13525
13526
13527
13528
13529
13530        <b>s_vertical_gradient_level</b> = <i>500.0</i>,
13531        <i>1000.0</i>,</p>
13532
13533
13534
13535
13536
13537
13538 
13539     
13540     
13541     
13542     
13543     
13544     
13545      </ul>
13546
13547
13548
13549
13550
13551
13552 
13553     
13554     
13555     
13556     
13557     
13558     
13559      <p>That
13560defines the scalar concentration to be constant with
13561height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>.
13562For 500.0 m &lt; z &lt;= 1000.0 m the scalar gradient is 0.1
13563kg/m<sup>3 </sup>/ 100 m and for z &gt; 1000.0 m up to
13564the top
13565boundary it is 0.05 kg/m<sup>3 </sup>/ 100 m (it is
13566assumed that the
13567assigned height levels
13568correspond with uv
13569levels).</p>
13570
13571
13572
13573
13574
13575
13576 </td>
13577
13578
13579
13580
13581
13582
13583 </tr>
13584
13585
13586
13587
13588
13589
13590 <tr>
13591
13592
13593
13594
13595
13596
13597 <td style="vertical-align: top;"> 
13598     
13599     
13600     
13601     
13602     
13603     
13604      <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b>
13605      <br>
13606
13607
13608
13609
13610
13611
13612 <b>level</b></p>
13613
13614
13615
13616
13617
13618
13619 </td>
13620
13621
13622
13623
13624
13625
13626 <td style="vertical-align: top;">R (10)</td>
13627
13628
13629
13630
13631
13632
13633 <td style="vertical-align: top;"> 
13634     
13635     
13636     
13637     
13638     
13639     
13640      <p><i>10 *</i>
13641      <i>0.0</i></p>
13642
13643
13644
13645
13646
13647
13648 </td>
13649
13650
13651
13652
13653
13654
13655 <td style="vertical-align: top;"> 
13656     
13657     
13658     
13659     
13660     
13661     
13662      <p>Height level from
13663which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a>
13664is effective (in m).&nbsp; </p>
13665
13666
13667
13668
13669
13670
13671 
13672     
13673     
13674     
13675     
13676     
13677     
13678      <p>The height levels
13679are to be assigned in ascending order. The
13680default values result in a scalar concentration constant with height
13681regardless of the values of <a href="#s_vertical_gradient">s_vertical_gradient</a>
13682(unless the top boundary of the model is higher than 100000.0 m). For
13683the
13684piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p>
13685
13686
13687
13688
13689
13690
13691
13692      </td>
13693
13694
13695
13696
13697
13698
13699 </tr>
13700
13701
13702
13703
13704
13705
13706 <tr>
13707
13708
13709
13710
13711
13712
13713 <td style="vertical-align: top;"> 
13714     
13715     
13716     
13717     
13718     
13719     
13720      <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p>
13721
13722
13723
13724
13725
13726
13727
13728      </td>
13729
13730
13731
13732
13733
13734
13735 <td style="vertical-align: top;">C * 20</td>
13736
13737
13738
13739
13740
13741
13742
13743      <td style="vertical-align: top;"> 
13744     
13745     
13746     
13747     
13748     
13749     
13750      <p><i>'runge</i><br>
13751
13752
13753
13754
13755
13756
13757
13758      <i>kutta-3'</i></p>
13759
13760
13761
13762
13763
13764
13765 </td>
13766
13767
13768
13769
13770
13771
13772 <td style="vertical-align: top;"> 
13773     
13774     
13775     
13776     
13777     
13778     
13779      <p>Time step scheme to
13780be used for the integration of the prognostic
13781variables.&nbsp; </p>
13782
13783
13784
13785
13786
13787
13788 
13789     
13790     
13791     
13792     
13793     
13794     
13795      <p>The user can choose between
13796the following schemes:<br>
13797
13798
13799
13800
13801
13802
13803 </p>
13804
13805
13806
13807
13808
13809
13810 
13811     
13812     
13813     
13814     
13815     
13816     
13817      <p><span style="font-style: italic;">'runge-kutta-3'</span><br>
13818
13819
13820
13821
13822
13823
13824
13825      </p>
13826
13827
13828
13829
13830
13831
13832 
13833     
13834     
13835     
13836     
13837     
13838     
13839      <div style="margin-left: 40px;">Third order
13840Runge-Kutta scheme.<br>
13841
13842
13843
13844
13845
13846
13847
13848This scheme requires the use of <a href="#momentum_advec">momentum_advec</a>
13849= <a href="#scalar_advec">scalar_advec</a>
13850= '<i>pw-scheme'</i>. Please refer to the&nbsp;<a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation
13851on PALM's time integration schemes&nbsp;(28p., in German)</a>
13852fur further details.<br>
13853
13854
13855
13856
13857
13858
13859 </div>
13860
13861
13862
13863
13864
13865
13866 
13867     
13868     
13869     
13870     
13871     
13872     
13873      <p><span style="font-style: italic;">'runge-kutta-2'</span><br>
13874
13875
13876
13877
13878
13879
13880
13881      </p>
13882
13883
13884
13885
13886
13887
13888 
13889     
13890     
13891     
13892     
13893     
13894     
13895      <div style="margin-left: 40px;">Second order
13896Runge-Kutta scheme.<br>
13897
13898
13899
13900
13901
13902
13903
13904For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br>
13905
13906
13907
13908
13909
13910
13911
13912      </div>
13913
13914
13915
13916
13917
13918
13919 <br>
13920
13921
13922
13923
13924
13925
13926 <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br>
13927
13928
13929
13930
13931
13932
13933
13934      <br>
13935
13936
13937
13938
13939
13940
13941 </span> 
13942     
13943     
13944     
13945     
13946     
13947     
13948      <div style="margin-left: 40px;">Second
13949order leapfrog scheme.<br>
13950
13951
13952
13953
13954
13955
13956
13957Although this scheme requires a constant timestep (because it is
13958centered in time),&nbsp; is even applied in case of changes in
13959timestep. Therefore, only small
13960changes of the timestep are allowed (see <a href="#dt">dt</a>).
13961However, an Euler timestep is always used as the first timestep of an
13962initiali run. When using the Bott-Chlond scheme for scalar advection
13963(see <a href="#scalar_advec">scalar_advec</a>),
13964the prognostic equation for potential temperature will be calculated
13965with the Euler scheme, although the leapfrog scheme is switched
13966on.&nbsp; <br>
13967
13968
13969
13970
13971
13972
13973
13974The leapfrog scheme must not be used together with the upstream-spline
13975scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a>
13976= '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a>
13977= '<i>ups-scheme'</i>).<br>
13978
13979
13980
13981
13982
13983
13984 </div>
13985
13986
13987
13988
13989
13990
13991 <br>
13992
13993
13994
13995
13996
13997
13998
13999      <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br>
14000
14001
14002
14003
14004
14005
14006
14007      <br>
14008
14009
14010
14011
14012
14013
14014 </span> 
14015     
14016     
14017     
14018     
14019     
14020     
14021      <div style="margin-left: 40px;">The
14022leapfrog scheme is used, but
14023after each change of a timestep an Euler timestep is carried out.
