3rd order Runge-Kutta scheme
For the dicretization in time a 3rd order low-storage Runge-Kutta scheme with 3 stages recommended by Williamson (1979) is used.
Generally an N-stage Runge-Kutta scheme discretizes an ordinary differential equation of the form
TracMath macro processor has detected an error. Please fix the problem before continuing.
The command:
'/usr/bin/pdflatex -interaction=nonstopmode ab9a045fbec844e76eb011e3d45b3e3a7e5d0f24.tex'
failed with the following output:
"This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013)\n restricted \\write18 enabled.\nentering extended mode\n(./ab9a045fbec844e76eb011e3d45b3e3a7e5d0f24.tex\nLaTeX2e <2011/06/27>\nBabel <3.9h> and hyphenation patterns for 78 languages loaded.\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/article.cls\nDocument Class: article 2007/10/19 v1.4h Standard LaTeX document class\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/size10.clo))\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/inputenc.sty\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/utf8.def\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/t1enc.dfu)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/ot1enc.dfu)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/omsenc.dfu)))\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/cmap/cmap.sty)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/cm-super/type1ec.sty\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/t1cmr.fd))\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/fontenc.sty\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/base/t1enc.def)<<t1.cmap\n>>) (/localdata/software/texlive/2013/texmf-dist/tex/latex/amsmath/amsmath.sty\nFor additional information on amsmath, use the `?' option.\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsmath/amstext.sty\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsmath/amsgen.sty))\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsmath/amsbsy.sty)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsmath/amsopn.sty))\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amscls/amsthm.sty)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsfonts/amssymb.sty\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsfonts/amsfonts.sty))\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/tools/bm.sty)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/preview/preview.sty\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/preview/prtightpage.def)\n)\nNo file ab9a045fbec844e76eb011e3d45b3e3a7e5d0f24.aux.\nPreview: Fontsize 10pt\nPreview: PDFoutput 1\n<<ot1.cmap>><<oml.cmap>><<oms.cmap>><<omx.cmap>>\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsfonts/umsa.fd)\n(/localdata/software/texlive/2013/texmf-dist/tex/latex/amsfonts/umsb.fd)\n! Misplaced alignment tab character &.\nl.14 \\[ \\frac{d \\psi}{d t} &\n = & f(t,\\psi) \\]\n! Misplaced alignment tab character &.\nl.14 \\[ \\frac{d \\psi}{d t} & = &\n f(t,\\psi) \\]\nPreview: Tightpage -32891 -32891 32891 32891\n[1{/localdata/software/texlive/2013/texmf-var/fonts/map/pdftex/updmap/pdftex.ma\np}] (./ab9a045fbec844e76eb011e3d45b3e3a7e5d0f24.aux) )\n(see the transcript file for additional information)</localdata/software/texliv\ne/2013/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></localdata/softwar\ne/texlive/2013/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb>\nOutput written on ab9a045fbec844e76eb011e3d45b3e3a7e5d0f24.pdf (1 page, 21457 b\nytes).\nTranscript written on ab9a045fbec844e76eb011e3d45b3e3a7e5d0f24.log.\n"
as follows ( Baldauf, 2008 ):
![\[ \psi^{(0)} = \psi^{n}, \]
\[ k^{i} = f(t^{n} + \Delta t\,\alpha_{i},\,\psi^{i-1}), \]
\[ \psi^{i} = \psi^{n} + \Delta t\,\sum^{i}_{j=1}\,\beta_{i+1,j}\,k^{j}, \quad \textnormal{mit} \quad i \in [1,2,...,N] \]
\[ \psi^{n+1} = \psi^{N}. \]](/trac/tracmath/22007c852ab1a11e37ad031ac90c189230b8e234.png)
The coefficients can written in a Butcher-Tableau in the following way:
α1 | β1,1 | 0 | ... | |
|
α2 | β2,1 | β2,2 | 0 | ... |
|
... | ... | | | |
|
αN | βN,1 | βN,2 | ... | βN,N-1 | 0
|
| βN+1,1 | βN+1,2 | ... | βN+1,N-1 | βN+1,N
|
The appendant coefficients for the used Runge-Kutta scheme reads:
0 | 0 | 0 | 0
|
1/3 | 1/3 | 0 | 0
|
1/2 | -3/16 | 15/16 | 0
|
| 1/6 | 3/10 | 8/15
|
For the implementation it is advantageous to compute ψN from the intermediate solutions ψ1 and ψ2 as follows:
Sorry for incompleteness. A further description will follow in the next days.