Changes between Version 23 and Version 24 of doc/tec/advection
- Timestamp:
- Nov 12, 2015 2:44:02 PM (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
doc/tec/advection
v23 v24 4 4 {{{ 5 5 #!Latex 6 \[ \frac{\partial \psi}{\partial t} & = & -\frac{\partial ( u \psi )}{\partial x}, \] 6 $\dfrac{\partial \psi}{\partial t} = -\dfrac{\partial ( u \psi )}{\partial x},$ 7 7 }}} 8 8 the one dimensional advection equation can be written in the following semidiscrete form: 9 9 {{{ 10 10 #!Latex 11 \[ \frac{\partial \psi_{i} }{\partial t} = - \frac{F_{i+\frac{1}{2}}(u\psi) - F_{i-\frac{1}{2}}(u\psi)}{\Delta x}, \] 11 $\dfrac{\partial \psi_{i} }{\partial t} = - \dfrac{F_{i+\frac{1}{2}}(u\psi) - F_{i-\frac{1}{2}}(u\psi)}{\Delta x},$ 12 12 }}} 13 13 where 14 14 {{{ 15 15 #!Latex 16 \[F_{i\pm\frac{1}{2}} \] 16 $F_{i\pm\frac{1}{2}}$ 17 17 }}} 18 18 denotes the fluxes staggered half a grid length related to the advected quantity. \\ … … 20 20 {{{ 21 21 #!Latex 22 \[ F_{i-\frac{1}{2}}^{6} &=& \frac{u_{i-\frac{1}{2}}}{60} \left[ 37(\psi_{i}+\psi_{i-1}) - 8(\psi_{i+1} + \psi_{i-2}) +(\psi_{i+2} + \psi_{i-3}) \right] \] 23 }}} 24 {{{ 25 #!Latex 26 \[ F_{i-\frac{1}{2}}^{5} &=& F_{i-\frac{1}{2}}^{6} - \frac{|u_{i-\frac{1}{2}}|}{60} \left[10(\psi_{i}-\psi_{i-1}) -5(\psi_{i+1} - \psi_{i-2})+(\psi_{i+2} - \psi_{i-3}) \right] . \] 22 $F_{i-\frac{1}{2}}^{6} = \frac{u_{i-\frac{1}{2}}}{60} \left[ 37(\psi_{i}+\psi_{i-1}) - 8(\psi_{i+1} + \psi_{i-2}) +(\psi_{i+2} + \psi_{i-3}) \right] ,$ 23 }}} 24 25 {{{ 26 #!Latex 27 $F_{i-\frac{1}{2}}^{5} = F_{i-\frac{1}{2}}^{6} - \dfrac{|u_{i-\frac{1}{2}}|}{60} \left[10(\psi_{i}-\psi_{i-1}) -5(\psi_{i+1} - \psi_{i-2})+(\psi_{i+2} - \psi_{i-3}) \right] . $ 27 28 }}} 28 29 The 5^th^ order upwind discretization (WS5) consists of a centered non dissipative 6^th^ (WS6) order flux and an artificially added numerical dissipation term. This term is necessary to stabilize the numerical solution, because higher order centered fluxes exhibits worse stability properties. The absolute value of the advective velocity component in the dissipation term removes a sign-dependent effect of the velocity and assures a dissipative effect also for u < 0. … … 33 34 {{{ 34 35 #!Latex 35 \[ \frac{\partial \hat{\psi}_{\kappa}}{\partial t} = - \frac{i}{\Delta t} C_{r} \kappa_{eff}\,\hat{\psi}_{\kappa}, \] 36 $\dfrac{\partial \hat{\psi}_{\kappa}}{\partial t} = - \dfrac{i}{\Delta t} C_{r} \kappa_{eff}\,\hat{\psi}_{\kappa},$ 36 37 }}} 37 38 where 38 39 {{{ 39 40 #!Latex 40 \[ 41 \hat{\psi} 41 $\hat{\psi}$ 42 42 }}} 43 43 denotes the fourier transformed of ψ. The Courant number 44 44 {{{ 45 45 #!Latex 46 \[ 47 C_{r} = \frac{u \Delta t}{\Delta x} 48 \] 46 $C_{r} = \dfrac{u \Delta t}{\Delta x}$ 49 47 }}} 50 48 characterizes stability properties and i is the imaginary unit.