14024Although this method is theoretically correct (because the pure
14025leapfrog method does not allow timestep changes), the divergence of the
14026velocity field (after applying the pressure solver) may be
14027significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br>
14028
14029
14030
14031
14032
14033
14034
14035      </div>
14036
14037
14038
14039
14040
14041
14042 <br>
14043
14044
14045
14046
14047
14048
14049 <span style="font-style: italic;">'euler'</span><br>
14050
14051
14052
14053
14054
14055
14056
14057      <br>
14058
14059
14060
14061
14062
14063
14064 
14065     
14066     
14067     
14068     
14069     
14070     
14071      <div style="margin-left: 40px;">First order
14072Euler scheme.&nbsp; <br>
14073
14074
14075
14076
14077
14078
14079
14080The Euler scheme must be used when treating the advection terms with
14081the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a>
14082= <span style="font-style: italic;">'ups-scheme'</span>
14083and <a href="#momentum_advec">momentum_advec</a>
14084= <span style="font-style: italic;">'ups-scheme'</span>).</div>
14085
14086
14087
14088
14089
14090
14091
14092      <br>
14093
14094
14095
14096
14097
14098
14099      <br>
14100
14101
14102
14103
14104
14105
14106A differing timestep scheme can be choosed for the
14107subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br>
14108
14109
14110
14111
14112
14113
14114
14115      </td>
14116
14117
14118
14119
14120
14121
14122 </tr>
14123
14124
14125
14126
14127
14128
14129 <tr>
14130
14131
14132
14133
14134
14135
14136 <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td>
14137
14138
14139
14140
14141
14142
14143
14144      <td style="vertical-align: top;">C * 40</td>
14145
14146
14147
14148
14149
14150
14151 <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td>
14152
14153
14154
14155
14156
14157
14158 <td>
14159     
14160     
14161     
14162     
14163     
14164     
14165      <p>Topography mode.&nbsp; </p>
14166
14167
14168
14169
14170
14171
14172 
14173     
14174     
14175     
14176     
14177     
14178     
14179      <p>The user can
14180choose between the following modes:<br>
14181
14182
14183
14184
14185
14186
14187 </p>
14188
14189
14190
14191
14192
14193
14194 
14195     
14196     
14197     
14198     
14199     
14200     
14201      <p><span style="font-style: italic;">'flat'</span><br>
14202
14203
14204
14205
14206
14207
14208 </p>
14209
14210
14211
14212
14213
14214
14215
14216     
14217     
14218     
14219     
14220     
14221     
14222      <div style="margin-left: 40px;">Flat surface.</div>
14223
14224
14225
14226
14227
14228
14229 
14230     
14231     
14232     
14233     
14234     
14235     
14236      <p><span style="font-style: italic;">'single_building'</span><br>
14237
14238
14239
14240
14241
14242
14243
14244      </p>
14245
14246
14247
14248
14249
14250
14251 
14252     
14253     
14254     
14255     
14256     
14257     
14258      <div style="margin-left: 40px;">Flow
14259around&nbsp;a single rectangular building mounted on a flat surface.<br>
14260
14261
14262
14263
14264
14265
14266
14267The building size and location can be specified by the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.<font color="#000000"><br></font></div>
14268
14269
14270
14271
14272
14273
14274
14275      <span style="font-style: italic;"></span> 
14276     
14277     
14278     
14279     
14280     
14281     
14282      <p><span style="font-style: italic;">'single_street_canyon'</span><br>
14283
14284
14285
14286
14287
14288
14289
14290      </p>
14291
14292
14293
14294
14295
14296
14297 
14298     
14299     
14300     
14301     
14302     
14303     
14304      <div style="margin-left: 40px;">Flow
14305over a single, quasi-2D street canyon of infinite length oriented either in x- or in y-direction.<br>
14306
14307
14308
14309
14310
14311
14312
14313The canyon size, orientation and location can be specified by the parameters <a href="chapter_4.1.html#canyon_height">canyon_height</a> plus <span style="font-weight: bold;">either</span>&nbsp;<a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> and <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a> <span style="font-weight: bold;">or</span>&nbsp; <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a> and <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a>.<font color="#000000"><br></font></div>
14314
14315
14316
14317
14318
14319
14320
14321      <span style="font-style: italic;"></span>&nbsp;<span style="font-style: italic;"></span><p><span style="font-style: italic;">'read_from_file'</span><br>
14322
14323
14324
14325
14326
14327
14328
14329      </p>
14330
14331
14332
14333
14334
14335
14336 
14337     
14338     
14339     
14340     
14341     
14342     
14343      <div style="margin-left: 40px;">Flow around
14344arbitrary topography.<br>
14345
14346
14347
14348
14349
14350
14351
14352This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the&nbsp;</font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height
14353information</font></font><font color="#000000">
14354in m. These data&nbsp;<span style="font-style: italic;"></span>must
14355exactly match the horizontal grid.<br></font> </div>
14356
14357
14358
14359
14360
14361
14362 <span style="font-style: italic;"><br>
14363
14364
14365
14366
14367
14368
14369 </span><font color="#000000">
14370Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a>
14371to allow further topography modes. </font>These require to explicitly set the<span style="font-weight: bold;"> </span><a href="#topography_grid_convention">topography_grid_convention</a>&nbsp;to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.<br>
14372
14373      <font color="#000000">
14374
14375
14376
14377
14378 <br>
14379
14380
14381
14382
14383
14384
14385
14386Non-flat <span style="font-weight: bold;">topography</span>
14387modes may assign a</font>
14388kinematic sensible<font color="#000000"> <a href="chapter_4.1.html#wall_heatflux">wall_heatflux</a> at the five topography faces.</font><br>
14389
14390      <font color="#000000">
14391
14392
14393
14394
14395 <br>
14396
14397
14398
14399
14400
14401
14402
14403All non-flat <span style="font-weight: bold;">topography</span>
14404modes </font>require the use of <a href="#momentum_advec">momentum_advec</a>
14405= <a href="#scalar_advec">scalar_advec</a>
14406= '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a>
14407/= <i>'sor</i><i>'</i>,
14408      <i>&nbsp;</i><a href="#alpha_surface">alpha_surface</a>
14409= 0.0,<span style="font-style: italic;"></span>&nbsp;<a style="" href="#galilei_transformation">galilei_transformation</a>
14410= <span style="font-style: italic;">.F.</span>,&nbsp;<a href="#cloud_physics">cloud_physics&nbsp;</a> = <span style="font-style: italic;">.F.</span>,&nbsp; <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>,&nbsp;&nbsp;<a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br>
14411
14412
14413
14414
14415
14416
14417
14418      <font color="#000000"><br>
14419
14420
14421
14422
14423
14424
14425
14426Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a
14427nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td>
14428
14429
14430
14431
14432
14433
14434
14435    </tr>
14436
14437
14438
14439
14440
14441
14442 <tr><td style="vertical-align: top;"><a name="topography_grid_convention"></a><span style="font-weight: bold;">topography_grid_</span><br style="font-weight: bold;"><span style="font-weight: bold;">convention</span></td><td style="vertical-align: top;">C*11</td><td style="vertical-align: top;"><span style="font-style: italic;">default depends on value of <a href="chapter_4.1.html#topography">topography</a>; see text for details</span></td><td>Convention for defining the&nbsp;topography grid.<br><br>Possible values are<br><ul><li><span style="font-style: italic;">'cell_edge':&nbsp;</span>the distance between cell edges defines the extent of topography. This setting is normally for <span style="font-style: italic;">generic topographies</span>, i.e. topographies that are constructed using length parameters. For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> is constructed using <a href="chapter_4.1.html#building_length_x">building_length_x</a> and <a href="chapter_4.1.html#building_length_y">building_length_y</a>.
