Changes between Version 23 and Version 24 of doc/tec/advection


Ignore:
Timestamp:
Nov 12, 2015 2:44:02 PM (9 years ago)
Author:
boeske
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/advection

    v23 v24  
    44{{{
    55#!Latex
    6 \[ \frac{\partial \psi}{\partial t} & = & -\frac{\partial ( u \psi )}{\partial x}, \]
     6$\dfrac{\partial \psi}{\partial t} = -\dfrac{\partial ( u \psi )}{\partial x},$
    77}}}
    88the one dimensional advection equation can be written in the following semidiscrete form:
    99{{{
    1010#!Latex
    11 \[ \frac{\partial  \psi_{i} }{\partial t} = - \frac{F_{i+\frac{1}{2}}(u\psi) - F_{i-\frac{1}{2}}(u\psi)}{\Delta x}, \]
     11$\dfrac{\partial  \psi_{i} }{\partial t} = - \dfrac{F_{i+\frac{1}{2}}(u\psi) - F_{i-\frac{1}{2}}(u\psi)}{\Delta x},$
    1212}}}
    1313where
    1414{{{
    1515#!Latex
    16 \[F_{i\pm\frac{1}{2}} \]
     16$F_{i\pm\frac{1}{2}}$
    1717}}}
    1818denotes the fluxes staggered half a grid length related to the advected quantity. \\
     
    2020{{{
    2121#!Latex
    22 \[ F_{i-\frac{1}{2}}^{6} &=& \frac{u_{i-\frac{1}{2}}}{60} \left[ 37(\psi_{i}+\psi_{i-1}) - 8(\psi_{i+1} + \psi_{i-2}) +(\psi_{i+2} + \psi_{i-3}) \right] \]
    23 }}}
    24 {{{
    25 #!Latex
    26 \[ F_{i-\frac{1}{2}}^{5} &=& F_{i-\frac{1}{2}}^{6} - \frac{|u_{i-\frac{1}{2}}|}{60} \left[10(\psi_{i}-\psi_{i-1}) -5(\psi_{i+1} - \psi_{i-2})+(\psi_{i+2} - \psi_{i-3}) \right] . \]
     22$F_{i-\frac{1}{2}}^{6} = \frac{u_{i-\frac{1}{2}}}{60} \left[ 37(\psi_{i}+\psi_{i-1}) - 8(\psi_{i+1} + \psi_{i-2}) +(\psi_{i+2} + \psi_{i-3}) \right] ,$
     23}}}
     24 
     25{{{
     26#!Latex
     27$F_{i-\frac{1}{2}}^{5} = F_{i-\frac{1}{2}}^{6} - \dfrac{|u_{i-\frac{1}{2}}|}{60} \left[10(\psi_{i}-\psi_{i-1}) -5(\psi_{i+1} - \psi_{i-2})+(\psi_{i+2} - \psi_{i-3}) \right] . $
    2728}}}
    2829The 5^th^ order upwind discretization (WS5) consists of a centered non dissipative 6^th^ (WS6) order flux and an artificially added numerical dissipation term. This term is necessary to stabilize the numerical solution, because higher order centered fluxes exhibits worse stability properties. The absolute value of the advective velocity component in the dissipation term removes a sign-dependent effect of the velocity and assures a dissipative effect also for u < 0.
     
    3334{{{
    3435#!Latex
    35 \[ \frac{\partial \hat{\psi}_{\kappa}}{\partial t}  =  - \frac{i}{\Delta t} C_{r} \kappa_{eff}\,\hat{\psi}_{\kappa}, \]
     36$\dfrac{\partial \hat{\psi}_{\kappa}}{\partial t}  =  - \dfrac{i}{\Delta t} C_{r} \kappa_{eff}\,\hat{\psi}_{\kappa},$
    3637}}}
    3738where
    3839{{{
    3940#!Latex
    40 \[
    41 \hat{\psi} 
     41$\hat{\psi}$
    4242}}}
    4343denotes the fourier transformed of ψ. The Courant number
    4444{{{
    4545#!Latex
    46 \[
    47 C_{r} = \frac{u \Delta t}{\Delta x}
    48 \]
     46$C_{r} = \dfrac{u \Delta t}{\Delta x}$
    4947}}} 
    5048characterizes stability properties and i is the imaginary unit.