14443The advantage of this setting is that the actual size of generic
14444topography is independent of the grid size, provided that the length
14445parameters are an integer multiple of the grid lengths&nbsp;<a href="chapter_4.1.html#dx">dx</a> and&nbsp;<a href="chapter_4.1.html#dy">dy</a>. This is convenient&nbsp;for resolution parameter studies.</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;">:&nbsp;</span>the number of topography cells define the extent of topography. This setting is normally for <span style="font-style: italic;">rastered real topographies</span> derived from digital elevation models.&nbsp;For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span> is constructed using&nbsp;the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">.&nbsp;</font>The
14446advantage of this setting is that the&nbsp;rastered topography cells of
14447the input file are directly mapped to topography grid boxes in PALM. <span style="font-style: italic;"></span></li></ul>The example files&nbsp;<big><code>example_topo_file</code></big> and&nbsp;<big><code>example_building</code></big> in <big><code>trunk/EXAMPLES/</code></big>
14448illustrate the difference between
14449both approaches. Both examples simulate a single building and yield the
14450same results. The former uses a rastered topography input file with <span style="font-style: italic;">'cell_center'</span> convention, the latter applies a generic topography with <span style="font-style: italic;">'cell_edge'</span> convention.<br><br>The default value is<br><ul><li><span style="font-style: italic;">'cell_edge' </span>if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> or <span style="font-style: italic;">'single_street_canyon'</span>,</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;"></span> if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span>,</li><li><span style="font-style: italic;">none (' '</span> ) otherwise, leading to an abort if&nbsp;<span style="font-weight: bold;">topography_grid_convention</span> is not set.</li></ul>This means that <br><ul><li>For PALM simulations using a <span style="font-style: italic;">user-defined topography</span>, the<span style="font-weight: bold;"> topography_grid_convention</span> must be explicitly set to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.</li><li>For PALM simulations using a <span style="font-style: italic;">standard topography</span> <span style="font-style: italic;">('single_building'</span>, <span style="font-style: italic;">'single_street_canyon'</span> or <span style="font-style: italic;">'read_from_file')</span>, it is possible but not required to set the&nbsp; <span style="font-weight: bold;">topography_grid_convention</span> because appropriate default values apply.</li></ul></td></tr><tr>
14451
14452
14453
14454
14455
14456
14457      <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td>
14458
14459
14460
14461
14462
14463
14464      <td style="vertical-align: top;">R</td>
14465
14466
14467
14468
14469
14470
14471      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14472
14473
14474
14475
14476
14477
14478
14479heatflux</span></td>
14480
14481
14482
14483
14484
14485
14486      <td style="vertical-align: top;">
14487     
14488     
14489     
14490     
14491     
14492     
14493      <p>Kinematic
14494sensible heat flux at the top boundary (in K m/s).&nbsp; </p>
14495
14496
14497
14498
14499
14500
14501
14502     
14503     
14504     
14505     
14506     
14507     
14508      <p>If a value is assigned to this parameter, the internal
14509two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is
14510initialized with the value of <span style="font-weight: bold;">top_heatflux</span>&nbsp;as
14511top (horizontally homogeneous) boundary condition for the
14512temperature equation. This additionally requires that a Neumann
14513condition must be used for the potential temperature (see <a href="chapter_4.1.html#bc_pt_t">bc_pt_t</a>),
14514because otherwise the resolved scale may contribute to
14515the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14516
14517
14518
14519
14520
14521
14522
14523     
14524     
14525     
14526     
14527     
14528     
14529      <p><span style="font-weight: bold;">Note:</span><br>
14530
14531
14532
14533
14534
14535
14536The
14537application of a top heat flux additionally requires the setting of
14538initial parameter <a href="#use_top_fluxes">use_top_fluxes</a>
14539= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14540
14541
14542
14543
14544
14545
14546     
14547     
14548     
14549     
14550     
14551     
14552      <p>No
14553Prandtl-layer is available at the top boundary so far.</p>
14554
14555
14556
14557
14558
14559
14560     
14561     
14562     
14563     
14564     
14565     
14566      <p>See
14567also <a href="#surface_heatflux">surface_heatflux</a>.</p>
14568
14569
14570
14571
14572
14573
14574
14575      </td>
14576
14577
14578
14579
14580
14581
14582    </tr>
14583
14584
14585
14586
14587
14588
14589    <tr>
14590
14591
14592
14593
14594
14595
14596      <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td>
14597
14598
14599
14600
14601
14602
14603      <td style="vertical-align: top;">R</td>
14604
14605
14606
14607
14608
14609
14610      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14611
14612
14613
14614
14615
14616
14617      <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br>
14618
14619
14620
14621
14622
14623
14624     
14625     
14626     
14627     
14628     
14629     
14630      <p>If a value is assigned to this parameter, the internal
14631two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is
14632initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as
14633top (horizontally homogeneous) boundary condition for the u-momentum equation.</p>
14634
14635
14636
14637
14638
14639
14640     
14641     
14642     
14643     
14644     
14645     
14646      <p><span style="font-weight: bold;">Notes:</span><br>
14647
14648
14649
14650
14651
14652
14653The
14654application of a top momentum flux additionally requires the setting of
14655initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14656= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p>
14657
14658
14659
14660
14661
14662
14663     
14664     
14665     
14666     
14667     
14668     
14669      <p>A&nbsp;Neumann
14670condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14671because otherwise the resolved scale may contribute to
14672the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14673
14674
14675
14676
14677
14678
14679
14680      <span style="font-weight: bold;"></span>
14681     
14682     
14683     
14684     
14685     
14686     
14687      <p>No
14688Prandtl-layer is available at the top boundary so far.</p>
14689
14690
14691
14692
14693
14694
14695     
14696     
14697     
14698     
14699     
14700     
14701      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14702
14703
14704
14705
14706
14707
14708      </td>
14709
14710
14711
14712
14713
14714
14715    </tr>
14716
14717
14718
14719
14720
14721
14722    <tr>
14723
14724
14725
14726
14727
14728
14729      <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td>
14730
14731
14732
14733
14734
14735
14736      <td style="vertical-align: top;">R</td>
14737
14738
14739
14740
14741
14742
14743      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td>
14744
14745
14746
14747
14748
14749
14750      <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br>
14751
14752
14753
14754
14755
14756
14757     
14758     
14759     
14760     
14761     
14762     
14763      <p>If a value is assigned to this parameter, the internal
14764two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is
14765initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as
14766top (horizontally homogeneous) boundary condition for the v-momentum equation.</p>
14767
14768
14769
14770
14771
14772
14773     
14774     
14775     
14776     
14777     
14778     
14779      <p><span style="font-weight: bold;">Notes:</span><br>
14780
14781
14782
14783
14784
14785
14786The
14787application of a top momentum flux additionally requires the setting of
14788initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14789= .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p>
14790
14791
14792
14793
14794
14795
14796     
14797     
14798     
14799     
14800     
14801     
14802      <p>A&nbsp;Neumann
14803condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>),
14804because otherwise the resolved scale may contribute to
14805the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14806
14807
14808
14809
14810
14811
14812
14813      <span style="font-weight: bold;"></span>
14814     
14815     
14816     
14817     
14818     
14819     
14820      <p>No
14821Prandtl-layer is available at the top boundary so far.</p>
14822
14823
14824
14825
14826
14827
14828     
14829     
14830     
14831     
14832     
14833     
14834      <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file&nbsp;<a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and&nbsp;<a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g.&nbsp;top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p>
14835
14836
14837
14838
14839
14840
14841      </td>
14842
14843
14844
14845
14846
14847
14848    </tr>
14849
14850
14851
14852
14853
14854
14855    <tr>
14856
14857
14858
14859
14860
14861
14862      <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td>
14863
14864
14865
14866
14867
14868
14869      <td style="vertical-align: top;">R</td>
14870
14871
14872
14873
14874
14875
14876      <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br>
14877
14878
14879
14880
14881
14882
14883
14884salinityflux</span></td>
14885
14886
14887
14888
14889
14890
14891      <td style="vertical-align: top;">
14892     
14893     
14894     
14895     
14896     
14897     
14898      <p>Kinematic
14899salinity flux at the top boundary, i.e. the sea surface (in psu m/s).&nbsp; </p>
14900
14901
14902
14903
14904
14905
14906
14907     
14908     
14909     
14910     
14911     
14912     
14913      <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p>
14914
14915
14916
14917
14918
14919
14920     
14921     
14922     
14923     
14924     
14925     
14926      <p>If a value is assigned to this parameter, the internal
14927two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is
14928initialized with the value of <span style="font-weight: bold;">top_salinityflux</span>&nbsp;as
14929top (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann
14930condition must be used for the salinity (see <a href="chapter_4.1.html#bc_sa_t">bc_sa_t</a>),
14931because otherwise the resolved scale may contribute to
14932the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span>&nbsp;</p>
14933
14934
14935
14936
14937
14938
14939
14940     
14941     
14942     
14943     
14944     
14945     
14946      <p><span style="font-weight: bold;">Note:</span><br>
14947
14948
14949
14950
14951
14952
14953The
14954application of a salinity flux at the model top additionally requires the setting of
14955initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a>
14956= .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p>
14957
14958
14959
14960
14961
14962
14963     
14964     
14965     
14966     
14967     
14968     
14969      <p>See
14970also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p>
14971
14972
14973
14974
14975
14976
14977      </td>
14978
14979
14980
14981
14982
14983
14984    </tr>
14985
14986
14987
14988
14989
14990
14991    <tr><td style="vertical-align: top;"><a name="turbulent_inflow"></a><span style="font-weight: bold;">turbulent_inflow</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Generates a turbulent inflow at side boundaries using a turbulence recycling method.<br><br>Turbulent inflow is realized using the turbulence recycling method from Lund et al. (1998, J. Comp. Phys., <span style="font-weight: bold;">140</span>, 233-258) modified by Kataoka and Mizuno (2002, Wind and Structures, <span style="font-weight: bold;">5</span>, 379-392).<br><br>A turbulent inflow requires Dirichlet conditions at the respective inflow boundary. <span style="font-weight: bold;">So far, a turbulent inflow is realized from the left (west) side only, i.e. </span><a style="font-weight: bold;" href="chapter_4.1.html#bc_lr">bc_lr</a><span style="font-weight: bold;">&nbsp;=</span><span style="font-style: italic; font-weight: bold;"> 'dirichlet/radiation'</span><span style="font-weight: bold;"> is required!</span><br><br>The initial (quasi-stationary) turbulence field should be generated by a precursor run and used by setting <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> =<span style="font-style: italic;"> 'cyclic_fill'</span>.<br><br>The distance of the recycling plane from the inflow boundary can be set with parameter <a href="chapter_4.1.html#recycling_width">recycling_width</a>.
14992The heigth above ground above which the turbulence signal is not used
14993for recycling and the width of the layer within&nbsp;the magnitude of
14994the turbulence signal is damped from 100% to 0% can be set with
14995parameters <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> and <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>The detailed setup for a turbulent inflow is described in <a href="chapter_3.9.html">chapter 3.9</a>.</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="u_bulk"></a>u_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>u-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
14996
14997
14998
14999
15000
15001
15002 <td style="vertical-align: top;">
15003     
15004     
15005     
15006     
15007     
15008     
15009      <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p>
15010
15011
15012
15013
15014
15015
15016
15017      </td>
15018
15019
15020
15021
15022
15023
15024 <td style="vertical-align: top;">R<br>
15025
15026
15027
15028
15029
15030
15031 </td>
15032
15033
15034
15035
15036
15037
15038
15039      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
15040
15041
15042
15043
15044
15045
15046 </td>
15047
15048
15049
15050
15051
15052
15053
15054      <td style="vertical-align: top;">u-component of the
15055geostrophic
15056wind at the surface (in m/s).<br>
15057
15058
15059
15060
15061
15062
15063 <br>
15064
15065
15066
15067
15068
15069
15070
15071This parameter assigns the value of the u-component of the geostrophic
15072wind (ug) at the surface (k=0). Starting from this value, the initial
15073vertical profile of the <br>
15074
15075
15076
15077
15078
15079
15080
15081u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15082and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15083The
15084profile constructed in that way is used for creating the initial
15085vertical velocity profile of the 3d-model. Either it is applied, as it
15086has been specified by the user (<a href="#initializing_actions">initializing_actions</a>
15087= 'set_constant_profiles') or it is used for calculating a stationary
15088boundary layer wind profile (<a href="#initializing_actions">initializing_actions</a>
15089= 'set_1d-model_profiles'). If ug is constant with height (i.e. ug(k)=<span style="font-weight: bold;">ug_surface</span>)
15090and&nbsp; has a large
15091value, it is recommended to use a Galilei-transformation of the
15092coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
15093in order to obtain larger time steps.<br>
15094
15095
15096
15097
15098
15099
15100      <br>
15101
15102
15103
15104
15105
15106
15107      <span style="font-weight: bold;">Attention:</span><br>
15108
15109
15110
15111
15112
15113
15114In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15115this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
15116at k=nzt. The profile is then constructed from the surface down to the
15117bottom of the model.<br>
15118
15119
15120
15121
15122
15123
15124 </td>
15125
15126
15127
15128
15129
15130
15131 </tr>
15132
15133
15134
15135
15136
15137
15138
15139    <tr>
15140
15141
15142
15143
15144
15145
15146 <td style="vertical-align: top;"> 
15147     
15148     
15149     
15150     
15151     
15152     
15153      <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p>
15154
15155
15156
15157
15158
15159
15160
15161      </td>
15162
15163
15164
15165
15166
15167
15168 <td style="vertical-align: top;">R(10)<br>
15169
15170
15171
15172
15173
15174
15175
15176      </td>
15177
15178
15179
15180
15181
15182
15183 <td style="vertical-align: top;"><span style="font-style: italic;">10
15184* 0.0</span><br>
15185
15186
15187
15188
15189
15190
15191 </td>
15192
15193
15194
15195
15196
15197
15198 <td style="vertical-align: top;">Gradient(s) of the initial
15199profile of the&nbsp; u-component of the geostrophic wind (in
152001/100s).<br>
15201
15202
15203
15204
15205
15206
15207 <br>
15208
15209
15210
15211
15212
15213
15214
15215The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>
15216(precisely: for all uv levels k where zu(k) &gt; <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>,
15217ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <span style="font-weight: bold;">ug_vertical_gradient</span>)
15218up to the top
15219boundary or up to the next height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>.
15220A
15221total of 10 different gradients for 11 height intervals (10
15222intervals&nbsp; if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1)
15223= 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br>
15224
15225
15226
15227
15228
15229
15230      <br>
15231
15232
15233
15234
15235
15236
15237      <span style="font-weight: bold;">Attention:</span><br>
15238
15239
15240
15241
15242
15243
15244In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
15245the profile is constructed like described above, but starting from the
15246sea surface (k=nzt) down to the bottom boundary of the model. Height
15247levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br>
15248
15249
15250
15251
15252
15253
15254 </td>
15255
15256
15257
15258
15259
15260
15261
15262    </tr>
15263
15264
15265
15266
15267
15268
15269 <tr>
15270
15271
15272
15273
15274
15275
15276 <td style="vertical-align: top;">
15277     
15278     
15279     
15280     
15281     
15282     
15283      <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p>
15284
15285
15286
15287
15288
15289
15290
15291      </td>
15292
15293
15294
15295
15296
15297
15298 <td style="vertical-align: top;">R(10)<br>
15299
15300
15301
15302
15303
15304
15305
15306      </td>
15307
15308
15309
15310
15311
15312
15313 <td style="vertical-align: top;"><span style="font-style: italic;">10
15314* 0.0</span><br>
15315
15316
15317
15318
15319
15320
15321 </td>
15322
15323
15324
15325
15326
15327
15328 <td style="vertical-align: top;">Height level from which on the
15329gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a>
15330is effective (in m).<br>
15331
15332
15333
15334
15335
15336
15337 <br>
15338
15339
15340
15341
15342
15343
15344
15345The height levels have to be assigned in ascending order. For the
15346piecewise construction of a profile of the u-component of the
15347geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br>
15348
15349
15350
15351
15352
15353
15354      <br>
15355
15356
15357
15358
15359
15360
15361      <span style="font-weight: bold;">Attention:</span><br>
15362
15363
15364
15365
15366
15367
15368In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
15369
15370
15371
15372
15373
15374
15375 </tr>
15376
15377
15378
15379
15380
15381
15382 <tr>
15383
15384
15385
15386
15387
15388
15389 <td style="vertical-align: top;"> 
15390     
15391     
15392     
15393     
15394     
15395     
15396      <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p>
15397
15398
15399
15400
15401
15402
15403
15404      </td>
15405
15406
15407
15408
15409
15410
15411 <td style="vertical-align: top;">R</td>
15412
15413
15414
15415
15416
15417
15418
15419      <td style="vertical-align: top;"><i>0.0</i></td>
15420
15421
15422
15423
15424
15425
15426
15427      <td style="vertical-align: top;"> 
15428     
15429     
15430     
15431     
15432     
15433     
15434      <p>Subgrid-scale
15435turbulent kinetic energy difference used as
15436criterion for applying the upstream scheme when upstream-spline
15437advection is switched on (in m<sup>2</sup>/s<sup>2</sup>).
15438&nbsp; </p>
15439
15440
15441
15442
15443
15444
15445 
15446     
15447     
15448     
15449     
15450     
15451     
15452      <p>This variable steers the appropriate
15453treatment of the
15454advection of the subgrid-scale turbulent kinetic energy in case that
15455the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp; </p>
15456
15457
15458
15459
15460
15461
15462
15463     
15464     
15465     
15466     
15467     
15468     
15469      <p>Only positive values are allowed for <b>ups_limit_e</b>.
15470      </p>
15471
15472
15473
15474
15475
15476
15477 </td>
15478
15479
15480
15481
15482
15483
15484 </tr>
15485
15486
15487
15488
15489
15490
15491 <tr>
15492
15493
15494
15495
15496
15497
15498 <td style="vertical-align: top;"> 
15499     
15500     
15501     
15502     
15503     
15504     
15505      <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p>
15506
15507
15508
15509
15510
15511
15512
15513      </td>
15514
15515
15516
15517
15518
15519
15520 <td style="vertical-align: top;">R</td>
15521
15522
15523
15524
15525
15526
15527
15528      <td style="vertical-align: top;"><i>0.0</i></td>
15529
15530
15531
15532
15533
15534
15535
15536      <td style="vertical-align: top;"> 
15537     
15538     
15539     
15540     
15541     
15542     
15543      <p>Temperature
15544difference used as criterion for applying&nbsp;
15545the upstream scheme when upstream-spline advection&nbsp; is
15546switched on
15547(in K).&nbsp; </p>
15548
15549
15550
15551
15552
15553
15554 
15555     
15556     
15557     
15558     
15559     
15560     
15561      <p>This criterion is used if the
15562upstream-spline scheme is
15563switched on (see <a href="#scalar_advec">scalar_advec</a>).<br>
15564
15565
15566
15567
15568
15569
15570
15571If, for a given gridpoint, the absolute temperature difference with
15572respect to the upstream
15573grid point is smaller than the value given for <b>ups_limit_pt</b>,
15574the upstream scheme is used for this gridpoint (by default, the
15575upstream-spline scheme is always used). Reason: in case of a very small
15576upstream gradient, the advection should cause only a very small
15577tendency. However, in such situations the upstream-spline scheme may
15578give wrong tendencies at a
15579grid point due to spline overshooting, if simultaneously the downstream
15580gradient is very large. In such cases it may be more reasonable to use
15581the upstream scheme. The numerical diffusion caused by the upstream
15582schme remains small as long as the upstream gradients are small.<br>
15583
15584
15585
15586
15587
15588
15589
15590      </p>
15591
15592
15593
15594
15595
15596
15597 
15598     
15599     
15600     
15601     
15602     
15603     
15604      <p>The percentage of grid points for which the
15605upstream
15606scheme is actually used, can be output as a time series with respect to
15607the
15608three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the
15609timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>,
15610      <i>'splptz'</i>). The percentage
15611of gridpoints&nbsp; should stay below a certain limit, however, it
15612is
15613not possible to give
15614a general limit, since it depends on the respective flow.&nbsp; </p>
15615
15616
15617
15618
15619
15620
15621
15622     
15623     
15624     
15625     
15626     
15627     
15628      <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br>
15629
15630
15631
15632
15633
15634
15635
15636      </p>
15637
15638
15639
15640
15641
15642
15643
15644A more effective control of
15645the &ldquo;overshoots&rdquo; can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>.
15646      </td>
15647
15648
15649
15650
15651
15652
15653 </tr>
15654
15655
15656
15657
15658
15659
15660 <tr>
15661
15662
15663
15664
15665
15666
15667 <td style="vertical-align: top;"> 
15668     
15669     
15670     
15671     
15672     
15673     
15674      <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p>
15675
15676
15677
15678
15679
15680
15681
15682      </td>
15683
15684
15685
15686
15687
15688
15689 <td style="vertical-align: top;">R</td>
15690
15691
15692
15693
15694
15695
15696
15697      <td style="vertical-align: top;"><i>0.0</i></td>
15698
15699
15700
15701
15702
15703
15704
15705      <td style="vertical-align: top;"> 
15706     
15707     
15708     
15709     
15710     
15711     
15712      <p>Velocity
15713difference (u-component) used as criterion for
15714applying the upstream scheme
15715when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15716
15717
15718
15719
15720
15721
15722
15723     
15724     
15725     
15726     
15727     
15728     
15729      <p>This variable steers the appropriate treatment of the
15730advection of the u-velocity-component in case that the upstream-spline
15731scheme is used. For further
15732information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15733      </p>
15734
15735
15736
15737
15738
15739
15740 
15741     
15742     
15743     
15744     
15745     
15746     
15747      <p>Only positive values are permitted for <b>ups_limit_u</b>.</p>
15748
15749
15750
15751
15752
15753
15754
15755      </td>
15756
15757
15758
15759
15760
15761
15762 </tr>
15763
15764
15765
15766
15767
15768
15769 <tr>
15770
15771
15772
15773
15774
15775
15776 <td style="vertical-align: top;"> 
15777     
15778     
15779     
15780     
15781     
15782     
15783      <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p>
15784
15785
15786
15787
15788
15789
15790
15791      </td>
15792
15793
15794
15795
15796
15797
15798 <td style="vertical-align: top;">R</td>
15799
15800
15801
15802
15803
15804
15805
15806      <td style="vertical-align: top;"><i>0.0</i></td>
15807
15808
15809
15810
15811
15812
15813
15814      <td style="vertical-align: top;"> 
15815     
15816     
15817     
15818     
15819     
15820     
15821      <p>Velocity
15822difference (v-component) used as criterion for
15823applying the upstream scheme
15824when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15825
15826
15827
15828
15829
15830
15831
15832     
15833     
15834     
15835     
15836     
15837     
15838      <p>This variable steers the appropriate treatment of the
15839advection of the v-velocity-component in case that the upstream-spline
15840scheme is used. For further
15841information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15842      </p>
15843
15844
15845
15846
15847
15848
15849 
15850     
15851     
15852     
15853     
15854     
15855     
15856      <p>Only positive values are permitted for <b>ups_limit_v</b>.</p>
15857
15858
15859
15860
15861
15862
15863
15864      </td>
15865
15866
15867
15868
15869
15870
15871 </tr>
15872
15873
15874
15875
15876
15877
15878 <tr>
15879
15880
15881
15882
15883
15884
15885 <td style="vertical-align: top;"> 
15886     
15887     
15888     
15889     
15890     
15891     
15892      <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p>
15893
15894
15895
15896
15897
15898
15899
15900      </td>
15901
15902
15903
15904
15905
15906
15907 <td style="vertical-align: top;">R</td>
15908
15909
15910
15911
15912
15913
15914
15915      <td style="vertical-align: top;"><i>0.0</i></td>
15916
15917
15918
15919
15920
15921
15922
15923      <td style="vertical-align: top;"> 
15924     
15925     
15926     
15927     
15928     
15929     
15930      <p>Velocity
15931difference (w-component) used as criterion for
15932applying the upstream scheme
15933when upstream-spline advection is switched on (in m/s).&nbsp; </p>
15934
15935
15936
15937
15938
15939
15940
15941     
15942     
15943     
15944     
15945     
15946     
15947      <p>This variable steers the appropriate treatment of the
15948advection of the w-velocity-component in case that the upstream-spline
15949scheme is used. For further
15950information see <a href="#ups_limit_pt">ups_limit_pt</a>.&nbsp;
15951      </p>
15952
15953
15954
15955
15956
15957
15958 
15959     
15960     
15961     
15962     
15963     
15964     
15965      <p>Only positive values are permitted for <b>ups_limit_w</b>.</p>
15966
15967
15968
15969
15970
15971
15972
15973      </td>
15974
15975
15976
15977
15978
15979
15980 </tr>
15981
15982
15983
15984
15985
15986
15987 <tr>
15988
15989
15990
15991
15992
15993
15994 <td style="vertical-align: top;"> 
15995     
15996     
15997     
15998     
15999     
16000     
16001      <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p>
16002
16003
16004
16005
16006
16007
16008
16009      </td>
16010
16011
16012
16013
16014
16015
16016 <td style="vertical-align: top;">L</td>
16017
16018
16019
16020
16021
16022
16023
16024      <td style="vertical-align: top;"><i>.F.</i></td>
16025
16026
16027
16028
16029
16030
16031
16032      <td style="vertical-align: top;"> 
16033     
16034     
16035     
16036     
16037     
16038     
16039      <p>Parameter to
16040steer the treatment of the subgrid-scale vertical
16041fluxes within the diffusion terms at k=1 (bottom boundary).<br>
16042
16043
16044
16045
16046
16047
16048 </p>
16049
16050
16051
16052
16053
16054
16055
16056     
16057     
16058     
16059     
16060     
16061     
16062      <p>By default, the near-surface subgrid-scale fluxes are
16063parameterized (like in the remaining model domain) using the gradient
16064approach. If <b>use_surface_fluxes</b>
16065= <i>.TRUE.</i>, the user-assigned surface fluxes are used
16066instead
16067(see <a href="#surface_heatflux">surface_heatflux</a>,
16068      <a href="#surface_waterflux">surface_waterflux</a>
16069and <a href="#surface_scalarflux">surface_scalarflux</a>)
16070      <span style="font-weight: bold;">or</span> the
16071surface fluxes are
16072calculated via the Prandtl layer relation (depends on the bottom
16073boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>,
16074      <a href="#bc_q_b">bc_q_b</a>
16075and <a href="#bc_s_b">bc_s_b</a>).<br>
16076
16077
16078
16079
16080
16081
16082 </p>
16083
16084
16085
16086
16087
16088
16089
16090     
16091     
16092     
16093     
16094     
16095     
16096      <p><b>use_surface_fluxes</b>
16097is automatically set <i>.TRUE.</i>, if a Prandtl layer is
16098used (see <a href="#prandtl_layer">prandtl_layer</a>).&nbsp;
16099      </p>
16100
16101
16102
16103
16104
16105
16106 
16107     
16108     
16109     
16110     
16111     
16112     
16113      <p>The user may prescribe the surface fluxes at the
16114bottom
16115boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> =
16116      <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this
16117case, the
16118momentum flux (u<sub>*</sub><sup>2</sup>)
16119should also be prescribed,
16120the user must assign an appropriate value within the user-defined code.</p>
16121
16122
16123
16124
16125
16126
16127
16128      </td>
16129
16130
16131
16132
16133
16134
16135 </tr>
16136
16137
16138
16139
16140
16141
16142 <tr>
16143
16144
16145
16146
16147
16148
16149      <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td>
16150
16151
16152
16153
16154
16155
16156      <td style="vertical-align: top;">L</td>
16157
16158
16159
16160
16161
16162
16163      <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td>
16164
16165
16166
16167
16168
16169
16170      <td style="vertical-align: top;"> 
16171     
16172     
16173     
16174     
16175     
16176     
16177      <p>Parameter to steer
16178the treatment of the subgrid-scale vertical
16179fluxes within the diffusion terms at k=nz (top boundary).</p>
16180
16181
16182
16183
16184
16185
16186     
16187     
16188     
16189     
16190     
16191     
16192      <p>By
16193default, the fluxes at nz are calculated using the gradient approach.
16194If <b>use_top_fluxes</b>
16195= <i>.TRUE.</i>, the user-assigned top fluxes are used
16196instead
16197(see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p>
16198
16199
16200
16201
16202
16203
16204     
16205     
16206     
16207     
16208     
16209     
16210      <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent
16211heat flux at the top will be automatically set to zero.</p>
16212
16213
16214
16215
16216
16217
16218      </td>
16219
16220
16221
16222
16223
16224
16225    </tr>
16226
16227
16228
16229
16230
16231
16232    <tr>
16233
16234
16235
16236
16237
16238
16239
16240      <td style="vertical-align: top;"> 
16241     
16242     
16243     
16244     
16245     
16246     
16247      <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p>
16248
16249
16250
16251
16252
16253
16254
16255      </td>
16256
16257
16258
16259
16260
16261
16262 <td style="vertical-align: top;">L</td>
16263
16264
16265
16266
16267
16268
16269
16270      <td style="vertical-align: top;"><i>.T.</i></td>
16271
16272
16273
16274
16275
16276
16277
16278      <td style="vertical-align: top;"> 
16279     
16280     
16281     
16282     
16283     
16284     
16285      <p>Switch to
16286determine the translation velocity in case that a
16287Galilean transformation is used.<br>
16288
16289
16290
16291
16292
16293
16294 </p>
16295
16296
16297
16298
16299
16300
16301 
16302     
16303     
16304     
16305     
16306     
16307     
16308      <p>In
16309case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>),
16310      <b>use_ug_for_galilei_tr</b>
16311= <i>.T.</i>&nbsp; ensures
16312that the coordinate system is translated with the geostrophic windspeed.<br>
16313
16314
16315
16316
16317
16318
16319
16320      </p>
16321
16322
16323
16324
16325
16326
16327 
16328     
16329     
16330     
16331     
16332     
16333     
16334      <p>Alternatively, with <b>use_ug_for_galilei_tr</b>
16335= <i>.F</i>.,
16336the
16337geostrophic wind can be replaced as translation speed by the (volume)
16338averaged velocity. However, in this case the user must be aware of fast
16339growing gravity waves, so this
16340choice is usually not recommended!</p>
16341
16342
16343
16344
16345
16346
16347 </td>
16348
16349
16350
16351
16352
16353
16354 </tr>
16355
16356
16357
16358
16359
16360
16361 <tr>
16362
16363
16364
16365
16366
16367
16368      <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td>
16369
16370
16371
16372
16373
16374
16375      <td align="left" valign="top">L</td>
16376
16377
16378
16379
16380
16381
16382      <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td>
16383
16384
16385
16386
16387
16388
16389      <td align="left" valign="top">Parameter to choose the
16390advection/timestep scheme to be used for the subgrid-scale TKE.<br>
16391
16392
16393
16394
16395
16396
16397      <br>
16398
16399
16400
16401
16402
16403
16404By
16405default, the advection scheme and the timestep scheme to be used for
16406the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>,
16407respectively. <span style="font-weight: bold;">use_upstream_for_tke</span>
16408= <span style="font-style: italic;">.T.</span>
16409forces the Euler-scheme and the upstream-scheme to be used as timestep
16410scheme and advection scheme, respectively. By these methods, the strong
16411(artificial) near-surface vertical gradients of the subgrid-scale TKE
16412are significantly reduced. This is required when subgrid-scale
16413velocities are used for advection of particles (see particle package
16414parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td>
16415
16416
16417
16418
16419
16420
16421    </tr>
16422
16423
16424
16425
16426
16427
16428    <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="v_bulk"></a>v_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>v-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="chapter_4.1.html#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="chapter_4.1.html#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr>
16429
16430
16431
16432
16433
16434
16435
16436      <td style="vertical-align: top;"> 
16437     
16438     
16439     
16440     
16441     
16442     
16443      <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p>
16444
16445
16446
16447
16448
16449
16450
16451      </td>
16452
16453
16454
16455
16456
16457
16458 <td style="vertical-align: top;">R<br>
16459
16460
16461
16462
16463
16464
16465 </td>
16466
16467
16468
16469
16470
16471
16472
16473      <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br>
16474
16475
16476
16477
16478
16479
16480 </td>
16481
16482
16483
16484
16485
16486
16487
16488      <td style="vertical-align: top;">v-component of the
16489geostrophic
16490wind at the surface (in m/s).<br>
16491
16492
16493
16494
16495
16496
16497 <br>
16498
16499
16500
16501
16502
16503
16504
16505This parameter assigns the value of the v-component of the geostrophic
16506wind (vg) at the surface (k=0). Starting from this value, the initial
16507vertical profile of the <br>
16508
16509
16510
16511
16512
16513
16514
16515v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16516and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16517The
16518profile
16519constructed in that way is used for creating the initial vertical
16520velocity profile of the 3d-model. Either it is applied, as it has been
16521specified by the user (<a href="#initializing_actions">initializing_actions</a>
16522= 'set_constant_profiles')
16523or it is used for calculating a stationary boundary layer wind profile
16524(<a href="#initializing_actions">initializing_actions</a>
16525=
16526'set_1d-model_profiles'). If vg is constant
16527with height (i.e. vg(k)=<span style="font-weight: bold;">vg_surface</span>)
16528and&nbsp; has a large value, it is
16529recommended to use a Galilei-transformation of the coordinate system,
16530if possible (see <a href="#galilei_transformation">galilei_transformation</a>),
16531in order to obtain larger
16532time steps.<br>
16533
16534
16535
16536
16537
16538
16539      <br>
16540
16541
16542
16543
16544
16545
16546      <span style="font-weight: bold;">Attention:</span><br>
16547
16548
16549
16550
16551
16552
16553In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16554this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is
16555at k=nzt. The profile is then constructed from the surface down to the
16556bottom of the model.</td>
16557
16558
16559
16560
16561
16562
16563 </tr>
16564
16565
16566
16567
16568
16569
16570 <tr>
16571
16572
16573
16574
16575
16576
16577 <td style="vertical-align: top;"> 
16578     
16579     
16580     
16581     
16582     
16583     
16584      <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p>
16585
16586
16587
16588
16589
16590
16591
16592      </td>
16593
16594
16595
16596
16597
16598
16599 <td style="vertical-align: top;">R(10)<br>
16600
16601
16602
16603
16604
16605
16606
16607      </td>
16608
16609
16610
16611
16612
16613
16614 <td style="vertical-align: top;"><span style="font-style: italic;">10
16615* 0.0</span><br>
16616
16617
16618
16619
16620
16621
16622 </td>
16623
16624
16625
16626
16627
16628
16629 <td style="vertical-align: top;">Gradient(s) of the initial
16630profile of the&nbsp; v-component of the geostrophic wind (in
166311/100s).<br>
16632
16633
16634
16635
16636
16637
16638 <br>
16639
16640
16641
16642
16643
16644
16645
16646The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>
16647(precisely: for all uv levels k where zu(k)
16648&gt; <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>,
16649vg(k) is set: vg(k) = vg(k-1) + dzu(k)
16650* <span style="font-weight: bold;">vg_vertical_gradient</span>)
16651up to
16652the top boundary or up to the next height
16653level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>.
16654A total of 10 different
16655gradients for 11 height intervals (10 intervals&nbsp; if <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>(1)
16656=
166570.0) can be assigned. The surface
16658geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br>
16659
16660
16661
16662
16663
16664
16665      <br>
16666
16667
16668
16669
16670
16671
16672      <span style="font-weight: bold;">Attention:</span><br>
16673
16674
16675
16676
16677
16678
16679In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>),
16680the profile is constructed like described above, but starting from the
16681sea surface (k=nzt) down to the bottom boundary of the model. Height
16682levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td>
16683
16684
16685
16686
16687
16688
16689
16690    </tr>
16691
16692
16693
16694
16695
16696
16697 <tr>
16698
16699
16700
16701
16702
16703
16704 <td style="vertical-align: top;">
16705     
16706     
16707     
16708     
16709     
16710     
16711      <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p>
16712
16713
16714
16715
16716
16717
16718
16719      </td>
16720
16721
16722
16723
16724
16725
16726 <td style="vertical-align: top;">R(10)<br>
16727
16728
16729
16730
16731
16732
16733
16734      </td>
16735
16736
16737
16738
16739
16740
16741 <td style="vertical-align: top;"><span style="font-style: italic;">10
16742* 0.0</span><br>
16743
16744
16745
16746
16747
16748
16749 </td>
16750
16751
16752
16753
16754
16755
16756 <td style="vertical-align: top;">Height level from which on the
16757gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a>
16758is effective (in m).<br>
16759
16760
16761
16762
16763
16764
16765 <br>
16766
16767
16768
16769
16770
16771
16772
16773The height levels have to be assigned in ascending order. For the
16774piecewise construction of a profile of the v-component of the
16775geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br>
16776
16777
16778
16779
16780
16781
16782      <br>
16783
16784
16785
16786
16787
16788
16789      <span style="font-weight: bold;">Attention:</span><br>
16790
16791
16792
16793
16794
16795
16796In case of ocean runs&nbsp;(see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td>
16797
16798
16799
16800
16801
16802
16803
16804    </tr>
16805
16806
16807
16808
16809
16810
16811 <tr>
16812
16813
16814
16815
16816
16817
16818 <td style="vertical-align: top;">
16819     
16820     
16821     
16822     
16823     
16824     
16825      <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p>
16826
16827
16828
16829
16830
16831
16832
16833      </td>
16834
16835
16836
16837
16838
16839
16840 <td style="vertical-align: top;">L</td>
16841
16842
16843
16844
16845
16846
16847
16848      <td style="vertical-align: top;"><i>.T.</i></td>
16849
16850
16851
16852
16853
16854
16855
16856      <td style="vertical-align: top;"> 
16857     
16858     
16859     
16860     
16861     
16862     
16863      <p>Parameter to
16864restrict the mixing length in the vicinity of the
16865bottom
16866boundary (and near vertical walls of a non-flat <a href="chapter_4.1.html#topography">topography</a>).&nbsp; </p>
16867
16868
16869
16870
16871
16872
16873 
16874     
16875     
16876     
16877     
16878     
16879     
16880      <p>With <b>wall_adjustment</b>
16881= <i>.TRUE., </i>the mixing
16882length is limited to a maximum of&nbsp; 1.8 * z. This condition
16883typically affects only the
16884first grid points above the bottom boundary.</p>
16885
16886
16887     
16888     
16889      <p>In case of&nbsp; a non-flat <a href="chapter_4.1.html#topography">topography</a> the respective horizontal distance from vertical walls is used.</p>
16890
16891
16892
16893
16894
16895
16896 </td>
16897
16898
16899
16900
16901
16902
16903 </tr>
16904
16905
16906
16907
16908
16909
16910
16911    <tr>
16912
16913
16914
16915
16916
16917
16918 <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td>
16919
16920
16921
16922
16923
16924
16925
16926      <td style="vertical-align: top;">R(5)</td>
16927
16928
16929
16930
16931
16932
16933 <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td>
16934
16935
16936
16937
16938
16939
16940 <td>Prescribed
16941kinematic sensible heat flux in K m/s
16942at the five topography faces:<br>
16943
16944
16945
16946
16947
16948
16949 <br>
16950
16951
16952
16953
16954
16955
16956 
16957     
16958     
16959     
16960     
16961     
16962     
16963      <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0)&nbsp;&nbsp;
16964&nbsp;</span>top face<br>
16965
16966
16967
16968
16969
16970
16971 <span style="font-weight: bold;">wall_heatflux(1)&nbsp;&nbsp;&nbsp;
16972      </span>left face<br>
16973
16974
16975
16976
16977
16978
16979 <span style="font-weight: bold;">wall_heatflux(2)&nbsp;&nbsp;&nbsp;
16980      </span>right face<br>
16981
16982
16983
16984
16985
16986
16987 <span style="font-weight: bold;">wall_heatflux(3)&nbsp;&nbsp;&nbsp;
16988      </span>south face<br>
16989
16990
16991
16992
16993
16994
16995 <span style="font-weight: bold;">wall_heatflux(4)&nbsp;&nbsp;&nbsp;
16996      </span>north face</div>
16997
16998
16999
17000
17001
17002
17003 <br>
17004
17005
17006
17007
17008
17009
17010
17011This parameter applies only in case of a non-flat <a href="#topography">topography</a>.&nbsp;The
17012parameter <a href="#random_heatflux">random_heatflux</a>
17013can be used to impose random perturbations on the internal
17014two-dimensional surface heat
17015flux field <span style="font-style: italic;">shf</span>
17016that is composed of <a href="#surface_heatflux">surface_heatflux</a>
17017at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span>
17018at the topography top face.&nbsp;</td>
17019
17020
17021
17022
17023
17024
17025 </tr>
17026
17027
17028
17029
17030
17031
17032 
17033 
17034 
17035 
17036 
17037 
17038 
17039  </tbody>
17040</table>
17041
17042
17043
17044
17045
17046
17047<br>
17048
17049
17050
17051
17052
17053
17054
17055<p style="line-height: 100%;"><br>
17056
17057
17058
17059
17060
17061
17062<font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p>
17063
17064
17065
17066
17067
17068
17069
17070<p style="line-height: 100%;"><i>Last
17071change:&nbsp;</i> $Id: chapter_4.1.html 354 2009-07-13 13:14:25Z maronga $ </p>
17072
17073
17074
17075
17076
17077
17078
17079<br>
17080
17081
17082
17083
17084
17085
17086<br>
17087
17088
17089
17090
17091
17092
17093
17094</body></html>
Note: See TracBrowser for help on using the repository browser.